TRABAJO ESPECIAL DE GRADO

APLICACIÓN DE LA METODOLOGÍA DE PARÁMETROS DISTRIBUIDOS EN EL ANÁLISIS DE PROTECCIÓN CATÓDICA DE TUBERÍAS DE GRAN LONGITUD

Profesor Guía: Ing. Julio Molina Tutor Industrial: Ing. Jorge Kesic

> Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Teixeira R., Elio R. para optar por el título de Ingeniero Electricista

Caracas, 2007

CONSTANCIA DE APROBACIÓN

Caracas, 05 de noviembre de 2007

Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela de Ingeniería Eléctrica, para evaluar el Trabajo Especial de Grado presentado por el Bachiller Elio R. Teixeira R., titulado:

"APLICACIÓN DE LA METODOLOGÍA DE PARÁMETROS DISTRIBUIDOS EN EL ANÁLISIS DE PROTECCIÓN CATÓDICA DE TUBERÍAS DE GRAN LONGITUD"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudios conducente al Título de Ingeniero Electricista en la mención de Potencia, y sin que ello signifique que se hacen solidarios con las ideas expuestas por el autor, lo declaran APROBADO.

Prof. Maribel Suárez

Jurado

Wilmer Malpica Jurado Prof.

Hand Construct De Lindon and Andrews

Prof. Julio Molina Prof.\Guía

DEDICATORIA

Este trabajo no podría dedicárselo a otra persona más que a *Vanessa*. Indudablemente eres la mujer que siempre soñé, me siento muy orgulloso de ti y feliz de tenerte a mi lado.

RECONOCIMIENTOS Y AGRADECIMIENTOS

A *Vanessa* por amarme, comprenderme, apoyarme, por ser la persona que me dio ánimos y me hizo estudiar a lo largo de esta carrera.

A mi mamá Zulay, a mi papá Leocadio, a Isaura, Zuelí y Raúl por apoyarme.

A mis amigos y compañeros, Vanessa Laverde, Cynthia Mora, Diana Díaz, Luis Chinchilla, William Fernandes, Richard Bustamante, David Maldonado, Domenico Cante, Francisco Fragachán, Jorge Cadavid, Adolfo García, Cristina Cabeza, Luís Gómez, Gabriela Urdaneta, Claudio Sanhueza, Karina Neto, Miguel Casanova, Karla Méndez y Carlos Zapata, por su ayuda, su apoyo, por su amistad y por ser un excelente grupo de estudio.

A los profesores por enseñarme tanto, en especial a *Julio Molina* por orientarme y a *Wilmer Malpica* por su ayuda incondicional y por ser unos profesores con los que se puede compartir fuera del salón de clases. A *Ligia* por su ayuda y colaboración en todo momento.

A los ingenieros *Jorge Kesic* y *Freddy Salas* por toda su ayuda y sus consejos para poder lograr realizar este trabajo.

A mis amigos de Ciencias, *Katiuska*, *Carlos*, *Jhorman*, *Alírica*, *Melanie*, *Kelhy*, *Ermerlan*, *Alejandro*, *Diana*, *Royna*, *Adriana* y *Nebraska* por tratarme como uno más del laboratorio y compartir buenos momentos con ustedes.

Teixeira R., Elio R.

APLICACIÓN DE LA METODOLOGÍA DE PARÁMETROS DISTRIBUIDOS EN EL ANÁLISIS DE PROTECCIÓN CATÓDICA DE TUBERÍAS DE GRAN LONGITUD

Prof. Guía: Julio Molina. Tutor Industrial: Ing. Jorge Kesic. Tesis. Caracas. U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica. Ingeniero Electricista. Opción: Potencia. Institución: Y&V Ingeniería y Construcción. 2007. 77h. +anexos.

Palabras Claves: Protección Catódica; Corrosión de tuberías; Parámetros distribuidos.

Resumen. Se plantea la modelación mediante parámetros distribuidos de tuberías de gran longitud, con la finalidad de estudiar la distribución de la tensión y la corriente a lo largo de la misma, en presencia de una protección catódica por corriente impresa. Se realiza el estudio de la ampliación del sistema de transporte de hidrocarburos Bajo Grande – Ulé – Amuay, el cual atraviesa el Lago de Maracaibo y el Golfete de Coro. Se diseñan los modelos para tuberías enterradas, así como para tuberías subacuaticas. En la protección catódica por corriente impresa, el potencial a tierra puede distar mucho de ser constante a lo largo de la tubería a proteger. La razón es que a medida que se drena corriente a tierra como consecuencia de la conductancia finita y debido a la resistencia eléctrica en serie, tanto el flujo de corriente como la distribución del potencial se alejan del modelo ideal lineal supuesto en el método clásico. El modelo planteado es análogo al de líneas eléctricas largas energizadas con tensión continua, donde el efecto de los parámetros distribuidos implica soluciones hiperbólicas distintas a las del modelo tradicional basado en parámetros concentrados. Se desarrolla una hoja de cálculo que permite simular sistemas de protección catódica con un rectificador en un extremo o dos rectificadores, uno a cada lado. Igualmente permite estudiar la ubicación del rectificador en cualquier punto a lo largo de la tubería.

ÍNDICE GENERAL

CONSTA	ANCIA DE APROBACIÓN	¡Error! Marcador no definido.
DEDICA	TORIA	iii
RECONO	OCIMIENTOS Y AGRADECIMIENTOS	iv
RESUM	EN	v
LISTA D	E FIGURAS	Х
LISTA D	ETABLAS	xii
LISTA D	E GRÁFICAS	xiv
SIGLAS		xix
INTROD	UCCIÓN	1
CAPITU	LOI	3
PLANTE	AMIENTO DEL PROBLEMA Y OBJET	IVOS 3
1.1.	Planteamiento del problema	3
1.2.	Objetivo General	4
1.3.	Objetivos Específicos	4
1.4.	Metodología	5
CAPITU	LO II	6
FUNDA	MENTOS GENERALES	6
2.1.	Principios de la protección catódica	6
2.2.	Tipos de protección catódica	8
2.2.1	. Ánodos galvánicos	8
2.2.2	2. Corriente impresa	9
2.3.	Características del medio que influyen en	la corrosión 10
2.3.1	. Resistividad del medio	10
2.3.2	Presencia de humedad en el medio	11
2.3.3	b. pH del medio	11
2.3.4	Bacterias	12
2.4.	Requerimientos de corriente para la protec	cción catódica 13

	2.5.	Criterios de protección	14
	2.6.	Solución de las ecuaciones diferenciales para una línea larga de transr	nisión
			14
	2.7.	Relaciones de potencial y corriente en una tubería larga	19
	2.8.	Circuito equivalente a una tubería larga	22
	2.9.	Resistencia por unidad de longitud	24
	2.10.	Conductancia por unidad de longitud	25
(CAPITU	LO III	31
F	PREMIS	AS GENERALES	31
	3.1.	Premisa general de ingeniería	31
	3.2.	Descripción general del sistema de transporte de hidrocarburos	31
	3.3.	Disponibilidad de electricidad a lo largo de la ruta de la tubería	32
	3.4.	Características generales del medio	35
	3.5.	Características del tubo	35
	3.6.	Vida útil de la estructura	36
	3.7.	Revestimiento de la tubería	36
	3.8.	Ánodos de sacrificio	36
(CAPITU	LO IV	38
Ι	DISEÑO	DE LA PROTECCIÓN CATÓDICA	38
	4.1.	Protección catódica por ánodos galvánicos	38
	4.1.1	1. Área a proteger	38
	4.1.2	2. Corriente de protección	39
	4.1.3	3. Cantidad de ánodos requeridos	39
	4.1.4	4. Separación entre ánodos	40
	4.1.5	5. Resistencia de los ánodos tipo brazalete	40
	4.2.	Protección catódica por corriente impresa	40
	4.2.1	1. Área a proteger	41
	4.2.2	2. Corriente de protección	41
	4.2.3	3. Cantidad de ánodos requeridos	41
	4.2.4	4. Resistencia de un lecho vertical de ánodos	42

4	4.2.5.	Resistencia total de cables	44
2	4.2.6.	Resistencia total del circuito	45
2	4.2.7.	Tensión del rectificador	45
CAP	ITULO	V	46
MOI	DELO D	E LA TUBERÍA UTILIZANDO UNA HOJA DE CÁLCULO	46
5.1.	Refere	ncia de cobre / sulfato de cobre	46
5.2.	Sistem	a de protección catódica con un rectificador en un extremo	47
5.3	S. Sist	ema de protección catódica con un rectificador ubicado en cualqu	ier
pu	nto a lo l	argo de toda la tubería	51
5.4	. Sist	ema de protección catódica con dos rectificadores iguales ubicado	os en
am	bos extr	emos de la tubería	54
CAP	ITULO	VI	60
MOI	DELO D	E LA TUBERÍA UTILIZANDO ORCAD	60
6.1	. Sist	ema de protección catódica con un rectificador en un extremo	60
6.2	2. Sist	ema de protección catódica con un rectificador ubicado en cualqu	ier
pu	nto a lo l	argo de toda la tubería	63
6.3	S. Sist	ema de protección catódica con dos rectificadores iguales ubicado	os en
am	bos extr	emos de la tubería	66
CON	CLUSIC	ONES	69
REC	OMENE	DACIONES	71
REF	ERENCI	AS BIBLIOGRÁFICAS	72
BIBI	LIOGRA	FÍA	74
GLO	SARIO		76
[ANI	EXO Nº	1]	78
[ANI	EXO Nº	2]	79
[ANI	EXO Nº	3]	80
[ANI	EXO Nº	4]	82
[ANI	EXO Nº	5]	84
[ANI	EXO Nº	6]	85
[ANI	EXO Nº	7]	87

[ANEXO	Nº 8]	88
[ANEXO	N° 9]	90
[ANEXO	Nº 10]	91
[ANEXO	Nº 11]	95
A11.1	Tramo 1.1	96
A11.2	Tramo 1.2	97
A11.3	Tramo 1.3	99
A11.4	Tramo 2.1	100
A11.5	Tramo 2.2	103
A11.6	Tramo 2.3	105
A11.7	Tramo 2.4	108
A11.8	Tramo 2.5	111
A11.9	Tramo 2.6	114
A11.10	Tramo 2.7	115
A11.11	Tramo 2.8	117
A11.12	Tramo 2.10	118
A11.13	Tramo 2.11	120
A11.14	Tramo 2.12	121
A11.15	Tramo 2.13	126
A11.16	Tramo 2.15	127
A11.17	Tramo 2.16	129
A11.18	Tramo 2.17	130

LISTA DE FIGURAS

Figura	Pág.
Figura 2.1. Celda Electroquímica	7
Figura 2.2. Protección catódica por corriente impresa	10
Figura 2.3. Circuito que modela una línea de transmisión	15
Figura 2.4. Tensión y corriente en un diferencial de la línea de transmisión	17
Figura 2.5. Potencial y corriente en un diferencial dx en la tubería	19
Figura 2.6. Circuito π equivalente	23
Figura 5.1. Sistema de protección catódica con un rectificador en un extremo	47
Figura 5.2. Sistema de protección catódica con un rectificador en un punto difere	ente
al extremo	52
Figura 5.3. Sistema de protección catódica con un rectificador en cada extremo	55
Figura 6.1. Circuito eléctrico equivalente al tramo 2.9 protegido con un rectifica	dor
en un extremo	61
Figura 6.2. Circuito eléctrico equivalente al tramo 2.9 protegido con un rectifica	dor
ubicado en cualquier punto de la tubería	63
Figura 6.3. Circuito eléctrico equivalente al tramo 2.14 protegido con dos rectifi	cador
ubicados en ambos extremos	66
Figura A3.1. Ánodo de aluminio tipo brazalete	80
Figura A4.1. Ánodos de hierro – silicio – cromo	82
Figura A8.1. Disposición de los ánodos en un lecho vertical	89
Figura A10.1. Hoja de datos para la protección con un rectificador en el extremo	9 1
Figura A10.2. Hoja de cálculos para la protección con un rectificador en el extre	mo92
Figura A10.3. Hoja de datos para la protección con un rectificador en un punto	
cualquiera a lo largo del tramo de tubería	93
Figura A10.4. Hoja de cálculos para la protección con un rectificador en un punt	to
cualquiera a lo largo del tramo de tubería	93

Figura A10.5. Hoja de datos para la protección con dos rectificadores en los extrem	mos
	94
Figura A10.6. Hoja de cálculos para la protección con dos rectificadores en los	
extremos	94

LISTA DE TABLAS

Tabla	Pág.
Table 2.1. Transce a motocom	22
Tabla 5.1. Tramos a proteger	52
Tabla 3.2. Rectificadores existentes y disponibilidad de electricidad más cercana	34
Tabla 5.1. Datos del tramo 2.9 protegido con un rectificador en un extremo	48
Tabla 5.2. Datos del tramo 2.9 protegido con dos rectificadores en los extremos	56
Tabla 5.3. Datos del tramo 2.14	58
Tabla 6.1. Potencial de polarización y corriente longitudinal a lo largo del tramo	2.9
	61
Tabla 6.2. Potencial de polarización y corriente longitudinal a lo largo del tramo	2.9
	64
Tabla 6.3. Potencial de polarización y corriente longitudinal a lo largo del tramo	2.14
	67
Tabla A1.1. Densidades de corriente requeridas para protección catódica de acero	С
desnudo en diversos medios (@ $T_{ambiente} = 15 a 25 °C$)	78
Tabla A2.1. Eficiencia del revestimiento	79
Tabla A3.1. Características de los ánodos de sacrificio	81
Tabla A4.1. Propiedades de los ánodos de corriente impresa	83
Tabla A5.1. Diseño de protección catódica por ánodos galvánicos	84
Tabla A6.1. Diseño de protección catódica por corriente impresa	85
Tabla A7.1. Propiedades de los conductores de cobre (cableado clase b, cobre bla	ando)
	87
Tabla A9.1. Potencial de distintos electrodos vs. el electrodo normal de hidrógen	o 90
Tabla A11.1. Datos del tramo 1.1 protegido con un rectificador en un extremo	96
Tabla A11.2. Datos del tramo 1.2 protegido con dos rectificadores en los extremo	os 97
Tabla A11.3. Datos del tramo 1.3 protegido con un rectificador en un extremo	99
Tabla A11.4. Datos del tramo 2.1 protegido con un rectificador en un extremo	100
Tabla A11.5. Datos del tramo 2.2 protegido con un rectificador en un extremo	103

Tabla A11.6. Datos del tramo 2.3 protegido con un rectificador en el km 17 105 Tabla A11.7. Datos del tramo 2.4 protegido con un rectificador en un extremo 108 Tabla A11.8. Datos del tramo 2.5 protegido con un rectificador en un extremo 111 Tabla A11.9. Datos del tramo 2.6 protegido con un rectificador en un extremo 114 Tabla A11.10. Datos del tramo 2.7 protegido con un rectificador en un extremo 115 Tabla A11.11. Datos del tramo 2.8 protegido con un rectificador en un extremo 117 Tabla A11.12. Datos del tramo 2.10 protegido con un rectificador en el km 128 118 Tabla A11.13. Datos del tramo 2.11 protegido con un rectificador en el km 145 120 Tabla A11.14. Datos del tramo 2.12 protegido con un rectificador en un extremo 121 Tabla A11.15. Datos del tramo 2.13 protegido con un rectificador en un extremo 126 Tabla A11.16. Datos del tramo 2.15 protegido con un rectificador en un extremo 127 Tabla A11.17. Datos del tramo 2.16 protegido con un rectificador en un extremo 129 Tabla A11.18. Datos del tramo 2.17 protegido con un rectificador en un extremo 130

LISTA DE GRÁFICAS

Gráficas	Pág.
Gráfica 5.1. Potencial de polarización del tramo 2.9 protegido con un rectifica	dor en
un extremo	50
Gráfica 5.2. Corriente longitudinal del tramo 2.9 protegido con un rectificado	r en un
extremo	50
Gráfica 5.3. Potencial de polarización del tramo 2.9 protegido con un rectifica	idor en
el km 115	53
Gráfica 5.4. Corriente longitudinal del tramo 2.9 protegido con un rectificado	r en el
km 115	54
Gráfica 5.5. Potencial de polarización del tramo 2.9 protegido con dos rectific	adores
en los extremos	56
Gráfica 5.6. Corriente longitudinal del tramo 2.9 protegido con dos rectificado	ores en
los extremos	57
Gráfica 5.7. Potencial de polarización del tramo 2.14 protegido con dos rectifi	icadores
en los extremos	58
Gráfica 5.8 Corriente longitudinal del tramo 2.14 protegido con dos rectificad	ores en
los extremos	59
Gráfica 6.1. Potencial de polarización a lo largo del tramo 2.9	62
Gráfica 6.2. Corriente longitudinal a lo largo del tramo 2.9	62
Gráfica 6.3. Potencial de polarización a lo largo del tramo 2.9	65
Gráfica 6.4. Corriente longitudinal a lo largo del tramo 2.9	65
Gráfica 6.5. Potencial de polarización a lo largo del tramo 2.14	68
Gráfica 6.6. Corriente longitudinal a lo largo del tramo 2.14	68
Gráfica A11.1. Potencial de polarización del tramo 1.1 protegido con un recti	ficador
en un extremo	96

Gráfica A11.2. Corriente longitudinal del tramo 1.1 protegido con un rectificador en
un extremo 97
Gráfica A11.3. Potencial de polarización del tramo 1.2 protegido con dos
rectificadores en los extremos 98
Gráfica A11.4. Corriente longitudinal del tramo 1.2 protegido con dos rectificadores
en los extremos 98
Gráfica A11.5. Potencial de polarización del tramo 1.3 protegido con un rectificador
en un extremo 99
Gráfica A11.6. Corriente longitudinal del tramo 1.3 protegido con un rectificador en
un extremo 100
Gráfica A11.7. Potencial de polarización del tramo 2.1 protegido con un rectificador
en un extremo 101
Gráfica A11.8. Corriente longitudinal del tramo 2.1 protegido con un rectificador en
un extremo 101
Gráfica A11.9. Potencial de polarización del tramo 2.1 protegido con un rectificador
en el km 2 102
Gráfica A11.10. Corriente longitudinal del tramo 2.1 protegido con un rectificador en
el km 2 103
Gráfica A11.11. Potencial de polarización del tramo 2.2 protegido con un rectificador
en un extremo 104
Gráfica A11.12. Corriente longitudinal del tramo 2.2 protegido con un rectificador en
un extremo 104
Gráfica A11.13. Potencial de polarización del tramo 2.3 protegido con un rectificador
en el km 17 105
Gráfica A11.14. Corriente longitudinal del tramo 2.3 protegido con un rectificador en
el km 17 106
Gráfica A11.15. Potencial de polarización del tramo 2.3 protegido con un rectificador
en el km 24 107
Gráfica A11.16. Corriente longitudinal del tramo 2.3 protegido con un rectificador en
el km 24 107

Gráfica A11.17. Potencial de polarización del tramo 2.4 protegido con un rectifi	cador
en un extremo	108
Gráfica A11.18. Corriente longitudinal del tramo 2.4 protegido con un rectificad	lor en
un extremo	109
Gráfica A11.19. Potencial de polarización del tramo 2.4 protegido con un rectifi	cador
en el km 34	110
Gráfica A11.20. Corriente longitudinal del tramo 2.4 protegido con un rectificad	lor en
el km 34	110
Gráfica A11.21. Potencial de polarización del tramo 2.5 protegido con un rectifi	cador
en un extremo	111
Gráfica A11.22. Corriente longitudinal del tramo 2.5 protegido con un rectificad	lor en
un extremo	112
Gráfica A11.23. Potencial de polarización del tramo 2.5 protegido con un rectifi	cador
en el km 58	113
Gráfica A11.24. Corriente longitudinal del tramo 2.5 protegido con un rectificad	lor en
el km 58	113
Gráfica A11.25. Potencial de polarización del tramo 2.6 protegido con un rectifi	cador
en un extremo	114
Gráfica A11.26. Corriente longitudinal del tramo 2.6 protegido con un rectificad	lor en
un extremo	115
Gráfica A11.27. Potencial de polarización del tramo 2.7 protegido con un rectifi	cador
en un extremo	116
Gráfica A11.28. Corriente longitudinal del tramo 2.7 protegido con un rectificad	lor en
un extremo	117
Gráfica A11.29. Potencial de polarización del tramo 2.8 protegido con un rectifi	cador
en un extremo	117
Gráfica A11.30. Corriente longitudinal del tramo 2.8 protegido con un rectificad	lor en
un extremo	118
Gráfica A11.31. Potencial de polarización del tramo 2.10 protegido con un	
rectificador en el km 128	119

Gráfica A11.32. Corriente longitudinal del tramo 2.10 protegido con un rectific	ador
en el km 128	119
Gráfica A11.33. Potencial de polarización del tramo 2.11 protegido con un	
rectificador en el km 145	120
Gráfica A11.34. Corriente longitudinal del tramo 2.11 protegido con un rectific	ador
en el km 145	121
Gráfica A11.35. Potencial de polarización del tramo 2.12 protegido con un	
rectificador en un extremo	122
Gráfica A11.36. Corriente longitudinal del tramo 2.12 protegido con un rectific	ador
en un extremo	123
Gráfica A11.37. Potencial de polarización del tramo 2.12 protegido con un	
rectificador en el km 162	123
Gráfica A11.38. Corriente longitudinal del tramo 2.12 protegido con un rectific	ador
en el km 162	124
Gráfica A11.39. Potencial de polarización del tramo 2.12 protegido con un	
rectificador en el km 172	125
Gráfica A11.40. Corriente longitudinal del tramo 2.12 protegido con un rectific	ador
en el km 172	125
Gráfica A11.41. Potencial de polarización del tramo 2.13 protegido con un	
rectificador en un extremo	126
Gráfica A11.42. Corriente longitudinal del tramo 2.13 protegido con un rectific	ador
en un extremo	127
Gráfica A11.43. Potencial de polarización del tramo 2.15 protegido con un	
rectificador en un extremo	128
Gráfica A11.44. Corriente longitudinal del tramo 2.15 protegido con un rectific	ador
en un extremo	129
Gráfica A11.45. Potencial de polarización del tramo 2.16 protegido con un	
rectificador en un extremo	129
Gráfica A11.46. Corriente longitudinal del tramo 2.16 protegido con un rectific	ador
en un extremo	130

Gráfica A11.47. Potencial de polarización del tramo 2.17 protegido con un	
rectificador en un extremo	131
Gráfica A11.48. Corriente longitudinal del tramo 2.17 protegido con un rectific	ador
en un extremo	132

SIGLAS

- **MPCED** Millones de Pies Cúbicos Estándar Día.
- **MMO** Mixed Metal Oxide.
- **pH** Potencial Hidrógeno.
- **PDVSA** Petróleos de Venezuela S.A.
- **DC** Direct Current.
- **AWG** American Wire Gauge.
- **PVC** Polyvinyl Chloride.

INTRODUCCIÓN

El diseño de la protección catódica en la actualidad se realiza considerando que el potencial de polarización y la densidad de corriente son constantes a lo largo de una tubería, ya que se toma la estructura como un parámetro concentrado. Tomar esta consideración puede no ser conveniente. Al igual que en las líneas de transmisión, cuando se trata de tuberías largas un modelo con parámetros distribuidos es más preciso.

Usualmente las estructuras de gran longitud se protegen aplicándoles un revestimiento aislante, además de utilizar protección catódica. Esto se debe a que, a pesar de que el recubrimiento no es cien por ciento efectivo, permite que el requerimiento de corriente de la estructura sea mucho menor que para una tubería desnuda. La causa de que estos revestimientos no sean completamente efectivos es que se pueden presentar desperfectos durante la aplicación, al momento de la instalación de la estructura pueden ser dañados, y también los materiales que los componen pierden sus propiedades por su envejecimiento.

El modelo que aquí se plantea permite la obtención de las curvas del potencial de polarización y la corriente longitudinal a lo largo de la tubería que se vaya a proteger, con las cuales se busca conocer la efectividad del sistema de protección catódica que se desea instalar.

En el presente trabajo se referirá a la empresa contratante de la ejecución de la ingeniería básica del diseño de la protección catódica, como *La Compañía*. De la misma forma, se designará como *El Contratista* a la empresa encargada de la ejecución de la ingeniería contratada (Y&V Ingeniería y Construcción).

El presente trabajo se ha estructurado en seis capítulos. En el capítulo I se presenta el planteamiento del problema, así como el objetivo general, los objetivos específicos y la metodología que se empleó a lo largo de la realización del mismo. El capítulo II muestra los aspectos teóricos en que se fundamentó la ejecución de la ingeniería planteada.

El capítulo III precisa las premisas generales y los requerimientos de diseño, así como la descripción del sistema de transporte de hidrocarburos. En el capítulo IV se incluyen los cálculos realizados para la ejecución de la ingeniería básica en el diseño de la protección catódica, por ánodos galvánicos y por corriente impresa.

El capítulo V presenta la modelación de la tubería utilizando una hoja de cálculo de Excel, para sistemas de protección catódica por corriente impresa con un rectificador en un extremo, un rectificador en cualquier punto a lo largo del tramo a proteger y con dos rectificadores en los extremos. En el capítulo VI se precisan los circuitos equivalentes a los tramos de tubería en parámetros distribuidos, así como los resultados del comportamiento del potencial a tierra y de la corriente longitudinal, producto de la simulación de dichos circuitos en OrCAD.

Lugo se presenta las conclusiones extraídas del trabajo y las recomendaciones propuestas. Por último, se incluyen los anexos necesarios para la comprensión completa del trabajo realizado.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA Y OBJETIVOS

En el presente capítulo se plantea el problema a ser estudiado y se exponen los objetivos y las actividades conducentes a satisfacer los requerimientos planteados.

1.1. Planteamiento del problema

En la actualidad el sistema de Transporte Ulé – Amuay tiene una capacidad operativa de transporte de 220 millones de pies cúbicos estándar día (MMPCED) y con una longitud 230 km está constituido por un gasoducto de 16 pulgadas (año 1969) y un lazo de 20 pulgadas (año 1994), donde el gasoducto ya con más de 37 años en servicio transportando gas rico y absorbiendo contingencias de las plantas de deshidratación del Lago, da un precedente para su desincorporación o reparación, acción que afectaría la garantía de suministro al Centro de Refinación de Paraguaná y la flexibilidad Operacional del Sistema de Transporte. Adicionalmente demandas planificadas de más de 537 MMPCED en Paraguaná y un compromiso binacional para entregar 150 MMPCED a partir del año 2011, indican la necesidad de adecuación y ampliación de este Sistema de Transporte Bajo Grande - Ulé - Amuay.

En esta ampliación se realizarán 3 nuevos gasoductos, el primero de 26 pulgadas Ulé - Bajo Grande, de 45 km de longitud, el cual atravesará el Lago de Maracaibo. Un segundo gasoducto de 26 pulgadas Ulé – Amuay, de 179 km. Y un tercer gasoducto de 26 pulgadas del km 179 al km 230 de la ruta Ulé – Amuay que pasará por el Golfete de Coro.

Las dos secciones subacuaticas del gasoducto requerirán elevadas corrientes de protección, por lo tanto, si estas se protegen utilizando corriente impresa se debe

instalar un rectificador en cada extremo, quedando como incertidumbre, si suficiente corriente llega al sector central del recorrido acuático.

En el presente Trabajo Especial de Grado de buscó determinar mediante un análisis de parámetros distribuidos del gasoducto si llega suficiente corriente a la parte central de la sección.

1.2. Objetivo General

Aplicar las ecuaciones de la propagación de onda de transmisión de la línea al caso de tuberías largas protegidas catódicamente.

1.3. Objetivos Específicos

- Investigar las normas y prácticas recomendadas para el diseño de protección catódica.
- Realizar la memoria de cálculo del diseño de la protección.
- Recopilar y ordenar las ecuaciones de transmisión para líneas de parámetros distribuidos y determinar el modelo de las tuberías para el caso de la protección catódica.
- Desarrollar una herramienta software que permita realizar los cálculos de distribución de corriente y potencial a tierra del tubo en función de la distancia, aplicando las ecuaciones de modelaje eléctrico de tubos mediante parámetros distribuidos.
- Aplicar la herramienta en la determinación de la eficiencia de la protección catódica para el tramo Bajo Grande – Ulé – Amuay y hacer las recomendaciones necesarias.
- Preparar los procedimientos internos de protección catódica de Empresas Y&V.

1.4. Metodología

- Se asistió a charlas de protección catódica de Empresas Y&V.
- Se conoció el sistema de calidad de Empresas Y&V.
- Se realizaron entrevistas al personal de Y&V Ingeniería y Construcción para recolectar experiencias.
- Se revisaron documentos en el Centro de Información Técnica de Empresas Y&V para obtener las normas y prácticas recomendadas aplicables en la protección catódica.
- Se recopilaron datos e información necesaria para la realización del diseño de la protección catódica.
- Se diseñó la protección catódica.
- Se recopilaron datos e información necesaria para la realización de modelos con parámetros distribuidos.
- Se desarrolló el modelo de las tuberías para la protección catódica.
- Se desarrolló una herramienta computacional que permitió realizar los cálculos de distribución de corriente y potencial a tierra del tubo en función de la distancia, aplicando las ecuaciones de modelaje mediante parámetros distribuidos.
- Se aplicó dicha herramienta a la ampliación del sistema de transporte de hidrocarburos Bajo Grande – Ulé – Amuay.
- Se analizaron los resultados obtenidos, se compararon con los obtenidos utilizando la herramienta OrCad e hicieron las recomendaciones necesarias para que el gasoducto esté bien protegido catódicamente.
- Se realizó un informe final y una presentación del proyecto al departamento de electricidad de Y&V Ingeniería y Construcción.

CAPITULO II

FUNDAMENTOS GENERALES

En este capítulo se presentan las bases y expresiones generales relacionadas con el diseño de la protección catódica y con la distribución de corriente y potencial a tierra de la tubería en función de la distancia.

2.1. Principios de la protección catódica

La corrosión es una reacción electroquímica involucrada en la combinación de metales, químicos y agua, para formar celdas capaces de generar electricidad y hacer que los metales tiendan a volver a su estado natural. El hombre utiliza una serie de procesos metalúrgicos para convertir un compuesto natural, en un objeto metálico de uso práctico, y la corrosión tiende a revertir estos procesos debido a la cantidad de energía suministrada, que lo hace inestable.[1] [2]

Una celda electroquímica contiene cuatro componentes principales (véase figura 2.1), los cuales son:

- a) Electrolito: consiste en una solución o medio conductor, como el suelo, que contiene agua, oxígeno y químicos disueltos.
- b) Ánodo: es un electrodo metálico que al estar en contacto con el electrolito se corroe.
- c) Cátodo: es un electrodo metálico que al estar en contacto con el electrolito, queda protegido de la corrosión.
- d) Circuito externo: es un metal conductor que conecta el ánodo y el cátodo.

Figura 2.1. Celda Electroquímica

Existen tres tipos de celdas electroquímicas:

- a) Celda galvánica: está constituida por electrodos de distintos metales en un electrolito común. La figura 2.1 presenta una celda galvánica.
- b) Celda concentrada: constituida por electrodos de un mismo metal en electrolitos distintos.
- c) Celda electrolítica: formada por una celda electroquímica controlada por una fuente eléctrica externa de corriente.

En todas las celdas electroquímicas, el ánodo es consumido y el cátodo está protegido contra la corrosión.

Un método muy utilizado para proteger a los metales contra la corrosión es la aplicación de un recubrimiento aislante en el objeto que se desea proteger, el cual crea una barrera resistente entre el metal y el medio corrosivo. Este revestimiento es de un material seco, con muy buena adherencia y altamente resistivo, evitando el desplazamiento de los electrones entre el metal y el medio corrosivo.

Sin embargo realizar una capa aislante perfecta es económicamente imposible, y además, estos revestimientos sufren daños al momento de la instalación de los objetos a proteger, así como también se deterioran con el pasar del tiempo. Por estas razones un recubrimiento aislante no protege en un cien por ciento a los metales, por lo que se necesita otro método, que combinado con este, proteja a los mismos contra la corrosión.

La protección catódica es un método efectivo para proteger los metales contra la corrosión, esta consiste en la conexión de un elemento que resulte ser más electronegativo que el metal, como puede ser aluminio, magnesio o zinc, o mediante la aplicación de un sistema por corriente impresa, con el fin de convertir el metal que se desea proteger en un cátodo.

2.2. Tipos de protección catódica

Existen dos métodos de protección catódica, los cuales son por ánodos galvánicos y por corriente impresa.

2.2.1. Ánodos galvánicos

Se fundamenta en el mismo principio de la corrosión galvánica, en la que un metal más activo es anódico con respecto a otro más noble, corroyéndose el metal anódico. En la protección catódica con ánodos galvánicos se utilizan metales fuertemente anódicos conectados al objeto a proteger, dando origen al sacrificio de dichos metales por corrosión. La protección se logra cuando la corriente descargada del ánodo es suficiente para hacer que el objeto a proteger se comporte como un cátodo.

Los ánodos galvánicos se utilizan principalmente donde los requerimientos de corriente son bajos, donde las estructuras a proteger poseen un buen recubrimiento y donde la resistividad del suelo es relativamente baja.

Los ánodos más utilizados en este tipo de protección catódica son los ánodos de aluminio, de magnesio y de zinc.

2.2.2. Corriente impresa

Los sistemas de protección catódica por corriente impresa son los de mayor campo de aplicación a nivel industrial, las redes de tuberías de cuatro pulgadas en adelante, los patios de tanques, las redes de agua contra incendio de plantas industriales, son algunos ejemplos de sistemas grandes que llevan protección catódica por corriente impresa.

En este sistema se mantiene el mismo principio fundamental, pero tomando en cuenta las limitaciones del material, costo y diferencia de potencial con los ánodos de sacrificio.

En la protección catódica por corriente impresa el flujo de corriente requerida se origina mediante una fuente generadora de corriente continua regulable o, simplemente se hace uso de los rectificadores, que alimentados por corriente alterna ofrecen una corriente eléctrica continua apta para la protección de la estructura. La corriente circula desde el rectificador hacia la cama anódica a través de un cable, luego va desde dichos ánodos hacia la estructura que se desea proteger a través del medio corrosivo, y por último se cierra el circuito mediante un conductor conectado entre la estructura y el rectificador (véase figura 2.2).

Figura 2.2. Protección catódica por corriente impresa

En ambos tipos de protección catódica, ánodos galvánicos y corriente impresa, se sacrifica el ánodo y se protege el otro metal (cátodo).

Los ánodos más comúnmente utilizados en el diseño de una protección catódica por corriente impresa son de Hierro-Silicio-Cromo, grafito, titanio y óxidos de metal mezclado (MMO).

2.3. Características del medio que influyen en la corrosión

En esta parte del presente capitulo se presentan las características más importantes que intervienen en la corrosión de las estructuras.

2.3.1. Resistividad del medio

Uno de los parámetros eléctricos más importante de cualquier condición corrosiva es la resistividad de medio, ya que constituye la resistencia que se opone al flujo de la corriente a través del mismo.

La resistividad es la resistencia eléctrica que ofrece el medio al flujo de la corriente. Como la corrosión involucra una circulación de corriente, un medio de alta resistividad se opondrá a dicho fenómeno. Es importante destacar que cuando se

instala un sistema de protección catódica es necesario conocer con qué facilidad circulará la corriente que se está aplicando, de modo que en un medio de elevada resistividad se ve con mucha dificultad su acción.

El conocimiento de los valores de resistividad del medio permitirá determinar el tipo, tamaño y el número de ánodos de sacrificio requeridos o en el caso de utilizar sistemas de corriente impresa servirá para dimensionar la capacidad del rectificador y el número de ánodos de corriente impresa.

2.3.2. Presencia de humedad en el medio

La facilidad con que los iones se mueven en el medio depende de la cantidad de humedad que este presente, en consecuencia el contenido de humedad está estrechamente relacionado con la conductividad eléctrica.

En los casos en que se está en presencia de suelos muy secos se opta por colocar un sistema de riego permanente en la zona en que se encuentran los ánodos para permitir que la corriente de protección circulé con mayor facilidad.

2.3.3. pH del medio

El conocimiento del valor de pH del medio donde se encuentra la estructura a ser protegida contra la corrosión, es de suma importancia, ya que dependiendo de dicho valor, el acero estará o no expuesto al fenómeno corrosivo.

Si se tiene una estructura de acero sumergida en un medio alcalino, esta no se encuentra expuesta a la corrosión. Sin embargo, si el medio que rodea a la estructura de acero es un medio ácido, la misma estará expuesta a la formación de celdas galvánicas y por ende al proceso corrosivo. Adicionalmente es importante destacar que existen metales o aleaciones que reaccionan para ciertos intervalos de pH, en los cuales el valor del pH no es agresivo para dicho metal.

También existen metales como el plomo que independientemente del valor del PH que presente el medio, el mismo va a ser susceptible al fenómeno de la corrosión.

Estudios han demostrado que un suelo con valor de pH entre 5 a 9 no interviene en la actividad corrosiva del medio, cuando se quiere proteger una estructura de acero. Sin embargo en medios ácidos la naturaleza estática del suelo hace difícil romper los iones de hidrógeno sobre la superficie del acero.

2.3.4. Bacterias

Las bacterias de mayor interés son las bacterias sulfato-reductoras, las cuales como su nombre lo indica, transforman los sulfatos en sulfuros por reducción. Siendo los sulfuro muy peligrosos para la mayoría de los metales.

Estas bacterias producen la corrosión anaeróbica, las mismas se hacen presentes en ausencia de oxígeno en la superficie del metal y tienen la habilidad de poder reducir algunos sulfatos presentes en el suelo y consumir el hidrógeno.

Los efectos de la acción de las bacterias anaeróbicas y aeróbicas se ponen en manifiesto en la corrosión de estructuras enterradas y muy especialmente en tuberías.

Las bacterias anaeróbicas sulfato-reductoras actúan como agentes despolarizantes y tienden a aumentar la actividad de las celdas de corrosión existentes. Por esto esta bacteria es considerada como uno de los agentes más importantes como causantes de la corrosión en metales enterrados.

Los análisis bacteriológicos son muy costosos, pero pueden evitarse si se toma en cuenta que las bacterias sulfato-reductoras sólo pueden existir en un medio rico en sulfatos, a un pH determinado y en ausencia de oxígeno, por lo tanto es posible suponer la presencia probable de las bacterias.

Como que los sulfatos por si mismos son muy agresivos para la mayoría de los metales, si se está en presencia de estos, se deben tomar medidas de protección anticorrosivas para cubrir el riesgo de que existan bacterias en el medio. Por el contrario, si no hay sulfatos, no se estará en presencia de estas bacterias.

2.4. Requerimientos de corriente para la protección catódica

La densidad de corriente requerida para la protección contra la corrosión, depende del material de la tubería y del medio en que esta se encuentre. La densidad de corriente aplicada debe exceder la densidad de corriente equivalente a la velocidad de corrosión determinada en el mismo medio. Por lo tanto, mientras mayor es la velocidad de corrosión, mayor es la densidad de corriente requerida.[3]

Debido a los desperfectos y al tiempo de vida de los revestimientos, estos no protegen a los metales en su totalidad, sin embargo disminuyen la corriente total requerida para realizar la protección catódica, ya que el área que se encuentra desnuda o directamente expuesta al medio corrosivo es menor.

Si el objeto a proteger tiene un revestimiento de alta calidad, las partes del mismo que estén bien cubiertas estarán protegidas contra la corrosión, mientras que las zonas donde el recubrimiento presente fallas no lo estarán.

Para realizar el diseño de la protección catódica se estima el porcentaje de efectividad del revestimiento, y con este se conoce el porcentaje del área expuesta, la cual se debe proteger utilizando protección catódica.

13

2.5. Criterios de protección

La eficiencia de la protección catódica en la práctica se establece tomando medidas, a lo largo de la estructura protegida, del potencial de polarización del objeto a proteger.

El valor mínimo de polarización catódica para controlar la corrosión es de -850 mV. Este valor es medido respecto al electrodo de referencia de cobre / sulfato de cobre (Cu / CuSO₄) en contacto con el electrolito con la protección catódica aplicada. Para la interpretación de esta tensión es necesario tomar en consideración la caída de tensión entre la estructura y el electrolito. [4]

Para medios anaeróbicos o condiciones especiales, puede requerirse un valor más negativo. Como es el caso de medios con presencia de bacterias sulfatoreductoras, en los que se requiere un potencial mínimo de -950 mV con respecto al electrodo de Cu / CuSO₄. [4]

2.6. Solución de las ecuaciones diferenciales para una línea larga de transmisión

Para obtener una solución exacta del potencial con respecto a tierra y la corriente en una línea larga de transmisión, se debe considerar el hecho de que los parámetros de la línea no están agrupados, sino distribuidos uniformemente a lo largo de la misma. [5] [6]

Una línea de transmisión se puede modelar como el circuito observado en la figura 2.3, ya que los conductores de la línea tienen resistencias e inductancias, es decir una impedancia "z", en toda unidad de longitud, a lo largo de la misma.

También se presentan capacitancias entre los conductores, y conductancias debidas al aislante, o una admitancia "y" en cada unidad de longitud de la línea.

Figura 2.3. Circuito que modela una línea de transmisión

La tensión y corriente varían a lo largo de toda la línea. Los valores de tensión y corriente en uno de los extremos de cualquier sección, difieren con los del otro extremo.

La diferencia de tensión que existe entre el extremo emisor y el extremo receptor de una sección de línea, es la caída de tensión en esa sección.

$$\Delta V = V_e - V_r \tag{2.1}$$

La diferencia de tensión obtenida se divide por Δx , que es la distancia de la sección de la línea, quedando $\Delta V/\Delta x$. Esta proporción es el promedio de la caída de tensión por unidad de longitud en la sección Δx . Si se aproxima Δx a cero, esta proporción se aproxima a su valor límite, el cual es dV/dx, que es la tasa de variación de tensión con respecto a la longitud.

La caída de tensión a lo largo de la línea es proporcional a la corriente en la misma, tal como se ha observado experimentalmente, la tasa de variación de tensión con respecto a la longitud es igual a la corriente multiplicada por la impedancia por unidad de longitud de la línea *z*.

$$\frac{dV}{dx} = z \cdot I \tag{2.2}$$

La corriente varía a lo largo de toda lo línea, la diferencia entre la corriente del extremo emisor de una sección y la corriente del extremo receptor de la misma sección es

$$\Delta I = I_e - I_r \tag{2.3}$$

La variación promedio de la corriente de la línea por unidad de longitud se obtiene dividiendo por la longitud de la sección Δx , dando $\Delta I/\Delta x$. Si esta distancia se aproxima a cero, el límite de la proporción será dI/dx. La cual es la tasa de variación de corriente con respecto a la longitud.

Los experimentos muestran que la variación de la corriente con respecto a la distancia es igual a la tensión multiplicada por la admitancia por unidad de longitud de la línea.

$$\frac{dI}{dx} = y \cdot V \tag{2.4}$$

El circuito observado en la figura 2.3 es una aproximación si se tienen finitos elementos. Sin embargo, si todos los elementos son infinitesimalmente pequeños, la representación se hace exacta (figura 2.4).

Figura 2.4. Tensión y corriente en un diferencial de la línea de transmisión

Derivando con respecto a "x" las expresiones 2.2 y 2.4, se obtiene

$$\frac{d^{2}V}{dx^{2}} = z \cdot \frac{dI}{dx}$$
(2.5)
$$\frac{d^{2}I}{dx^{2}} = y \cdot \frac{dV}{dx}$$
(2.6)

Sustituyendo las expresiones 2.4 y 2.2 en 2.5 y 2.6, respectivamente se tiene

$$\frac{d^2 V}{dx^2} = z \cdot y \cdot V \tag{2.7}$$

у

$$\frac{d^2I}{dx^2} = y \cdot z \cdot I \tag{2.8}$$

Una posible solución es de forma exponencial, como la presentada en la expresión 2.9.

$$V(x) = A \cdot e^{\gamma \cdot x} + B \cdot e^{-\gamma \cdot x}$$
(2.9)
donde: $\gamma = \sqrt{y \cdot z} = \alpha + j\beta$: constante de propagación [m⁻¹] A y B: constantes que dependen de las condiciones de frontera

La constante de propagación se obtiene a partir de la impedancia y la admitancia por unidad de longitud. En las líneas de transmisión estas son complejas, por lo cual la constante de propagación también lo es, es decir, tiene una parte real y una parte imaginaria. La parte real α representa la constante de atenuación y la parte imaginaria β constituye la constante de fase.

Al derivar la expresión 2.9 y sustituirla en 2.2 se obtiene la siguiente expresión

$$I(x) = \frac{A}{Z_C} \cdot e^{\gamma x} - \frac{B}{Z_C} e^{-\gamma x}$$
(2.10)

donde: $Z_c = \sqrt{z/y}$ impedancia característica [Ω]

A y B: constantes que dependen de las condiciones de frontera

Los valores de las constantes *A* y *B* se obtienen por las condiciones de frontera, evaluando las expresiones 2.10 y 2.11 en x = 0, $V(0) = V_R e I(0) = I_R$.

$$A = \frac{V_R + I_R \cdot Z_C}{2} \qquad \text{y} \qquad B = \frac{V_R - I_R \cdot Z_C}{2}$$

Al sustituir los valores de A y B, en las expresiones 2.9 y 2.10, se tiene

$$V(x) = \frac{V_R + I_R \cdot Z_C}{2} \cdot e^{\gamma \cdot x} + \frac{V_R - I_R \cdot Z_C}{2} \cdot e^{-\gamma \cdot x}$$
(2.11)

$$I(x) = \frac{V_R / Z_C + I_R}{2} \cdot e^{\gamma \cdot x} - \frac{V_R / Z_C - I_R}{2} \cdot e^{-\gamma \cdot x}$$
(2.12)

2.7. Relaciones de potencial y corriente en una tubería larga

Se puede realizar la analogía entre las relaciones de potencial y de corriente en una tubería y en una línea de transmisión. La figura 2.5 presenta una tubería enterrada. En esta se considera un elemento diferencial dx de la tubería, que a diferencia de la línea de transmisión estará ubicada a una distancia x del extremo emisor. [7]

En la protección catódica la corriente suministrada a la tubería es continua, por lo cual, un modelo de la tubería con fines de protección catódica estará constituido por resistencias y conductancias, y no contará con inductancias y capacitancias. La resistencia longitudinal y la conductancia transversal por unidad de longitud son r_t y g_t respectivamente.

Figura 2.5. Potencial y corriente en un diferencial dx en la tubería

Las tasas de variación de tensión y de corriente con respecto a la longitud, se expresan de manera similar que las expresiones 2.3 y 2.5, con la discrepancia de que el eje x crece en sentido contrario, por lo cual la ecuaciones diferenciales son las siguientes:

$$-\frac{dV}{dx} = r_t \cdot I \tag{2.13}$$

у

$$-\frac{dI}{dx} = g_t \cdot V \tag{2.14}$$

donde: r_t : resistencia por unidad de longitud [Ω /m]

 g_t : conductancia por unidad de longitud [S/m]

Derivando con respecto a "x" las expresiones 2.13 y 2.14, se obtiene

$$-\frac{d^{2}V}{dx^{2}} = r_{t} \cdot \frac{dI}{dx}$$
(2.15)
$$-\frac{d^{2}I}{dx^{2}} = g_{t} \cdot \frac{dV}{dx}$$
(2.16)

Sustituyendo las expresiones 2.14 y 2.13 en 2.15 y 2.16, respectivamente se tiene

$$\frac{d^2 V}{dx^2} = r_t \cdot g_t \cdot V \tag{2.17}$$

$$\frac{d^2I}{dx^2} = g_t \cdot r_t \cdot I \tag{2.18}$$

De manera similar que en la sección anterior de este capitulo, se sabe que las soluciones de V e I son las siguientes

$$V(x) = A \cdot e^{\alpha \cdot x} + B \cdot e^{-\alpha \cdot x}$$
(2.19)

donde: $\alpha = \sqrt{g_t \cdot r_t}$: constante de atenuación [m⁻¹]

A y B: constantes que dependen de las condiciones de frontera

A diferencia de lo estudiado anteriormente para las líneas, como los sistemas de protección catódica se realizan con corriente continua, las ecuaciones de potencial a tierra y corriente con respecto a la longitud para las tuberías, sólo presentan la constante de atenuación. Esto se debe a que la frecuencia es cero, teniéndose únicamente los valores de la resistencia r_t y la conductancia g_t por unidad de longitud.

Al derivar la expresión 2.19 y sustituirla en 2.13 se obtiene la expresión 2.20.

$$I(x) = -\frac{A}{R_c} \cdot e^{\alpha \cdot x} + \frac{B}{R_c} \cdot e^{-\alpha \cdot x}$$
(2.20)

donde: $R_c = \sqrt{r_t / g_t}$: resistencia característica [Ω]

A y B: constantes que dependen de las condiciones de frontera

Los valores de las constantes *A* y *B* se obtienen por las condiciones de frontera, evaluando las expresiones 2.19 y 2.20 en x = 0, V(0) = Vo e I(0) = Io.

$$A = \frac{V_0 - I_0 \cdot R_C}{2}$$
 y $B = \frac{V_0 + I_0 \cdot R_C}{2}$

Al sustituir los valores de A y B, en las expresiones 2.19 y 2.20, se tiene

$$V(x) = \frac{V_0 - I_0 \cdot R_C}{2} \cdot e^{\alpha \cdot x} + \frac{V_0 + I_0 \cdot R_C}{2} \cdot e^{-\alpha \cdot x}$$
(2.21)

$$I(x) = -\frac{V_0/R_c - I_0}{2} \cdot e^{\alpha \cdot x} + \frac{V_0/R_c + I_0}{2} \cdot e^{-\alpha \cdot x}$$
(2.22)

donde V_0 : Tensión en el punto de conexión del rectificador [V] I_0 : Corriente en el punto de conexión del rectificador [A]

Una forma más conveniente de estas expresiones para los cálculos del potencial a tierra y la corriente, se halla mediante la introducción de las funciones hiperbólicas. La definición de estas funciones en su forma exponencial es la siguiente [8]

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
 y $senh(x) = \frac{e^x - e^{-x}}{2}$

Obteniendose las expresiones siguientes

$$V(x) = V_0 \cdot \cosh(\alpha \cdot x) - I_0 \cdot R_c \cdot \operatorname{senh}(\alpha \cdot x)$$
(2.23)

$$I(x) = I_0 \cdot \cosh(\alpha \cdot x) - V_0 / R_c \cdot \operatorname{senh}(\alpha \cdot x)$$
(2.24)

El potencial a tierra y la corriente en el extremo opuesto a la ubicación del rectificador en la tubería (x = L), se presentan en las expresiones 2.25 y 2.26.

$$V(L) = V_0 \cdot \cosh(\alpha \cdot L) - I_0 \cdot R_c \cdot \operatorname{senh}(\alpha \cdot L) = V_L$$
(2.25)

$$I(L) = I_0 \cdot \cosh(\alpha \cdot L) - V_0 / R_C \cdot \operatorname{senh}(\alpha \cdot L) = I_L$$
(2.26)

2.8. Circuito equivalente a una tubería larga

El circuito nominal " π " no representa con exactitud a una tubería larga, ya que no se tiene en cuenta que los parámetros están distribuidos uniformemente a lo largo de esta. A medida que la longitud de la tubería es mayor, dicho modelo se aleja más de la realidad. Sin embargo, es posible obtener un circuito equivalente que sea preciso, esto se logra mediante una red de parámetros concentrados. Supóngase un circuito equivalente " π " como el de la figura 2.6, aplicando mallas se obtiene la expresión 2.27. [9]

Figura 2.6. Circuito π equivalente

$$V_0 = Z \cdot \left(I_0 - V_0 \cdot \frac{Y}{2} \right) + V_L \tag{2.27}$$

donde:

 V_0 : tensión en el extremo emisor

Z: impedancia longitudinal de una tubería de longitud L

 I_0 : corriente en el extremo emisor

Y: admitancia transversal de una tubería de longitud L

 V_L : tensión en le tubería a una distancia L del extremo emisor

Despejando V_L de 2.27 se tiene

$$V_L = V_0 \cdot \left(1 + Z \cdot \frac{Y}{2}\right) - Z \cdot I_0 \tag{2.28}$$

Los valores de la impedancia Z y la admitancia Y no dependen de forma lineal de la longitud de la tubería. Para que el circuito de la figura 2.6 sea equivalente a los parámetros eléctricos de una tubería larga, los coeficientes que multiplican V_0 e I_0 en la expresión 2.25 deben ser iguales, respectivamente, a los coeficientes que multiplican V_0 e I_0 en la expresión 2.28. Entonces

$$Z = R_c \cdot senh(\alpha \cdot L) \quad [\Omega]$$
(2.29)

$$1 + Z \cdot \frac{Y}{2} = \cosh(\alpha \cdot L) \tag{2.30}$$

Sustituyendo la expresión 2.29 en 2.30 y despejando Y/2 se tiene la expresión 2.31

$$\frac{Y}{2} = \frac{1}{R_c} \cdot \frac{\cosh(\alpha \cdot L) - 1}{\operatorname{senh}(\alpha \cdot L)}$$
(2.31)

Al sustituir en la expresión 2.31 la siguiente identidad

$$\tanh\left(\frac{a \cdot L}{2}\right) = \frac{\cosh(\alpha \cdot L) - 1}{\operatorname{senh}(\alpha \cdot L)}$$
(2.32)

se obtiene otra forma para la expresión de la admitancia transversal del circuito equivalente

$$\frac{Y}{2} = \frac{1}{R_c} \cdot \tanh\left(\frac{\alpha \cdot L}{2}\right) \quad [S]$$
(2.33)

2.9. Resistencia por unidad de longitud

La resistencia por unidad de longitud es proporcional a la resistividad del material de la tubería e inversamente proporcional al área de la sección transversal de la misma. La expresión que define la resistencia por unidad de longitud es la siguiente

$$r_{t} = \frac{R}{L} = \frac{\rho_{A}}{A_{t}} = \frac{\rho_{A}}{\pi \cdot (r_{1}^{2} - r_{2}^{2})} \quad [\Omega/m]$$
(2.34)

donde: ρ_A : resistividad del material de la tubería [Ω .m] A_t : área de la sección transversal de la tubería [m²] r_1 : radio externo de la tubería [m] (figura 2.7) *r*₂: radio interno de la tubería [m] (figura 2.7)

L: longitud de la tubería [m]

R: resistencia total de la tubería de longitud $L[\Omega]$

Figura 2.7. Tubería enterrada y su imagen

2.10. Conductancia por unidad de longitud

Los factores que definen la conductancia por unidad de longitud son la resistividad del medio en que se encuentra la tubería, del suelo en el caso de que la estructura esté enterrada y del agua de ser subacuatica, y la resistividad del recubrimiento aislante, si esta lo posee. [10]

Para el cálculo de la conductancia por unidad de longitud se asume que la tubería es infinita, ya que se trata de una tubería larga, que el medio es conservativo y tiene las mismas características a lo largo de todo el recorrido. Entonces, el potencial inducido, por el campo eléctrico de la tubería, en un punto ubicado a un radio "r" del centro de la sección transversal del tubo es el siguiente (véase figura 2.8):

$$V = -\int_{r}^{r_{1}} E \cdot dr \tag{2.35}$$

donde: *V*: potencial a un radio *r* inducido por el campo eléctrico [V]

E: campo eléctrico del tubo [V/m]

*r*₁: radio externo del tubo [m]

r: punto donde se desea el potencial, medido desde el centro de la sección transversal del tubo [m]

Figura 2.8. Campo eléctrico inducido por el tubo

Como se mencionó anteriormente, a lo largo de la tubería se drena corriente a través del medio en que se encuentra. El patrón de líneas de corriente es igual a las líneas que definen el vector intensidad del campo eléctrico E. También se sabe que el campo eléctrico que se establece en el suelo o en el agua, es proporcional a la densidad de corriente y la resistividad del medio.

$$E = \rho_m \cdot J$$
donde: E: campo eléctrico [V/m]

$$\rho_m$$
: resistividad del medio [Ω.m]
J: densidad de corriente [A/m²]
$$(2.36)$$

Para considerar el efecto del plano de la tierra se utilizó el método de las imágenes, es decir, se colocó un tubo imagen encima del suelo a la misma distancia que existe entre la tubería enterrada y este plano, como se muestra en la figura 2.7.

Como la tubería tiene forma cilíndrica, asumiendo que la densidad de corriente es uniforme, esta es la siguiente:

$$J = \frac{I}{A} = \frac{I}{2 \cdot \pi \cdot r_1 \cdot L} \qquad [A/m^2]$$
(2.37)

donde:

I: corriente que circula por la sección transversal del tubo [A] A: área que se desea a proteger (superficie expuesta) $[m^2]$ *r*₁: radio externo [m] *L*: longitud [m]

Sustituyendo la expresión 2.37 en 2.36 y esta a su vez en 2.35, se tiene que el potencial de una tubería de longitud L esta definido por la siguiente expresión

$$V = -\int_{2 \cdot h}^{r_1} \frac{\rho_m \cdot I}{2 \cdot \pi \cdot L} \cdot \frac{1}{r} \cdot dr \quad [V]$$
(2.38)

Resolviendo la integral

$$\frac{V}{I} \cdot L = \frac{\rho_m}{2 \cdot \pi} \cdot \ln\left(\frac{2 \cdot h}{r_1}\right) \quad [\Omega.m]$$
(2.39)

Entonces la conductancia por unidad de longitud para un tubo desnuda está definida por la expresión 2.40.

$$g_{d} = \frac{2 \cdot \pi}{\rho_{m} \cdot \ln\left(\frac{2 \cdot h}{r_{1}}\right)}$$
(2.40)

donde: g_d : conductancia por unidad de longitud de un tubo desnudo [S/m] ρ_m : resistividad del medio [Ω .m] h: profundidad del tubo [m] r_l : radio externo [m]

Cuando se trata de un tubo revestido, la integral de la expresión 2.35 se debe dividir en dos partes, la primera integral va desde el tubo imagen (2.h) hasta la capa aislante, donde el medio es el suelo o agua, dependiendo del caso, y la otra va desde la parte exterior del recubrimiento (r_c) hasta el radio exterior del tubo (r_l) , teniendo como resistividad la del material aislante.

$$g_r = \frac{2 \cdot \pi}{\rho_m \cdot \ln\left(\frac{2 \cdot h}{r_c}\right) + \rho_c \cdot \ln\left(\frac{r_c}{r_1}\right)}$$
(2.41)

donde: g_r : conductancia por unidad de longitud del tubo revestido [S/m] ρ_m : resistividad del medio [Ω .m] h: profundidad del tubo [m] r_C : radio de la tubería más el espesor de la capa aislante [m] ρ_C : resistividad del material aislante [Ω .m] r_l : radio externo del tubo [m]

La figura 2.7 aplica solo para tubos enterrados. Los tubos subacuáticos se colocan sobre la superficie del lecho marino, por lo cual el tubo imagen se ubica por debajo del plano de tierra. También se puede colocar otra imagen por encima plano de la superficie del mar, sin embargo, esta última puede despreciarse si se trata de aguas profundas. Entonces para una tubería subacuática se tiene la siguiente expresión:

$$g_r = \frac{2 \cdot \pi}{\rho_m \cdot \ln\left(\frac{D}{r_c}\right) + \rho_c \cdot \ln\left(\frac{r_c}{r_1}\right)}$$
(2.42)

donde: g_r : conductancia por unidad de longitud del tubo revestido [S/m] ρ_m : resistividad del medio [Ω .m] D: diámetro del tubo [m] r_C : radio de la tubería más el espesor de la capa aislante [m] ρ_C : resistividad del material aislante [Ω .m] r_l : radio externo del tubo [m]

En el diseño convencional de protección catódica se estima la eficiencia del revestimiento aplicado en la estructura. Esto se debe a que el recubrimiento muchas veces sufre daños durante la instalación, además, con el pasar del tiempo, el material de esta capa aislante va perdiendo sus propiedades, lo que hace que este se deteriore y que la eficiencia de protección disminuya.

Como la eficiencia depende de que el material conserve sus propiedades, normalmente se supone que la eficiencia del recubrimiento es uniforme a lo largo de toda la tubería al que se le haya aplicado. Para modelar el efecto de la eficiencia de la capa aislante se dividió un diferencial de longitud en dos partes. La primera parte tiene una longitud de $\varepsilon.dx$, y en esta el tubo está revestido, mientras que la otra tiene una longitud de $(1 - \varepsilon).dx$ y el tubo se encuentra desnudo.

En el circuito de la figura 2.9.a se observa el modelo de un tubo recubierto de un diferencial de longitud. Cuando se tiene un revestimiento de buena calidad, su eficiencia es alta, usualmente está por encima del 85 % (véase anexo 2), por lo tanto se puede despreciar el término $r_t(1 - \varepsilon).dx$, quedando el circuito presentado en la figura 2.9.b. Con esta aproximación se observa que la conductancia total por unidad de longitud de la tubería es el promedio ponderado de ambas conductancias.

$$g_t = \mathcal{E} \cdot g_r + (1 - \mathcal{E}) \cdot g_d \tag{2.43}$$

donde:

g_i: conductancia total por unidad de longitud del tubo [S/m]
 ε: eficiencia del revestimiento

 g_r : conductancia por unidad de longitud en las zonas revestidas [S/m] g_d : conductancia por unidad de longitud en las zonas desnudas [S/m]

Figura 2.9. Modelo de una tubería revestida en un diferencial de longitud

El revestimiento aplicado en las tuberías, por su parte, no altera el valor de la resistencia en serie por unidad de longitud.

CAPITULO III

PREMISAS GENERALES

En este capítulo se presentan las premisas generales para la ejecución de la ingeniería básica de la protección catódica, estableciéndose los requerimientos de diseño, así como la información base utilizada.

3.1. Premisa general de ingeniería

Por indicación de *La Compañia*, todo el diseño de la protección catódica se realizó según las prácticas de *PDVSA* a menos que se indique lo contrario, lo cual será señalado oportunamente.

3.2. Descripción general del sistema de transporte de hidrocarburos

La ampliación del sistema de transporte Bajo Grande – Ulé – Amuay constituye la instalación de una tubería subterránea de acero que consta de dos tramos. El primero va desde Bajo Grande hasta Ulé, en este tramo la tubería será de 26 pulgadas de diámetro y 46 km de longitud, la cual atravesará el Lago de Maracaibo, es decir 44,5 km de tubería estarán sumergidos en agua salobre.

El segundo tramo va desde Ulé hasta Amuay, la tubería es de 26 pulgadas de diámetro y 230 km de longitud, este tramo consta de diecisiete secciones y atraviesa el Golfete de Coro, por lo cual tiene 25 km de tubería sumergida en agua salada.

La tabla 3.1 presenta las secciones de los tramos que desean protegerse de la corrosión.

Sección	Progresiva		Madia
	desde	hasta	Ivieuto
1.1	Bajo Grande	Costa occidental del Lago	Suelo
1.2	Costa occidental del Lago	Costa oriental del Lago	Agua salobre
1.3	Costa oriental del Lago	km 0 (Ulé)	Suelo
2.1	km 0 (Ulé)	km 4,6 (Carretera William)	Suelo
2.2	km 4,6 (Carretera William)	km 15 (Carretera William)	Suelo
2.3	km 15 (Carretera William)	km 31 (Carretera William)	Suelo
2.4	km 31 (Carretera William)	km 47 (Carretera William)	Suelo
2.5	km 47 (Carretera William)	km 63 (Carretera William)	Suelo
2.6	km 63 (Carretera William)	km 79 (Carretera William)	Suelo
2.7	km 79 (Carretera William)	km 95 (Carretera William)	Suelo
2.8	km 95 (Carretera William)	km 106 (Carretera William)	Suelo
2.9	km 106 (Carretera William)	km 119 (Carretera William)	Suelo
2.10	km 119 (Carretera William)	km 134 (Carretera William)	Suelo
2.11	km 134 (Carretera William)	km 158 (Carretera William)	Suelo
2.12	km 158 (Carretera William)	km 179 (Carretera William)	Suelo
2.13	km 179 (Carretera William)	km 190 (Carretera William)	Suelo
2.14	km 190 (Carretera William)	km 215 (Paraguaná)	Agua salada
2.15	km 215 (Paraguaná)	km 217 (Paraguaná)	Suelo
2.16	km 217 (Paraguaná)	km 222 (Paraguaná)	Suelo
2.17	km 222 (Paraguaná)	km 230 (Amuay)	Suelo

Tabla 3.1. Tramos a proteger

3.3. Disponibilidad de electricidad a lo largo de la ruta de la tubería

El sistema actual de transporte de hidrocarburos tiene un recorrido que va desde Ulé (km 0) hasta Amuay (km 230) y cuenta con una tubería de 16 pulgadas de diámetro, la cual está protegida por corriente impresa, así que se cuenta con varios rectificadores a lo largo del segundo tramo. Sin embargo, esta tubería es de un diámetro menor que la que se va a instalar, por lo que la tubería nueva va a exigir mayor intensidad de corriente de protección. Entonces se debe verificar si las especificaciones nominales de tensión y corriente de estos rectificadores existentes son suficientes para proteger el nuevo sistema de transporte que se va a implementar. A demás, para ampliación del sistema de transporte de hidrocarburos se van a reubicar, eliminar y construir nuevas estaciones de seccionamiento, lo que puede traer como consecuencia la necesidad de instalar de nuevos rectificadores en sectores donde no se posea ninguno.

Para el primer tramo se debe verificar la disponibilidad de electricidad para el sistema de protección catódica de realizarse por corriente impresa.

En la tabla 3.2 se presenta la ubicación de los rectificadores existentes, así como los puntos de disponibilidad de electricidad.

Ubicación	Rectificador existente y disponibilidad de electricidad
Bajo Grande	electricidad disponible
Costa occidental del Lago	disponibilidad de electricidad a 1,5 km
Costa oriental del Lago	disponibilidad de electricidad a 140 m
km 0 (Ulé)	rectificador no operativo / electricidad disponible
km 2 (Planta GLP)	rectificador no operativo / electricidad disponible
km 4,6 (Carretera William)	-
km 9 (Carretera William)	rectificador de 100 VDC / 100 ADC
km 15 (Carretera William)	-
km 17 (Carretera William)	rectificador de 40 VDC / 200 ADC
km 24 (Carretera William)	rectificador de 40 VDC / 200 ADC
km 31 (Carretera William)	-
km 34 (Carretera William)	rectificador de 40 VDC / 200 ADC
km 47 (Carretera William)	rectificador de 100 VDC / 100 ADC
km 58 (Carretera William)	rectificador de 40 VDC / 200 ADC
km 63 (Carretera William)	disponibilidad de electricidad a 1 km
km 79 (Carretera William)	disponibilidad de electricidad a 200 m
km 95 (Carretera William)	disponibilidad de electricidad a 400 m
km 106 (Carretera William)	rectificador de 80 VDC / 80 ADC
km 115 (Carretera William)	rectificador de 80 VDC / 80 ADC
km 119 (Carretera William)	-
km 128 (Carretera William)	rectificador de 40 VDC / 200 ADC
km 134 (Carretera William)	-
km 145 (Carretera William)	rectificador de 50 VDC / 100 ADC
km 158 (Carretera William)	-
km 162 (Carretera William)	rectificador de 50 VDC / 100 ADC
km 172 (Urumaco)	rectificador de 50 VDC / 100 ADC
km 179 (Carretera William)	rectificador de 48 VDC / 150 ADC
km 190 (Carretera William)	disponibilidad de electricidad a 11 km
km 215 (Paraguaná)	rectificador de 40 VDC / 200 ADC
km 217 (Paraguaná)	rectificador de 100 VDC / 100 ADC
km 222 (Paraguaná)	rectificador de 100 VDC / 100 ADC
km 230 (Amuay)	rectificador no operativo / electricidad disponible

Tabla 3.2. Rectificadores existentes y disponibilidad de electricidad más cercana

3.4. Características generales del medio

Debido a la falta de autorización de parte de *La Compañia* para acceder a zonas de seguridad de la misma, a la fecha *El Contratista* no ha podido realizar las mediciones de resistividad del terreno, así que se asumió un valor de resistividad de 2000 Ω .cm a lo largo de todo el recorrido subterráneo de la tubería, ya que esta es una práctica recomendada por el departamento de diseño de *El Contratista*.

En el tramo 1.2 la tubería atraviesa el Lago de Maracaibo, el agua que presenta este lago es salobre, ya que se conecta al Mar Caribe a través del estrecho de Maracaibo, esta agua presenta una resistividad que se encuentra entre 120 y 160 Ω .cm, [] para este trabajo se tomó 130 Ω .cm por recomendación del departamento de diseño de *El Contratista*.

El Golfete de Coro es atravesado en el tramo 2.14, la resistividad del agua de mar se encuentra entre 20 y 30 Ω .cm, por lo cual se tomó 25 Ω .cm. [11]

La densidad de corriente que se requiere para proteger los tubos enterrados desnudos es de 15 mA/m² y en agua salobre es de 60 mA/m², al igual que en agua salada (véase anexo 1).

3.5. Características del tubo

El tubo que se va a instalar para la ampliación de este sistema de transporte es de acero. En todo su recorrido contará con 26 pulgadas (66,04 cm) de diámetro y el grosor de esta es de 0,5 pulgadas (12,7 mm).

El tubo se enterrará a una profundidad de 1,2 m y en los tramos subacuáticos estará posado en el lecho marino.

3.6. Vida útil de la estructura

Por requerimiento de *La Compañía*, la protección catódica se realizará para que tenga una vida útil de 20 años.

3.7. Revestimiento de la tubería

El revestimiento que se va a utilizar es de resina epóxica en polvo, el cual está basado en una resina que reacciona por la acción de la temperatura, aplicada por pulverización electrostática sobre la superficie caliente de los tubos, se funde, adhiere y polimeriza en una capa sólida de revestimiento.

La eficiencia del revestimiento disminuye con el tiempo. Inicialmente la tubería tiene una eficiencia del 99% debido a las imperfecciones del material aislante utilizado y a los daños que este pueda sufrir durante la instalación de la estructura. Luego esta eficiencia se va a reducir debido a que el material aislante va perdiendo con el tiempo, sus condiciones físicas y químicas (véase anexo 2).

Para el diseño de la protección catódica se tomó una eficiencia del revestimiento de 85%, para poder realizar el diseño de un sistema que cumpla con los requerimientos en el año 20.

La resistividad de este revestimiento es de 1 petaohm.cm [12] y el grosor del mismo que se va a aplicar en la superficie de la estructura es de 14 mils, según datos del fabricante.

3.8. Ánodos de sacrificio

El diseño de la protección catódica por ánodos galvánicos se realizó con ánodos de aluminio tipo brazalete, como se especifica en las normas *PDVSA*. Como los tubos

que se desean proteger son de 26 pulgadas de diámetro, se deben utilizar ánodos de aluminio clase 2 tipo ABP-210 para estructuras sumergidas, tipo brazalete.

En el anexo 3 se presentan las dimensiones de dicho ánodo. En este también se presentan sus características, según normas *PDVSA*.

Así mismo, el diseño de la protección catódica por corriente impresa se realizó con ánodos de ferro – silicio – cromo, por exigencia de la *Compañía*. Los ánodos especificados son fabricados por Anotec Industries Ltd., las dimensiones y propiedades de los mismos son presentadas en el anexo 4.

CAPITULO IV

DISEÑO DE LA PROTECCIÓN CATÓDICA

En el presente capítulo se incluyen los cálculos realizados para la ejecución de la ingeniería básica en el diseño de la protección catódica para la ampliación del sistema de transporte de hidrocarburos Bajo Grande – Ulé – Amuay.

En los tramos subterráneos se realizó el diseño de la protección catódica por corriente impresa, mientras que en las secciones subacuaticas se efectuó por corriente impresa y por ánodos de sacrificio, para de esta manera, poder elegir el sistema más conveniente para estos tramos.

4.1. Protección catódica por ánodos galvánicos

En esta parte del capitulo se realizó el diseño de la protección catódica por ánodos galvánicos para el tramo 2.14, el cual va desde el km 190 (Carretera William) hasta el km 215 (Paraguaná). Esta sección es de 25,2 km de longitud. El resultado de la sección 1.2, la cual también es subacuatica, se presenta en el anexo 5.

4.1.1. Área a proteger

El área total expuesta A_T es el área de la superficie total del tramo de tubería.

$$A_{T} = \pi \cdot L \cdot D = \pi \cdot 25200m \cdot 0,66m = 52.282,64m^{2}$$
(4.1)

donde: *L*: longitud del tramo de tubería [m]

D: diámetro de la tubería [m]

Este diseño se realizó tomando como eficiencia del revestimiento $\varepsilon = 85\%$, esto quiere decir que el 15% del área del tramo de tubería está desnuda, por lo cual este último porcentaje debe ser protegido mediante la protección catódica.

$$A_{P} = A_{T} \cdot (1 - \varepsilon) = 52.282,64m^{2} \cdot (1 - 0,85) = 7.842,40m^{2}$$
(4.2)
donde: A_{P} : área a proteger mediante la protección catódica [m²]

4.1.2. Corriente de protección

La corriente total que deben entregar los ánodos I_P se calcula con los valores de la densidad de corriente requerida por el medio en que se encuentre la estructura a proteger J_P , y del área de tubería desnuda A_P .

$$I_{P} = A_{P} \cdot J_{P} = 7.842,40m^{2} \cdot 0,06A/m^{2} = 470,54A$$
(4.3)

4.1.3. Cantidad de ánodos requeridos

Para conocer la cantidad de ánodos necesarios, primero se debe calcular el peso del material anódico requerido P_{MAR} , el cual es función de las características del ánodo, su vida útil V_U y la corriente de protección I_P .

$$P_{MAR} = \frac{V_U \cdot I_P \cdot C_{PA}}{\varepsilon_A \cdot F_U} = \frac{20a\tilde{n}o \cdot 470,54A \cdot 2,94kg / A.a\tilde{n}o}{0,9 \cdot 0,85} = 36.167,28kg \quad (4.4)$$

donde C_{PA} : consumo promedio del ánodo por año [kg/A.año] (véase anexo 3) ε_A : eficiencia del ánodo (véase anexo 3) F_U : factor de utilización del ánodo [13]

Con el peso total del material anódico P_{MAR} y el peso de cada ánodo P_A se calcula la cantidad de ánodos requeridos N.

$$N = \frac{P_{MAR}}{P_A} = \frac{36.167,28kg}{95,2kg/unidad} = 379,91 unidades$$
(4.5)

Entonces se requieren 380 ánodos de aluminio tipo brazalete para proteger la estructura.

4.1.4. Separación entre ánodos

La separación que debe existir entre los ánodos S se halla a partir de la longitud del tramo de tubería a proteger L y la cantidad de ánodos requeridos N.

$$S = \frac{L}{N} = \frac{25.200m}{380 unidades} = 66,32m / unidad$$
(4.6)

4.1.5. Resistencia de los ánodos tipo brazalete

Debido a la forma del ánodo tipo brazalete, la resistencia R_A de cada uno de ellos se halla mediante la siguiente expresión.

$$R_{A} = \frac{0.315 \cdot \rho_{m}}{\sqrt{A_{EA}}} = \frac{0.315 \cdot 25\Omega / cm}{\sqrt{84.03cm^{2}}} = 0.0937\Omega$$
(4.7)

donde:

de: ρ_m : resistividad del medio [Ω .cm]

A_{EA}: área expuesta del ánodo [cm] (véase anexo 5)

4.2. Protección catódica por corriente impresa

En esta parte se realizó el diseño de la protección catódica por corriente impresa para el tramo 2.9, que va desde el km 106 (Carretera William) hasta el km

119 (Carretera William). Esta sección es de 14 km de longitud. Los resultados de las demás secciones protegidas utilizando corriente impresa se presentan en el anexo 6.

4.2.1. Área a proteger

El área que se va a proteger se calcula de la misma forma que en la parte 4.1.1, es decir utilizando las expresiones 4.1 y 4.2.

$$A_{T} = \pi \cdot L \cdot D = \pi \cdot 14.000m \cdot 0,66m = 29.045,91m^{2}$$

$$y$$

$$A_{P} = A_{T} \cdot (1 - \varepsilon) = 29.045,91m^{2} \cdot (1 - 0,85) = 4.356,89m^{2}$$

4.2.2. Corriente de protección

La corriente que debe entregar el rectificador para proteger la tubería I_P es proporcional a la densidad de corriente requerida J_P y al área desnuda que se desea proteger A_P . A demás se le adicionó a un factor de reserva de corriente F_R . Este factor debe ser de 50% para tuberías enterradas y 20% para tuberías sumergidas. [14]

$$I_{P} = A_{P} \cdot J_{P} \cdot (1 + F_{R}) = 4.356,89m^{2} \cdot 0,015A/m^{2} \cdot (1 + 0,5) = 98,03A \quad (4.8)$$

4.2.3. Cantidad de ánodos requeridos

El número de ánodos que se van a colocar para realizar la protección se debe calcular por dos métodos y seleccionar el mayor de estos. El primer método es por la tasa de consumo del ánodo, para asegurar que los mismos tengan una vida útil no menor a 20 años, tomando en consideración las características de estos.

$$N_{1} = \frac{V_{U} \cdot I_{P} \cdot C_{PA}}{(F_{U} \cdot P_{A})} = \frac{20a\tilde{n}o \cdot 98,03A \cdot 0,2kg / A.a\tilde{n}o}{(0,85 \cdot 50kg)} = 9,23unidades$$
(4.9)

donde N_1 : cantidad de ánodos requeridos por la tasa de consumo del ánodo V_U : vida útil del ánodo [año] I_P : corriente de protección requerida [A]

 C_{PA} : consumo promedio del ánodo por año [kg/A.año] (según datos del fabricante)

 F_U : factor de utilización del ánodo (véase anexo 4)

 P_A : peso del ánodo comercial [kg] (véase anexo 4)

El segundo método es por máxima corriente de descarga, ya que la cantidad de corriente que pueden estregar los ánodos es limitada.

$$N_{2} = \frac{I_{P}}{I_{A}} = \frac{98,03A}{3,7A/unidad} = 26,49unidades$$
(4.10)

donde N_2 : cantidad de ánodos requeridos por máxima corriente de descarga I_P : corriente de protección requerida [A]

 I_A : corriente máxima de descarga del ánodo [A] (según datos del fabricante)

Entonces para proteger este tramo se debe colocar un lecho con 27 ánodos.

4.2.4. Resistencia de un lecho vertical de ánodos

La resistencia de un lecho de ánodos vertical incluye la resistencia del cabezal de cables R_{CC} y la resistencia de la cama vertical de ánodos R_{CV} . El cabezal de cabes se define como la longitud del cable principal al cual se conectan los ánodos individuales. Comprende, asimismo, la longitud de los cables de los ánodos (figura 4.1). El anexo 8 presenta la determinación de la expresión 4.11, para el cálculo del valor de la resistencia del cabezal de cables.

$$R_{CC} = \left(\frac{N-1}{2} \cdot S + L_{CA}\right) \cdot R_{CP}$$
$$= \left(\frac{27-1}{2} \cdot 7,5m + 6,5m\right) \cdot 0,4147 \cdot 10^{-3} \Omega / m = 0,0431\Omega$$
(4.11)

donde

N: cantidad de ánodos requeridos
S: separación entre ánodos [m]
L_{CA}: longitud desde el cable principal hasta el ánodo [m]
R_{CP}: resistencia del cable positivo [Ω/m]

La resistencia del cable depende del cable que se vaya a utilizar. En este tramo se colocó un cable calibre AWG 1, el cual tiene una resistencia de 0,4147 Ω /km, este cable se seleccionó ya que soporta la corriente de protección. En el anexo 7 se muestran los tamaños (calibres) de los cables a utilizar.

Figura 4.1. Lecho de ánodos vertical

La resistencia de la cama vertical de ánodos R_{CV} se haya utilizando la ecuación de Sunde [15].

$$R_{CV} = \frac{0.1588 \cdot \rho_m}{N \cdot L_A} \cdot \left(\ln\left(\frac{8 \cdot L_A}{D_A}\right) - 1 + \frac{2 \cdot L_A}{S} \cdot \ln(0.656 \cdot N) \right)$$
$$= \frac{0.1588 \cdot 20\Omega.m}{27 \cdot 3m} \cdot \left(\ln\left(\frac{8 \cdot 3m}{0.3m}\right) - 1 + \frac{2 \cdot 3m}{7.5m} \cdot \ln(0.656 \cdot 27) \right) = 0.2228\Omega \qquad (4.12)$$

donde

 ρ_m : resistividad del medio [Ω .m]

N: cantidad de ánodos requeridos

*L*_A: longitud del ánodo más el backfill [m]

DA: diámetro del ánodo más el backfill [m]

S: separación entre ánodos [m]

Entonces la resistencia del lecho vertical de ánodos R_{LV} es

$$R_{LV} = R_{CC} + R_{CV} = 0.0431\Omega + 0.2228\Omega = 0.2659\Omega$$
(4.13)

4.2.5. Resistencia total de cables

La resistencia total de cables R_{TC} es la suma de la resistencia total del cable positivo, que va desde el positivo del rectificador hasta el punto en donde el cable se deriva hacia el primer ánodo, y el cable negativo, que va desde el negativo del rectificador hasta la estructura que se desea proteger.

$$R_{TC} = R_{CP} \cdot L_{CP} + R_{CN} \cdot L_{CN}$$

= 0,4147\Omega / km \cdot 0,1km + 0,4147\Omega / km \cdot 0,01km = 0,0456\Omega (4.14)

donde: R_{CP} : resistencia del cable que sale del positivo del rectificador [Ω /km] L_{CP} : longitud del cable que sale del positivo del rectificador [km] R_{CN} : resistencia del cable que sale del negativo del rectificador [Ω /km] L_{CN} : longitud del cable que sale del negativo del rectificador [km]

4.2.6. Resistencia total del circuito

La resistencia total del circuito R_C es la suma de las resistencias de la cama vertical de ánodos, la resistencia total de los cables y la resistencia de la estructura. Esta última fue despreciada ya que se asume que el valor de esta es muy pequeño, como se verá más adelante, entonces:

$$R_{C} = R_{TC} + R_{LV} = 0,0456\Omega + 0,2659\Omega = 0,3115\Omega$$
(4.15)

4.2.7. Tensión del rectificador

Para calcular el valor de tensión que se requiere para proteger la estructura V_R se aplica la ley de Ohm y al resultado se le adicionan dos (2) voltios, ya que si se pone en contacto la estructura de acero con los ánodos de hierro – silicio en su relleno de coque metalúrgico, se formaría una pila de aproximadamente dos (2) voltios por diferencia galvánica [16].

$$V_R = R_C \cdot I_P + 2 = 0.3115\Omega \cdot 98,03A + 2V = 32,54V$$
(4.18)

donde

 R_C : resistencia del circuito [Ω] I_P : corriente de protección [A]

CAPITULO V

MODELO DE LA TUBERÍA UTILIZANDO UNA HOJA DE CÁLCULO

Este capítulo presenta la modelación de la tubería utilizando una hoja de cálculo de Excel, para sistemas de protección catódica por corriente impresa con un rectificador en un extremo, un rectificador/generador en cualquier punto a lo largo del tramo a proteger y con dos rectificadores/generadores en los extremos. Para cada uno de estos casos se obtienen las gráficas del potencial de polarización, la corriente longitudinal y la densidad de corriente.

5.1. Referencia de cobre / sulfato de cobre

Como se vio en la sección 2.5 del capitulo II, la medición del potencial a tierra se hace utilizando un electrodo de Cu / CuSO₄. Entonces se debe considerar que el potencial de un electrodo de Cu / CuSO₄ es 0,34 volt con respecto al electrodo de hidrógeno estándar, mientras que el potencial del electrodo de hierro con respecto al de hidrógeno es de -0,44 volt (véase anexo 10). Entonces al realizar la medición del potencial de una estructura de hierro, utilizando un electrodo de Cu / CuSO₄, se está midiendo la caída de tensión en la estructura más el potencial del electrolito (-0,44 – 0,34 = -0,78 volt). [17] Por lo tanto la expresión que define el potencial a lo largo de la estructura, al realizar una medición utilizando un electrodo de cobre / sulfato de cobre, queda de la siguiente manera:

$$V(x) = V_0 \cdot \cosh(\alpha \cdot x) - I_0 \cdot R_c \cdot \operatorname{senh}(\alpha \cdot x) - 0,78$$
(5.1)

Sin embargo, el potencial real de la estructura se halla con la expresión 2.23.

5.2. Sistema de protección catódica con un rectificador en un extremo

Es usual observar un tramo de tubería protegido mediante protección catódica por corriente impresa, donde el rectificador/generador se encuentre en un extremo de la estructura. Las ecuaciones que definen el comportamiento de la corriente y el potencial a tierra son las expresiones 2.24 y 5.1 respectivamente, donde el potencial inicial V_0 se halla mediante un divisor de tensión y la corriente inicial se consigue utilizando la ley de Ohm (véase figura 5.1).

$$V_0 = V_R \cdot \frac{R_{tub}}{R_{tub} + R_A} \tag{5.2}$$

$$I_0 = \frac{V_0}{R_{tub}}$$
(5.3)

donde: V_0 : potencial en el punto de conexión del rectificador/generador I_0 : corriente en el punto de conexión del rectificador/generador R_A : resistencia total del lecho de ánodos y cables

 R_{tub} : resistencia de la tubería vista desde el punto de conexión del rectificador/generador

Figura 5.1. Sistema de protección catódica con un rectificador en un extremo

La resistencia de la tubería R_{tub} se halla, sabiendo que la corriente en el extremo opuesto a la ubicación del rectificador/generador es cero (I_L =0), despejando V_0/I_0 de la expresión 2.26 se tiene.

$$R_{tub} = \frac{V_0}{I_0} = \frac{R_C}{\tanh(\alpha \cdot L)}$$
(5.4)

A modo de ejemplo se tiene el tramo 2.9 de la ampliación del sistema de transporte Bajo Grande – Ulé – Amuay, que va desde el km 106 hasta el km 119 del corredor Ulé – Amuay. El diseño de la protección catódica se realizó con ánodos de hierro – silicio – cromo, dando como resultado que se necesita un rectificador que entregue 32,54 VDC y 98,03 ADC, como se vio en la sección 4.2 del capítulo anterior. En el km 106 hay instalado un rectificador que se utiliza para proteger el actual sistema de transporte, el cual cumple con las especificaciones necesarias para proteger este tramo.

La tabla 5.1 presenta los datos del tramo necesarios para realizar las curvas del potencial y corriente a lo largo del mismo.

Datos	Valor	Unidad
Desde	km 106	
Hasta	km 119	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	14	km
Tensión del rectificador V_R	32,54	V
Resistencia total de ánodos y cables R_A	0,3115	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla 5.1. Datos del tramo 2.9 protegido con un rectificador en un extremo

En el anexo 2 se presenta una tabla con los valores del deterioro del revestimiento en función del tiempo, a partir de la cual se tomaron como valores de eficiencia del revestimiento 99%, 95%, 90% y 85%, que corresponden a los años cero (0), doce (12), diecisiete (17) y veinte (20) respectivamente. Con estos se realizaron las curvas del potencial de polarización y corriente longitudinal.

En la gráfica 5.1 se observa el potencial de polarización a lo largo del tramo de tubería para la tensión especificada mediante el diseño de protección catódica, donde se aprecia que dicho tramo está bien protegido para 95% y 99% de eficiencia del revestimiento, mientras que para 90% y 85% de eficiencia la estructura no está totalmente protegida, ya que el potencial de polarización está por debajo de 850 mV en el extremo opuesto a la ubicación del rectificador [4].

En la gráfica 5.2 se muestra la corriente en la estructura, donde se observa que a medida que disminuye la eficiencia del revestimiento, aumenta la corriente entregada por el rectificador.

Potencial de polarización

Gráfica 5.1. Potencial de polarización del tramo 2.9 protegido con un rectificador en un extremo

Corriente longitudinal

Gráfica 5.2. Corriente longitudinal del tramo 2.9 protegido con un rectificador en un extremo

5.3. Sistema de protección catódica con un rectificador ubicado en cualquier punto a lo largo de toda la tubería

Muchas veces el rectificador/generador es ubicado en un punto distinto a uno de los extremos del tramo de tubería, por ejemplo, en el tramo estudiado anteriormente se tiene la presencia de un rectificador en el km 115, el cual cumple con las especificaciones mínimas de diseño de la protección catódica.

En este caso, las expresiones que describen el comportamiento del potencial y la corriente a tierra a lo largo de la tubería son 5.5 y 5.6, respectivamente.

$$V(x) = \begin{cases} V_0 \cdot \cosh(\alpha \cdot (D-x)) - I_{01} \cdot R_C \cdot \operatorname{senh}(\alpha \cdot (D-x)) - 0.78 & \text{para } 0 \le x \le D \\ V_0 \cdot \cosh(\alpha \cdot (x-D)) - I_{02} \cdot R_C \cdot \operatorname{senh}(\alpha \cdot (x-D)) - 0.78 & \text{para } D < x \le L \end{cases}$$

(5.5)

$$I(x) = \begin{cases} I_{01} \cdot \cosh(\alpha \cdot (D-x)) - V_0 / R_C \cdot \operatorname{senh}(\alpha \cdot (D-x)) & \text{para } 0 \le x < D \\ I_{02} \cdot \cosh(\alpha \cdot (x-D)) - V_0 / R_C \cdot \operatorname{senh}(\alpha \cdot (x-D)) & \text{para } D < x \le L \end{cases}$$
(5.6)

donde: V_0 : potencial en el punto de conexión del rectificador/generador I_{01} : corriente inicial del tramo de longitud D I_{02} : corriente inicial del tramo de longitud L - D

Entonces, el potencial en el punto de contacto del rectificador/generador V_0 y las corrientes iniciales I_{01} e I_{02} se hallan con las siguientes expresiones (véase figura 5.2).

$$V_0 = V_R \cdot \frac{R_{tub1} // R_{tub1}}{R_{tub1} // R_{tub1} + R_A}$$
(5.7)

$$I_{01} = \frac{V_0}{R_{tub1}}$$
(5.8)

$$I_{02} = \frac{V_0}{R_{ub2}}$$
(5.9)

donde:

 R_A : resistencia total del lecho de ánodos y cables

 R_{tubl} : resistencia del tramo de tubería de longitud *D* vista desde el punto de conexión del rectificador/generador

 R_{tub2} : resistencia del tramo de tubería de longitud L - D vista desde el punto de conexión del rectificador/generador

Las resistencias de los tramos de tubería R_{tub1} y R_{tub2} se hallan evaluando la expresión 2.24 en x=0 y x =L, respectivamente, y despejando V_0/I_{01} y V_0/I_{02} .

$$R_{tub1} = \frac{V_0}{I_{01}} = \frac{R_C}{\tanh(\alpha \cdot D)}$$
(5.10)

$$R_{tub2} = \frac{V_0}{I_{02}} = \frac{R_C}{\tanh(\alpha \cdot (L - D))}$$
(5.11)

Figura 5.2. Sistema de protección catódica con un rectificador en un punto diferente al extremo

Se analizó el comportamiento del potencial de polarización y la corriente longitudinal a lo largo del tramo 2.9 protegido con el rectificador ubicado en el km 115 (véase las gráficas 5.3 y 5.4). En la gráfica 5.3 se observa que al ubicar el rectificador en un punto distinto a un extremo, la estructura está más polarizada que en el caso anterior, esto se debe a que la distancia entre el punto de conexión del rectificador y los extremos del tramo es menor. Lo cual nos indica que se va a lograr controlar la corrosión requiriendo menos tensión entregada por el rectificador. También se aprecia que para 99%, 95% y 90% de eficiencia del revestimiento la estructura está bien protegida.

En la gráfica 5.4, al igual que en la sección anterior, se observa como la corriente entregada aumenta cuando disminuye la eficiencia del revestimiento.

Potencial de polarización

Gráfica 5.3. Potencial de polarización del tramo 2.9 protegido con un rectificador en el km 115
Corriente longitudinal

Gráfica 5.4. Corriente longitudinal del tramo 2.9 protegido con un rectificador en el km 115

5.4. Sistema de protección catódica con dos rectificadores iguales ubicados en ambos extremos de la tubería

Cuando se tiene que proteger un tramo subterráneo o subacuático muy extenso, se coloca un rectificador en cada extremo (véase figura 5.3) para que cada uno de estos tenga que entregar menos corriente. Para este caso las expresiones que describen el potencial y la corriente a lo largo de una estructura de longitud L se presentan a continuación.

$$V(x) = V_0 \cdot \left(\cosh(\alpha \cdot x) + \cosh(\alpha \cdot (L-x))\right) - I_0 \cdot R_C \cdot \left(\operatorname{senh}(\alpha \cdot x) + \operatorname{senh}(\alpha \cdot (L-x))\right)$$

$$(5.12)$$

$$I(x) = I_0 \cdot \left(\cosh(\alpha \cdot x) - \cosh(\alpha \cdot (L-x))\right) - V_0 / R_C \cdot \left(\operatorname{senh}(\alpha \cdot x) - \operatorname{senh}(\alpha \cdot (L-x))\right)$$

$$(5.13)$$

Donde los valores de la tensión V_0 y la corriente inicial I_0 se hallan suponiendo que se esté protegiendo con un sólo rectificador/generador, es decir, utilizando las expresiones 5.2 y 5.3.

Figura 5.3. Sistema de protección catódica con un rectificador en cada extremo

Como ejemplo para este caso se presenta el mismo tramo 2.9 protegiéndose con un rectificador en cada extremo. El diseño de la protección catódica realizada de la misma forma que como se ilustró en la sección 4.2 del capítulo 4, indica que los rectificadores deben poder entregar 24,47 VDC y 49,01 ADC.

En las gráficas 5.5 y 5.6, se aprecian las curvas del potencial de polarización y corriente longitudinal a lo largo del tramo de tubería colocando los dos rectificadores. En estas se observa como la estructura está más protegida que en los casos anteriores, garantizando una buena protección para todos los valores de la eficiencia del revestimiento que se graficaron.

Datos	Valor	Unidad				
Desde	km 106 (Carretera William)					
Hasta	km 119 (Carret	era William)				
Resistividad del medio ρ_m	2000	ohm.cm				
Longitud del tramo de tubería L	14	km				
Tensión del rectificador V_R	24,47	V				
Resistencia total de ánodos y cables R_A	0,4584	ohm				
Diámetro del tubo D	26	pulgadas				
Profundidad del tubo h	1,2	m				
Resistividad del revestimiento ρ_C	1	petaohm.cm				
Grosor del revestimiento	14	mils				
Grosor de la tubería	0,5	pulgadas				
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m				

Tabla 5.2. Datos del tramo 2.9 protegido con dos rectificadores en los extremos

Gráfica 5.5. Potencial de polarización del tramo 2.9 protegido con dos rectificadores en los extremos

Corriente longitudinal

Gráfica 5.6. Corriente longitudinal del tramo 2.9 protegido con dos rectificadores en los extremos

También se presenta el tramo 2.14 de la ampliación del sistema Bajo Grande – Ulé - Amuay, el cual va desde el km 190 hasta el km 215 del corredor Ulé – Amuay. Este tramo es subacuático, ya que atraviesa el Golfete de Coro.

Según el diseño de la protección catódica se requiere de dos rectificadores/generadores que entreguen 22,01 VDC y 282,33 ADC (véase anexo 6). Como este tramo es subacuático la resistencia del medio es muy baja (véase tabla 5.3), lo que provoca que se drene más rápidamente la corriente, como se observa en la gráfica 5.8. Por supuesto, esto también conlleva a que el potencial disminuya muy rápido, sugiriendo que la estructura no esté bien protegida.

Datos	Valor	Unidad				
Desde	km 190					
Hasta	km 2	15				
Resistividad del medio ρ_m	25	ohm.cm				
Longitud del tramo de tubería L	25,2	km				
Tensión del rectificador V_R	22,01	V				
Resistencia total de ánodos y cables R_A	0,0709	ohm				
Diámetro del tubo D	26	pulgadas				
Profundidad del tubo h	1,2	m				
Resistividad del revestimiento ρ_C	1	petaohm.cm				
Grosor del revestimiento	14	mils				
Grosor de la tubería	0,5	pulgadas				
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m				

Tabla 5.3. Datos del tramo 2.14

Las gráficas 5.7 y 5.8 nos permiten apreciar que la estructura no puede ser protegida con protección catódica por corriente impresa utilizando un rectificador en cada extremo, porque se requieren rectificadores que entreguen valores muy altos de tensión y corriente.

Potencial de polarización

Gráfica 5.7. Potencial de polarización del tramo 2.14 protegido con dos rectificadores en los extremos

Corriente longitudinal

Gráfica 5.8 Corriente longitudinal del tramo 2.14 protegido con dos rectificadores en los extremos

Las gráficas del potencial de polarización y corriente longitudinal de los demás tramos protegidos por corriente impresa, se presentan en el anexo 11.

CAPITULO VI

MODELO DE LA TUBERÍA UTILIZANDO ORCAD

En este capítulo se presentan los circuitos equivalentes a los tramos de tubería en parámetros distribuidos, así como los resultados del comportamiento del potencial a tierra y de la corriente longitudinal, producto de la simulación de dichos circuitos en OrCAD.

6.1. Sistema de protección catódica con un rectificador en un extremo

Para poder hallar varios valores del potencial a tierra y de la corriente longitudinal a lo largo de una tubería, se debe plantear un circuito equivalente, mediante parámetros distribuidos.

Dicho circuito se halló de manera similar al circuito encontrado en la sección 2.8 del capítulo II, sin embargo en vez de tomar un sólo bloque, como el observado en la figura 2.6, el tramo estudiado se seccionó en 10 partes de igual longitud. Por lo tanto los valores de Z e Y/2, se hallan con las expresiones 6.1 y 6.2, donde x = L/10.

$$Z = R_c \cdot senh(\alpha \cdot x) \tag{6.1}$$

 $\frac{Y}{2} = \frac{1}{R_c} \cdot \tanh\left(\frac{\alpha \cdot x}{2}\right) \tag{6.2}$

У

A modo de ejemplo se tomó el tramo 2.9 del Sistema de transporte de hidrocarburos Bajo Grande – Ulé - Amuay, el cual fue estudiado en la parte anterior, donde se encontraron los valores de la resistencia característica $R_C = 14.8 \text{ m}\Omega$ y la

constante de atenuación $\alpha = 352 \times 10^{-6} \text{ m}^{-1}$, para una efectividad del revestimiento de 85%. Entonces, la resistencia $Z = 7.6 \text{ m}\Omega$ y la conductancia Y/2 = 16,30 S.

Con estos datos se modelo el siguiente circuito en OrCAD, donde se le restaron dos (2) voltios a la tensión del rectificador, por contacto, como se vio en la sección 4.2.7 del capítulo IV.

	RS1 0.0076		RS2 0.0076		RS3 0.007	3 · · · 76 : :	R 0.0	S4 0076		R 0.0	S5 1076		RS6 0.007	6	Ю.	S7 0076		RS8 0.007	6		RS9	· · ·	R 0.0	S0 0076	
V1 30.54V																					-^//-				
RA 0.3115	RP11 RP1 0.0613 0.06	2 RP2 13 0.06	21 RP2 13 0.061	2 R 13 0.0	P31 0613 0	RP32 1.0613	RP41 0.061	RP 3 0.06	42 13 (RP51).0613	RP5 0.061	2 RI 13 0.0	P61 R 0613 0.1	P62 0613	RP71 0.061	RP7 3 0.06	2 RI 13 0.0	₽81 F 0613 0.	RP82 0613	RP9 0.06	91 RF 13 0.0	-92 0613 (RP01).061	RP(3 0.06	02 13

Figura 6.1. Circuito eléctrico equivalente al tramo 2.9 protegido con un rectificador en un extremo

Los resultados del potencial a tierra y la corriente longitudinal obtenidos, se presentan en la tabla 6.1, con la cual se realizaron las gráficas 6.1 y 6.2, comparándose con los resultados conseguidos en el capitulo anterior, donde se observa que ambos resultados son similares.

x (km)	Potencial OrCAD (V)	Potencial de polarización (V)	Corriente longitudinal (A)
0,00	-1,386	-2,17	93,59
1,40	-0,847	-1,63	57,17
2,80	-0,517	-1,30	34,91
4,20	-0,316	-1,10	21,31
5,60	-0,193	-0,97	13,00
7,00	-0,119	-0,90	7,90
8,40	-0,073	-0,85	4,77
9,80	-0,046	-0,83	2,82
11,20	-0,031	-0,81	1,56
12,60	-0,023	-0,80	0,70
14,00	-0,020	-0,80	0,00

Tabla 6.1. Potencial de polarización y corriente longitudinal a lo largo del tramo 2.9

Potencial de polarización

Gráfica 6.1. Potencial de polarización a lo largo del tramo 2.9

Corriente longitudinal

Gráfica 6.2. Corriente longitudinal a lo largo del tramo 2.9

6.2. Sistema de protección catódica con un rectificador ubicado en cualquier punto a lo largo de toda la tubería

Para la modelación de un tramo protegido con un rectificador ubicado en un punto cualquiera a lo largo de la tubería, se dividió el tramo en dos, la primera parte hacia la izquierda del rectificador, y la otra hacia la derecha del mismo. Cada una de estas partes fue seccionada en 10 fracciones de igual longitud.

Las expresiones utilizadas para la obtención de los valores de Z e Y / 2 son 6.1 y 6.2, respectivamente. Donde x es la longitud de cada una de las partes dividida por 10, x = D / 10 y x = (L - D) / 10.

De igual manera que en punto anterior, en esta parte se estudió el tramo 2.9, obteniéndose $Z = 2,6 \text{ m}\Omega \text{ e } Y / 2 = 5,81 \text{ S}$ para la parte de longitud D = 4,9 km y $Z = 4,8 \text{ m}\Omega \text{ e } Y / 2 = 10,72 \text{ S}$ para la parte de longitud L - D = 9,1 km.

· · · · · ·																									
··F	RS10 ·	RS19	RS18	RS17	RS16	RS15	RS14	· RS13	- RS12	RS11			RS	21 [.] F	RS22 ·	RS23	RS24	RS25	RS2	8 RS	27	RS28	RS29	RS2	0 · ·
0	0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0020	\$		0.0	048 0	0048	0.0048	0.0048	0.0048	0.004	8 0.0	048 0	0.0048	0.0048	0.00	48
t.	^///_ †	-^///				t.~~~-	t.~~~	t-^///-	t.~~~	t.~~	t	. 1-		t.	^///_ ↑	-~~~-	<u></u>	t.~~~	t.~^	⊂ t _V	<u></u>	-^////	<u> </u>	t.'''	۲ .
1. \$ 1	≶		§}	§}	§}	§;	≶	≶	≨	§	≶ · V1·	1	=≶…	≶ .		3	§ ;	≶	≶	· ≶ ·	… ≶		§ ;	≨	. <u>≶</u> .
	<u> </u>				<u> </u>] ']]]]	30.54	/ +	<u></u>	· .] .	<u> </u>]]	<u></u>	\sim]	<u></u> .
노											· · RA	· 5													나는
											0.311	5 ≶													
RP10) RP	190 RP	189 RF	'178 RF	'167 RF	2156 RF	P145 RI	P134 RI	P123 R	P112 F	RP11	1	RP21	RP212	2 RP2	23 RP	234 RF	245 RI	P256 F	RP267	RP2	78 RP2	289 RF	290	RP20
0.172	2 0.08	361 0.0	861 0.0	861 0.0	861 0.0	861 0.0	0861 0.0	0861 0.0	0861 0.	0861 0	1722	ΞL	0.0933	0.046	7 0.04	67 0.0	467 0.0	467 0	0467 0	0.0467	0.04	67 0.0	467 0.0)467	0.0933

Figura 6.2. Circuito eléctrico equivalente al tramo 2.9 protegido con un rectificador ubicado en cualquier punto de la tubería

Los resultados arrojados se muestran en la tabla 6.2, con la cual se realizaron las gráficas 6.3 y 6.4 observándose la similitud de los resultados obtenidos con la hoja de cálculo y con la simulación en OrCAD.

x (km)	Potencial OrCAD (V)	Potencial de polarización (V)	Corriente longitudinal (A)
0,00	-0,251	-1,03	0,00
0,49	-0,255	-1,04	2,94
0,98	-0,266	-1,05	5,96
1,47	-0,286	-1,07	9,16
1,96	-0,314	-1,09	12,64
2,45	-0,351	-1,13	16,50
2,94	-0,400	-1,18	20,86
3,43	-0,460	-1,24	25,85
3,92	-0,534	-1,31	31,63
4,41	-0,624	-1,40	38,36
4,90	-0,733	-1,51	46,24
4,90	-0,733	-1,51	49,45
5,81	-0,534	-1,31	35,88
6,72	-0,389	-1,17	26,00
7,63	-0,284	-1,06	18,79
8,54	-0,209	-0,99	13,51
9,45	-0,154	-0,93	9,63
10,36	-0,116	-0,90	6,73
11,27	-0,090	-0,87	4,52
12,18	-0,073	-0,85	2,78
13,09	-0,063	-0,84	1,32
14,00	-0,060	-0,84	0,00

Tabla 6.2. Potencial de polarización y corriente longitudinal a lo largo del tramo 2.9

Potencial de polarización

Gráfica 6.3. Potencial de polarización a lo largo del tramo 2.9

Corriente longitudinal

Gráfica 6.4. Corriente longitudinal a lo largo del tramo 2.9

6.3. Sistema de protección catódica con dos rectificadores iguales ubicados en ambos extremos de la tubería

En este último caso se seccionó el tramo de tubería a estudiar en 20 partes de igual longitud, obteniendo los valores de Z e Y / 2 con las expresiones 6.1 y 6.2, respectivamente, donde x = L / 20.

El tramo estudiado en esta parte es el tramo 2.14, donde la resistencia característica es $R_C = 980 \ \mu\Omega$ y la constante de atenuación es $\alpha = 5,33 \ x \ 10^{-3} \ m^{-1}$. Entonces, la resistencia del modelo es $Z = 404,6 \ m\Omega$ y la conductancia es $Y/2 = 1020,35 \ S$.

			RS1	RS2	RS	3 : : F	RS4	RS5	RS6	RS7	RS8	RS9	RS10	RS11	RS12	RS13	RS14	RS15	RS16	RS17	RS18	RS19	RS20		
			0.4046	0.404	6 0.40	46 0	4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046	0.4046		
		<u>_</u>	<u> </u>	€_^^^	<u> </u>	^ <u>,</u> †	^^^^	-///-	<u>+</u> -^^//	€- ¹ ///	€_^^///	<u>_</u> ^^^	<u>€</u> -^^/,	<u></u>	<u></u>	€-^^//~	€_^^///	<u>_</u> ^^//			<u></u>	€-^^^~-	<u></u>]-Ľ
2(V1 0.01V	<u> </u>		≦::	i ≨ ∷	1			≨::::	≨::::	≨::::	≨:::: 1	≨::::	≨:::: 1	≨::::	≶:::: 1	≨:::ª				≶:::: 1	Si i i		20:01V	+
	RA1	I. ≶				÷								<u>I</u>										RA2	
	1.0709		P0 F	RP1 0005 0	RP2 0005	RP3 0,000	3 RI 5 0.00	P4 : F 005 : 0,0	P5 F 005 0.0	RP6 : F	P7 : R 005 0.0	P8 F 005 0.0	RP9 RF	005 0.0	005 0.0	12 RF	913 RP	14 RP	15 RP 005 0.0	16 RP	17 RF	18 RP	19 RP	20	ĺ

Figura 6.3. Circuito eléctrico equivalente al tramo 2.14 protegido con dos rectificador ubicados en ambos extremos

La tabla 6.3 presenta los valores del potencial de polarización y la corriente longitudinal a lo largo del tramo 2.14, según la simulación utilizando el programa OrCAD.

x (km)	Potencial OrCAD (V)	Potencial de polarización (V)	Corriente longitudinal (A)
0,00	-0,278	-1,06	278,32
1,26	0,000	-0,78	0,69
2,52	0,000	-0,78	0,00
3,78	0,000	-0,78	0,00
5,04	0,000	-0,78	0,00
6,30	0,000	-0,78	0,00
7,56	0,000	-0,78	0,00
8,82	0,000	-0,78	0,00
10,08	0,000	-0,78	0,00
11,34	0,000	-0,78	0,00
12,60	0,000	-0,78	0,00
13,86	0,000	-0,78	0,00
15,12	0,000	-0,78	0,00
16,38	0,000	-0,78	0,00
17,64	0,000	-0,78	0,00
18,90	0,000	-0,78	0,00
20,16	0,000	-0,78	0,00
21,42	0,000	-0,78	0,00
22,68	0,000	-0,78	0,00
23,94	0,000	-0,78	0,69
25,20	-0,278	-1,06	278,32

Tabla 6.3. Potencial de polarización y corriente longitudinal a lo largo del tramo 2.14

Con esta tabla se crearon las gráficas del potencial y la corriente, 6.5 y 6.6, respectivamente, en las cuales se observa la igualdad entre los resultados obtenidos utilizando le hoja de cálculo y los obtenidos mediante OrCAD.

Potencial de polarización

Gráfica 6.5. Potencial de polarización a lo largo del tramo 2.14

Potencial de polarización

Gráfica 6.6. Corriente longitudinal a lo largo del tramo 2.14

CONCLUSIONES

- En el diseño de la protección catódica no se toma en cuenta la variación del potencial ni la disminución de la corriente que se presenta a lo largo del recorrido de la tubería, pudiendo ser estas importantes, en ocasiones, de tal forma que la tubería podría no estar bien protegida contra la corrosión. En este proyecto se evidenció que existen parámetros, como el área de la sección de la tubería y la resistividad del acero, que no se toman en cuenta para dicho diseño y tienen relevancia en la distribución de tensión y corriente en la tubería.
- Se observó en las gráficas del potencial de polarización que a medida que el revestimiento se envejece, la polarización de la estructura disminuye, es decir, la estructura necesita que el generador/rectificador entregue un valor de tensión más alto, lo cual era de esperarse.
- El sistema de protección catódica hace que la estructura se polarice, provocando que la variación del potencial cuando se envejece el revestimiento sea menor que el observado en el modelo. Por lo tanto, el modelo es más preciso en tuberías desnudas y en los primeros años de instalación de tuberías revestidas.
- La ubicación del rectificador en un punto más centrado del tramo a proteger disminuye el requerimiento de tensión, y por ende de corriente, debido a que el potencial tiene un comportamiento exponencial.
- La óptima ubicación del rectificador/generador, para requerir el mínimo valor de tensión y en consecuencia, de corriente y potencia, cuando la protección se

va a realizar con un sólo rectificador, es en el centro de la estructura a proteger.

 La representación de la tubería utilizando OrCAD arroja los mismos resultados que al utilizarse la hoja de cálculo realizada, facilitando esta última la obtención de los valores de potencial a tierra y corriente longitudinal en una mayor cantidad de puntos.

RECOMENDACIONES

- Se recomienda volver a hallar las curvas de potencial y corriente, luego de realizadas las mediciones de la resistividad del suelo y el estudio de sus características, para obtener resultados más precisos.
- Se recomienda validar los resultados obtenidos, realizando mediciones del potencial a tierra en diversos puntos de la tubería protegida, una vez esta esté constituida.
- Se recomienda proteger los tramos subacuáticos del sistema de transporte de hidrocarburos, mediante protección catódica por ánodos galvánicos, ya que según los resultados arrojados por este trabajo, de protegerse con corriente impresa, se requeriría instalar generadores/rectificadores capaces de entregar cantidades muy grandes de corriente.
- Se recomienda utilizar los rectificadores existentes, para la implementación del sistema de protección catódica, dándole prioridad a los ubicados más hacia el centro de cada tramo. Así como también se recomienda ubicar en el centro de los tramos, los nuevos rectificadores que se requieran.
- Se recomienda regular la tensión de salida de los rectificadores, para no sobreproteger la estructura y no entregar más potencia de la requerida.

REFERENCIAS BIBLIOGRÁFICAS

- Tefankjian, D. Aplication of cathodic protection, Texas Eastern Transmission Corporation. Vol. 11. Nº 11. 1972. p.p. 131-133.
- [2] Goldin, J. Protección Catódica, (Libro). 1989. Tema 1. p.p. 3-12.
- [3] Uhlig, H. Corrosión y control de corrosión, (Libro). Bilbao. Editorial Urmo.
 1979. p.p. 208-209.
- [4] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 9-10.
- [5] Stevenson, G. Análisis de Sistemas de Potencia, (Libro). México, Mc Graw-Hill, 1996. p.p. 190-192.
- [6] Skilling, H. *Electric Transmission Lines*, (Libro). New York: McGraw-Hill. 1951. p.p. 1-13.
- [7] Tosato, Fabio. Impianti elettrici di protezione catodica per reti complesse di strutture interrate, – L'Energia Electtrica. Nº 4. 1986. p.p. 166.
- [8] Stevenson, G. Análisis de Sistemas de Potencia, (Libro). México, Mc Graw-Hill, 1996. p.p. 194-195.
- [9] Stevenson, G. Análisis de Sistemas de Potencia, (Libro). México, Mc Graw-Hill, 1996. p.p. 199-201.
- [10] Ferrari, R. An introduction to Electromagnetic Fields, (Libro). London: Van Nostrand Reinhold Company LTD. 1975. p.p. 177-178.
- [11] Goldin, J. Protección Catódica, (Libro). 1989. Tema 7. p.p. 1.
- [12] Nils Malmgren AB. *NM Epoxy Handbook*, (Libro). Sweden: Nils Malmgren AB. 2004. p.p 9.
- [13] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 32.
- [14] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 27.

- [15] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 38.
- [16] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 42.
- [17] Goldin, J. Protección Catódica, (Libro). 1989. Tema 1. p.p. 14-16.
- [18] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 16.
- [19] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 18.
- [20] PDVSA N° EM-28-07/01. Ánodos de aluminio (Al) para protección catódica, (Norma). 1983. p.p. 25.
- [21] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 23.
- [22] PROCAINSA. Consultado el 12 de julio de 2007, de http://www.procainsa.com/products/anodos/anodos2.html.
- [23] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 28.
- [24] PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica, (Norma). 1983. p.p. 40.

BIBLIOGRAFÍA

Libros

Ferrari, R. An Introduction to Electromagnetic Fields. London: Van Nostrand Reinhold Company LTD. 1975.

Goldin, J. Protección Catódica. 1989.

Nils Malmgren AB. NM Epoxy Handbook. 3ra Ed. Sweden: Nils Malmgren AB. 2004.

Skilling, H. Electric Transmission Lines. New York: McGraw-Hill. 1951.

Stevenson, G. Análisis de Sistemas de Potencia. México: Mc Graw-Hill, 1996.

Sunde, E. Earth Conduction Effects in Transmission Systems. Nueva York: D. Van Nostrand Company, Inc., 1949.

Uhlig, H. Corrosión y control de corrosión. Bilbao: Editorial Urmo. 1979.

Normas

PDVSA N° EM-01-00/01. Resina epóxica en polvo para tubería metálica. Venezuela: Petroleos de Venezuela S.A. 1983.

PDVSA N° EM-28-07/01. Ánodos de Aluminio (Al) para protección catódica. Venezuela: Petroleos de Venezuela S.A. 1983.

PDVSA N° EM-28-07/04. Ánodos de Hierro-Silicio-Cromo para protección catódica por corriente impresa. Venezuela: Petroleos de Venezuela S.A. 1983.

PDVSA N° HA-201. Criterios de diseño para sistemas de protección catódica. Venezuela: Petroleos de Venezuela S.A. 1983.

Artículos

Tefankjian, D. Aplication of cathodic protection, Texas Eastern Transmission Corporation. Vol. 11. Nº 11. 1972.

Tosato, F. Impianti electtrici di protezione catodica per reti complesse di strutture interrate. L' Energia Elettrica – N° 4, 1986.

Internet

PROCAINSA. < http://www.procainsa.com/products/anodos/anodos2.html > [Consulta: 2007]

Wikipedia (EEUU). < http://en.wikipedia.org/wiki/Main_Page> [Consulta: 2007]

GLOSARIO

Ánodo: electrodo positivo de una célula electrolítica en el que se produce oxidación o corrosión.

Ánodo galvánico ó ánodo de sacrificio: metal que suministra corriente directa de protección a metales que son más nobles en dicha serie, cuando ambos están acoplados en el electrolito y eléctricamente.

Bacterias sulfatoreductoras: grupo de bacterias presentes en suelos y aguas naturales, pero activas solamente en condiciones anaeróbicas y de pH cerca a neutro.

Cabezal de cables: Longitud del cable principal al cual se conectan los ánodos individuales. Comprende, asimismo, la longitud de cables de los ánodos.

Cátodo: electrodo negativo de una célula electrolítica en el que se produce la reacción de reducción.

Conductancia eléctrica: Medida de la facilidad con que la energía eléctrica fluye por un medio o a través de una barrera.

Corriente impresa: corriente directa suministrada por una fuente de poder externa al componente anódico.

Electrodo de cobre ó sulfato de cobre: electrodo de referencia muy estable, utilizado para medir niveles de protección catódica de un metal. Está formado por una barra de cobre de alta pureza, en contacto electrolítico con una solución saturada de sulfato de cobre.

Electrolito: Medio en el cual se encuentra el ánodo y el cátodo. Sustancia líquida o mezcla, usualmente líquida o sólida, que contiene iones que migran en un campo eléctrico.

Lecho de ánodos vertical: grupo de ánodos instalados en un hoyo vertical, cuya profundidad es menor a 20 m.

Protección catódica: sistema de protección contra la corrosión ampliamente difundido hoy día, tanto en el campo naval como en el de la industria, el cual consiste en obligar a la estructura a funcionar como un cátodo.

Rectificador: elemento o circuito que permite convertir la corriente alterna en corriente continua.

Relleno o backfill: material absorbedor de humedad, de baja resistencia eléctrica, que rodea al ánodo enterrado, utilizado con el propósito de incrementar el área efectiva de contacto con el suelo, y por lo tanto, reducir la resistencia de contacto con el mismo.

Revestimiento ó recubrimiento: material que se aplica sobre la superficie de un metal para aislarlo del medio ambiente o del electrolito.

Tuberías: elementos de diferentes materiales que cumplen la función de permitir el transporte el agua u otros fluidos en forma eficiente.

[ANEXO Nº 1]

En el presente anexo se presentan los valores de densidad de corriente necesarios para proteger estructuras de acero contra la corrosión dependiendo del medio en que se encuentren. [18]

Medio	Densidad de Corriente (mA/m ²)
Suelos *	10 a 30 ⁽¹⁾
Suelos neutro o estéril **	5 a 17
Suelo aereado y seco **	5 a 17
Suelo húmedo	28 a 66
Suelo muy ácido	56 a 170
Suelo con baterías	450
Agua Dulce y Zonas Fangosas ***	11 a 32
Agua Dulce estancada **	56
Agua Dulce en movimiento **	56 a 66
Agua Dulce, turbulenta **	56 a 170
Agua Salada *	50 a 80
Agua Salada en movimiento *	100 a 150
Lago de Maracaibo *	50 a 100
Plataforma Continental Venezolana (agua) *	80
Plataforma Continental Venezolana (barro) *	30

Tabla A1.1. Densidades de corriente requeridas para protección catódica de acero desnudo endiversos medios (@ $T_{ambiente} = 15 \ a \ 25 \ ^{\circ}C$)

* Manual de Protección Catódica: Diseño y Aplicaciones. Jorge Goldin.

*** Cathodic Protection Manual. Royal Dutch / Shell Group

^{**} www.biblioteca.redescolar.ilce.edu.mx. Ciencias química. "Más allá de la herrumbre II".

[ANEXO Nº 2]

El presente anexo presenta el valor de la eficiencia del revestimiento en función del tiempo. [19]

Años de servicio de la instalación	Deterioro del revestimiento (%)
0	1.01
1	1.16
2	1.32
3	1.51
4	1.73
5	1.98
6	2.27
7	2.60
8	2.97
9	3.40
10	3.89
11	4.45
12	5.09
13	5.82
14	6.66
15	7.63
16	8.73
17	9.99
18	11.43
19	13.07
20	14.96

Tabla A2.1. Eficiencia del revestimiento

[ANEXO Nº 3]

En el presente anexo se muestran las dimensiones del ánodo de aluminio tipo brazalete, según las normas *PDVSA*. [20]

Peso	neto X				Dimen	siones	en mm	
kg	(lb)	Tubo D.E.	Revestimiento	т	R	Ls	Lt	G
10,4	(23)	114,3	1,016	38,1	57,1	-	304,8	31,7
15,8	(35)	168,3	2,362	38,1	84,1	-	317,5	31,7
18,6	(41)	168,3	2,362	38,1	84,1	317,5	-	31,7
19,9	(44)	219,1	2,362	38,1	109,5	-	304,8	31,7
22,7	(50)	219,1	2,362	38,1	109,5	304,8	-	31,7
43,1	(95)	273,1	3,962	38,1	140,5	-	508,0	38,1
47,1	(104)	273,1	3,962	38,1	140,5	508,0	-	38,1
46,3	(102)	323,8	3,962	38,1	165,9	-	492,1	38,1
50,8	(112)	323,8	3,962	38,1	165,9	492,1	-	38,1
43,5	(96)	355,6	3,962	38,1	181,7	393,7	-	38,1
60,8	(134)	406,4	3,962	50,8	207,2	355,6	-	38,1
72,6	(160)	457,2	3,962	50,8	232,6	381,0	-	38,1
81,6	(180)	508,0	3,962	50,8	258,0	381,0	-	38,1
86,2	(190)	609,6	3,962	50,8	308,8	355,6	-	38,1
95,2	(210)	660,4	3,962	63,5	334,2	282,6	-	50,8

Figura A3.1. Ánodo de aluminio tipo brazalete

También son presentadas las características de los ánodos de aluminio, entre las cuales se encuentra el consumo promedio anual y su eficiencia, en función del medio en que se encuentren [21].

Aleación	Medio	Consumo (kg/A–año) (1)	Capacidad Teórica (A–h/kg) (2)	Eficiencia (%) (3)	Capacidad Práctica (A–h/kg) (4)
Magnesio					
0.5-1.3% Mn	Suelo/Agua dulce	3,98	2.200	50	1.100
5–7% AI / 2–4% Zn	Suelo/Agua dulce				
Cinc					
0.3-0.5% AI / 0.025-0.1 % Cd	Agua de mar	10,69	820	90-95 (5)	740–780
Aluminio (6)					
0.35–0.5% Zn	Agua de mar				
6-8% Zn/0.102% Sn	Fango de mar	2,94	2.980	85–95	2.540-2.830
2-5%Zn/0.02-0.05%In/0.5-1% Mg	Fango de mar				

Tabla A3.1. Características de los ánodos de sacrificio

[ANEXO Nº 4]

Se incluye en el presente anexo las dimensiones de los ánodos de Hierro – Silicio – Cromo, del fabricante ANOTEC INDUSTRIES LTD. [22]

6					
Тіро	Dimensiones Pulgadas	Peso	Area Nominal	Pesos por ánodo	
ánodo	(mm)	lb.(kg.)	sq. ft. (m2)	Kgs	
SHA	∳ 2" (51) ◀ 60" (1520) →	43 (20 kg)	2.6 (.24)	20	
EHA		44 (20 kg)	2.6 (.24)	21	
EHM	# 3" dia. (76) # 2" dia. (51) # 60" (1520) # # 3" dia. (76) #	60 (27 kg)	2.7 (.25)	28	
EHK	↓ 2" dia. (51) ↓ 1-60" (1520) ↓ 1-1/2" (38)	26 (12 kg)	2.0 (.19)	12	
EHR		110 (50 kg)	4.0 (.37)	50	

Figura A4.1. A	Ánodos de	hierro –	silicio –	cromo
----------------	-----------	----------	-----------	-------

En este también se presentan las propiedades de los ánodos de corriente impresa, según el medio en que se encuentren. [23]

Ánodos de Corriente Impres						
Propiedad	Fe-Si-Cr	Grafito	Niobio platinizado	Lida	Chatarra de acero	MMO
Consumo aproximado (kg/A.año)						
Agua de mar	1.0	N	8.63×10 ^{−6}	0.0005	9.1	
Suelo	1.0	0.20	1×10 ⁻⁸	0.0071	9.1	1x10-8
Fondo del Lago	1.3	N			9.1	
Densidad de corriente Máxima recomendada (mA/cm ²)						
Agua de mar	0.5	N	40	60	L	
Agua dulce	0.5	N	40	11	L	
Suelo	1.0	0.15	0.15	10	0.5	
Voltaje máximo permiti (voltios)	do					
Agua de mar	N/L	N	60	N/L	L	
Agua dulce	N/L	N	N/L	N/L	L	
Suelo	N/L	N/L	N/L	N/L	L	
Factor de utilización Recomendado (F _{utilizac}	_{ción})					
	0.85	0.85	0.90	0.90	0.75	

Tabla A4.1. Propiedades	de los	ánodos	de	corriente	impresa
-------------------------	--------	--------	----	-----------	---------

[ANEXO Nº 5]

En este anexo se presentan los resultados del diseño de la protección catódica por ánodos galvánicos para los tramos subacuáticos, utilizando ánodos de aluminio topo brazalete.

Tramo	1.2	2.14	Unidad
Longitud de la tubería L	44,40	25,20	km
Área total a proteger A_T	92.117,03	52.282,64	m^2
Área efectiva A_P	13.817,55	7.842,40	m ²
Corriente de protección <i>I_P</i>	829,05	470,54	А
Peso del material anódico requerido P_{MAR}	63.723,31	36.167,28	kg
Cantidad de ánodos requeridos N	670	380	piezas
Separación entre ánodos S	66,27	66,32	m
Resistencia de cada ánodo R_A	0,4873	0,0937	ohm

Tabla A5.1. Diseño de protección catódica por ánodos galvánicos

[ANEXO Nº 6]

Los resultados del diseño de la protección catódica por corriente impresa de la ampliación del sistema de transporte de hidrocarburos Bajo Grande – Ulé – Amuay se presentan en este anexo. El diseño se realizó con ánodos de Fe – Si – Cr.

Tramo	Longitud L (km)	Corriente <i>I</i> ₀ (A)	Cantidad de ánodos N	Resistencia $R_A(\Omega)$	Tensión V ₀ (V)
1.1*	0,14	0,98	1	3,4683	5,40
1.2**	44,40	497,43	94	0,1011	52,30
1.3	1,50	10,50	3	1,6453	19,28
2.1	4,60	32,21	9	0,8729	30,11
2.2	10,40	72,82	20	0,3862	30,13
2.3	16,00	112,03	31	0,2731	32,60
2.4	15,40	107,83	30	0,2969	34,01
2.5	16,60	116,24	32	0,2690	33,27
2.6	16,00	112,03	31	0,2731	32,60
2.7	16,00	112,03	31	0,2731	32,60
2.8	10,30	72,12	20	0,3862	29,86
2.9	14,00	98,03	27	0,3115	32,54
2.10	14,20	99,43	27	0,3115	32,97
2.11	24,50	171,55	47	0,1854	33,80
2.12	20,20	141,44	39	0,2298	34,50
2.13	11,80	82,63	23	0,3597	31,72
2.14**	25,20	282,33	54	0,0709	22,01
2.15	2,00	14,00	4	1,3679	21,16
2.16	5,80	40,61	11	0,6812	29,67
2.17	7,00	49,01	14	0,6084	31,82

Tabla A6.1. Diseño de protección catódica por corriente impresa

* El diseño del tramo 1.1 se realizó con ánodos de Fe – Si – Cr tipo EHK, mientras que en los demás tramos se utilizaron ánodos tipo EHR (Anexo 4). ** En los tramos 1.2 y 2.14 el diseño de la protección catódica se realizó colocando dos rectificadores/generadores, uno en cada extremo, ya que como se tratan de tramos subacuáticos largos, requieren de mucha corriente, la cual no podría ser entregada por un sólo rectificador. Los valores de tensión V_0 y corriente I_0 presentados en la tabla anterior son por cada rectificador, y la cantidad de ánodos N y resistencia total del circuito R_A son por cada lecho de ánodos. Recordemos que cuando colocamos dos rectificadores para proteger un tramo, se ubica un lecho de ánodos por cada rectificador. Entonces, los tramos 1.2 y 2.14 requieren un total de 126 y 72 ánodos respectivamente.

[ANEXO Nº 7]

En el diseño de sistemas de protección catódica, es común utilizar cables de cobre aislados con polietileno, recubiertos con PVC (policloruro de vinilo), cuyas dimensiones dependen de la capacidad de corriente requerida. La siguiente tabla presenta los tamaños (calibres) de cables necesarios para diversas cargas de corriente, así como las resistencias correspondientes. [24]

Calibre AWG	Resistencia x 10–3 (ohm/m)	Capacidad de Corriente (A)
18	21.4	5
16	13.4	10
14	8.45	15
12	5.32	20
10	3.342	30
8	2.102	40
6	1.322	55
4	0.8315	70
2	0.5230	95
1	0.4147	110
1/0	0.3288	125
2/0	0.2608	145
3/0	0.2069	165
4/0	0.1640	195

Tabla A7.1. Propiedades de los conductores de cobre (cableado clase b, cobre blando)

[ANEXO Nº 8]

En el presente anexo se realiza la deducción de la expresión 4.11, con la cual se halla el valor de la resistencia del cabezal de cables. Esto se realiza asumiendo que todos los ánodos entregan la misma intensidad de corriente y conociendo la separación entre ellos. De esta manera se puede encontrar la ubicación del centro de carga, y con esta se tiene la longitud del cable equivalente al cabezal de cables.

El centro de carga se halla con la relación entre la sumatoria de las potencias entregadas por cada ánodo, multiplicadas por la longitud del cable y la corriente total. Sin embargo, como la tensión a la que se encuentran los ánodos y la corriente que estos entregan es igual para cada uno de ellos, se tiene

$$L_{eq} = \frac{\sum P_i \cdot L_i}{\sum P_i} = \frac{\sum V_i \cdot I_i \cdot L_i}{\sum V_i \cdot I_i} = \frac{V_i \cdot I_i \cdot \sum L_i}{V_i \cdot I_i \cdot \sum i} = \frac{\sum L_i}{N}$$
(A8.1)

donde:

P_i: potencia que entrega el ánodo *i*

 V_i : tensión a la que se encuentra el ánodo i

 L_{eq} : longitud del cable equivalente al cabezal de cables

 I_i : corriente que entrega el ánodo i

 L_i : longitud de cable que une el ánodo *i* y el punto P_0 (véase figura A8.1) N: cantidad de ánodos

La longitud de cable que une cada ánodo con el punto P_0 , viene dada por la distancia entre el cable principal y los ánodos L_{CA} y la separación S entre estos.

$$L_i = (i-1) \cdot S + L_{CA}$$
 para $i = 1, 2, 3, ..., N$ (A8.2)

Figura A8.1. Disposición de los ánodos en un lecho vertical

Entonces, como se trata de una serie aritmética, la sumatoria de las longitudes de los cables es

$$S_{L} = \sum L_{i} = \left(\frac{N-1}{2} \cdot S + L_{CA}\right) \cdot N$$
(A8.3)

Sustituyendo la expresión A8.3 en A8.1 se tiene

$$L_{eq} = \left(\frac{N-1}{2} \cdot S + L_{CA}\right) \tag{A8.4}$$

Por lo tanto el valor de la resistencia del cabezal de cables R_{CC} se halla multiplicando la longitud equivalente del centro de carga por la resistencia del cable utilizado R_{C} .

$$R_{CC} = \left(\frac{N-1}{2} \cdot S + L_{CA}\right) \cdot R_C \tag{A8.5}$$
[ANEXO Nº 9]

En este anexo se presenta el potencial existente entre distintos electrodos y el electrodo normal de hidrógeno.

Equilibrio metal ión metálico (actividad unitaria)	Potencial de electrodo vs. electrodo normal de hidrógeno (V)
Au - Au ⁺³	1,50
$Pt - Pt^{+2}$	1,20
Ag - Ag ⁺	0,80
Cu - Cu ⁺²	0,34
H2 - H ⁺	0,00
Pb - Pb ⁺²	-0,13
Fe - Fe ⁺²	-0,44
$Cr - Cr^{+3}$	-0,74
$Zn - Zn^{+2}$	-0,76
Al - Al ⁺³	-1,66
Mg - Mg ⁺²	-2,36

Tabla A9.1. Potencial de distintos electrodos vs. el electrodo normal de hidrógeno

[ANEXO Nº 10]

El presente anexo muestra la hoja de cálculo realizada en Excel, que se empleó para hallar las curvas del potencial de polarización y la corriente longitudinal. Las ecuaciones utilizadas en estos documentos son las expresadas en los capítulos II y V, y se debe ingresar como datos las dimensiones de la tubería, las propiedades del revestimiento y los resultados del diseño del sistema de protección catódica, tal como se explicó en estos capítulos.

Se realizaron tres documentos, el primero proporciona las curvas antes mencionadas de un sistema de protección catódica por corriente impresa, donde se tiene un sólo rectificador en uno de los extremos del tramo de tubería a proteger. En la primera hoja de este documento se piden los datos necesarios del tramo, como se observa en la figura A10.1.

	А	В	С	
1	Datos	Valor	Unidad	
2	Desde	km	106	
3	Hasta	km	119	
4	Resistividad del medio ρ_m	2000	ohm.cm	
5	Longitud del tramo de tubería L	14	km	
6	Tensión del rectificador V _R	32,54	V	
7	Resistencia total de ánodos y cables R_A	0,3115	ohm	
8	Diámetro del tubo D	26	pulgadas	
9	Profundidad del tubo h	1,2	m	
10	Resistividad del revestimiento ρ_C	1	petaohm.cm	
11	Grosor del revestimiento	14	mils	
12	Grosor de la tubería	0,5	pulgadas	
13	Resistividad del material del tubo ρ_t	1,35E-07	ohm.m	
	Datos / Calculos / Potencial / Corriente / 1	Х		·

Figura A10.1. Hoja de datos para la protección con un rectificador en el extremo

La segunda hoja, es la hoja de cálculos, en la cual se presentan los valores de la tensión y corriente en el punto de contacto del rectificador, así como cada una de los parámetros necesarios para obtener las curvas. También se muestran los valores del potencial a tierra y la corriente longitudinal en el punto menos protegido de la estructura, para diferentes valores de la eficiencia del revestimiento (véase figura A10.2).

	А	Alinea el texto a la derecl	na.	D	E	F	
1	Cálculos	Valor	Unidad				
2	Radio externo de la tubería r 1	0,3302	m				
3	Radio interno de la tubería r_2	0,3175	m				
4	Radio exterior más el revestimiento r c	0,3306	m				
5	Resistencia longitudinal r _t	5,22E-06	ohm/m				
6	Conductancia de la zona desnuda g d	1,58E-01	mho/m				
7	Conductancia de la zona recubierta g ,	5,84E-10	mho/m				. 1
8		Potencial y Corr	iente inicial				
9	Cálculos/Eficiencia revestimiento	99%	95%	90%	85%	Unidad	
10	Conductancia g ,	1,58E-03	7,92E-03	1,58E-02	2,38E-02	mho/m	
11	Resist. característica R _C	5,74E-02	2,57E-02	1,82E-02	1,48E-02	ohm	
12	Ctte. de atenuación α	9,10E-05	2,03E-04	2,88E-04	3,52E-04	1/m	
13	Resistencia de la tubería R _{tub}	0,0672	0,0259	0,0182	0,0148	ohm	
14	Potencial inicial V ₀	-6,20	-3,12	-2,46	-2,17	V	
15	Corriente inicial I ₀	-80,65	-90,53	-92,64	-93,59	А	
16	Pun	ito menos protegi	do de la tuber	ía			
17	Cálculos/Eficiencia revestimiento	99%	95%	90%	85%	Unidad	
18	Distancia x	14,00	14,00	14,00	14,00	km	
19	Potencial a tierra V(x)	-3,59	-1,05	-0,84	-0,80	V	
20	Corriente I(x)	0,00	0,00	0,00	0,00	А	
21	Densidad de corriente J	2,15	1,03	0,46	0,23	mA/m ²	
22	Rectificador necesario V _R	3,85	21,19	88,53	261,38	V	
23							
14 4	▶ ▶ Datos Calculos Potencial / Corriente / *	7			I 4		

Figura A10.2. Hoja de cálculos para la protección con un rectificador en el extremo

En las últimas dos hojas del documento se muestran las gráficas del potencial a tierra y la corriente longitudinal, las cuales fueron presentadas en el capitulo V.

Con el segundo documento se pueden hallar las curvas para tramos de tubería protegidos con un rectificador ubicado en cualquier punto a lo largo de la estructura. Al igual que el anterior, este consta de cuatro hojas, las cuales son de datos, cálculos y gráficas (véase figuras A10.3 y A10.4). En la primera hoja se debe especificar la ubicación del rectificador.

	А	В	С	
1	Datos	Valor	Unidad	
2	Desde	km	106	
3	Hasta	km	119	
4	Resistividad del medio ρ_m	2000	ohm.cm	
5	Longitud del tramo de tubería L	14	km	
6	Ubicación del rectificador D	4,9	km	
7	Tensión del rectificador V_R	32,54	V	
8	Resistencia total de ánodos y cables R_A	0,3115	ohm	
9	Diámetro del tubo D	26	pulgadas	
10	Profundidad del tubo h	1,2	m	
11	Resistividad del revestimiento ρ_c	1	petaohm.cm	
12	Grosor del revestimiento	14	mils	
13	Grosor de la tubería	0,5	pulgadas	
14	Resistividad del material del tubo ρ_t	1,35E-07	ohm.m	
	Datos Calculos Potencial Corriente 1			

Figura A10.3. Hoja de datos para la protección con un rectificador en un punto cualquiera a lo largo del tramo de tubería

	А	В	С	D	E	F
1	Cálculos	Valor	Unidad			
2	Radio externo de la tuberia r ₁	0,3302	m			
3	Radio interno de la tuberia r_2	0,3175	m			
4	Radio exterior más el revestimiento r c	0,3306	m			
5	Resistencia longitudinal r,	5,22E-06	ohm/m			
6	Conductancia de la zona desnuda g _d	1,58E-01	mho/m			
7	Conductancia de la zona recubierta g _r	5,84E-10	mho/m			
8		Potencial y Co	orriente inicial			
9	Cálculos/Eficiencia revestimiento	99%	95%	90%	85%	Unidad
10	Conductancia g _t	1,58E-03	7,92E-03	1,58E-02	2,38E-02	mho/m
11	Resist. caracteristica R _C	5,74E-02	2,57E-02	1,82E-02	1,48E-02	ohm
12	Ctte. de atenuación α	9,10E-05	2,03E-04	2,88E-04	3,52E-04	1/m
13	Resistencia de la tuberia R _{tubl}	0,1373	0,0338	0,0205	0,0158	ohm
14	Resistencia de la tuberia R tub2	0,0845	0,0270	0,0184	0,0149	ohm
15	Potencial inicial V ₀	-5,17	-2,18	-1,70	-1,51	V
16	Corriente inicial I 0	-83,94	-93,54	-95,09	-95,69	А
17	Corriente inicial tramo 1 I1	-31,99	-41,53	-44,96	-46,41	A
18	Corriente inicial tramo 2 I2	-51,95	-52,00	-50,13	-49,28	А
19	P	unto menos prot	egido de la tuberi	ia		
20	Cálculos/Eficiencia revestimiento	99%	95%	90%	85%	Unidad
21	Distancia x	14,00	14,00	14,00	14,00	km
22	Potencial a tierra $V(x)$	-4,00	-1,21	-0,91	-0,84	V
23	Corriente I(x)	0,00	0,00	0,00	0,00	А
24	Densidad de corriente J	2,46	1,64	1,02	0,68	mA/m ²
25	Rectificador necesario V _R	3,61	14,07	40,86	89,52	V
26	G v M Datos Calculos Potencial Corriente /♥□					

Figura A10.4. Hoja de cálculos para la protección con un rectificador en un punto cualquiera a lo largo del tramo de tubería

Finalmente, el último documento sirve para tramos protegidos con dos rectificadores ubicados en ambos extremos de la estructura, y está estructurado de igual manera que los dos documentos anteriores (véase figuras A10.5 y A10.6).

	А	В	С
1	Datos	Valor	Unidad
2	Desde	km	190
3	Hasta	km	215
4	Resistividad del medio ρ_m	25	ohm.cm
5	Longitud del tramo de tubería L	25,2	km
6	Tensión del rectificador V_R	22,01	V
7	Resistencia total de ánodos y cables R_A	0,0709	ohm
8	Diámetro del tubo D	26	pulgadas
9	Profundidad del tubo h	lecho marino	m
10	Resistividad del revestimiento ρ_c	1	petaohm.cm
11	Grosor del revestimiento	14	mils
12	Grosor de la tubería	0,5	pulgadas
13	Resistividad del material del tubo ρ_t	1,35E-07	ohm.m
	Datos Calculos / Potencial / Corriente / 🐑		

Figura A10.5. Hoja de datos para la protección con dos rectificadores en los extremos

	А	В	С	D	E	F
1	Cálculos	Valor	Unidad			
2	Radio externo de la tubería r 1	0,3302	m			
3	Radio interno de la tubería r_2	0,3175	m			
4	Radio exterior más el revestimiento r_{C}	0,3306	m			
5	Resistencia longitudinal r _t	5,22E-06	ohm/m			
6	Conductancia de la zona desnuda g_d	3,63E+01	mho/m			
7	Conductancia de la zona recubierta g ,	5,84E-10	mho/m			
8	.0.910	Potencial y Co	rriente inicial		-	
9	Cálculos/Eficiencia revestimiento	99%	95%	90%	85%	Unidad
10	Conductancia g t	3,63E-01	1,81E+00	3,63E+00	5,44E+00	mho/m
11	Resist. característica R _C	3,80E-03	1,70E-03	1,20E-03	9,80E-04	ohm
12	Ctte. de atenuación α	1,38E-03	3,08E-03	4,35E-03	5,33E-03	1/m
13	Resistencia de la tubería R _{tub}	0,0038	0,0017	0,0012	0,0010	ohm
14	Potencial inicial V ₀	-1,80	-1,25	-1,11	-1,05	V
15	Corriente inicial I ₀	-267,89	-275,63	-277,53	-278,38	A
16	Pu	nto menos prot	egido de la tub	ería		
17	Cálculos/Eficiencia revestimiento	99%	95%	90%	85%	Unidad
18	Distancia x	12,60	12,60	12,60	12,60	km
19	Potencial a tierra $V(x)$	-0,78	-0,78	-0,78	-0,78	V
20	Corriente I(x)	0,00	0,00	0,00	0,00	A
21	Densidad de corriente J	0,00	0,00	0,00	0,00	mA/m ²
22	Rectificador necesario V _R	56.357.047,02	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!	V
14 4	H Datos Calculos Potencial Corriente 12	7				

Figura A10.6. Hoja de cálculos para la protección con dos rectificadores en los extremos

[ANEXO Nº 11]

En el presente anexo se presentan las gráficas que resultan de la hoja de cálculo realizada, para cada uno de los tramos de la ampliación del sistema de hidrocarburos Bajo Grande – Ulé – Amuay, no presentados en el capítulo V.

Como se vio en dicho capítulo y teniendo en cuenta los resultados del diseño de la protección catódica (tabla A6.1) y la ubicación de los rectificadores (tabla 3.2), se obtuvieron las gráficas de potencial de polarización y corriente longitudinal de cada uno de los tramos.

Tomando en cuenta la ubicación de los rectificadores existentes y la disponibilidad de electricidad, se plantearon los tramos, protegiéndolos colocando un sólo rectificador en un extremo o en un punto a lo largo del tramo o colocando dos rectificadores, según sea el caso.

En cada una de las gráficas se presentan las curvas realizando la protección con la tensión especificada en el diseño del sistema de protección catódica para diferentes valores de la eficiencia del revestimiento.

A11.1 Tramo 1.1

Datos	Valor	Unidad
Desde	Bajo Gi	ande
Hasta	Costa occident	tal del Lago
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	0,14	km
Tensión del rectificador V_R	5,4	V
Resistencia total de ánodos y cables R_A	3,4683	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.1. Datos del tramo 1.1 protegido con un rectificador en un extremo

Gráfica A11.1. Potencial de polarización del tramo 1.1 protegido con un rectificador en un extremo

Gráfica A11.2. Corriente longitudinal del tramo 1.1 protegido con un rectificador en un extremo

A11.2 Tramo 1.2

Datos	Valor	Unidad
Desde	Costa occiden	tal del Lago
Hasta	Costa orienta	ıl del Lago
Resistividad del medio ρ_m	130	ohm.cm
Longitud del tramo de tubería L	44,4	km
Tensión del rectificador V_R	52,3	V
Resistencia total de ánodos y cables R_A	0,1011	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	lecho marino	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.2. Datos del tramo 1.2 protegido con dos rectificadores en los extremos

Potencial de polarización

Gráfica A11.3. Potencial de polarización del tramo 1.2 protegido con dos rectificadores en los

extremos

Gráfica A11.4. Corriente longitudinal del tramo 1.2 protegido con dos rectificadores en los extremos

A11.3 Tramo 1.3

Datos	Valor	Unidad
Desde	Costa orienta	l del Lago
Hasta	Ulé	Ş
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	1,5	km
Tensión del rectificador V_R	19,28	V
Resistencia total de ánodos y cables R_A	1,6453	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.3. Datos del tramo 1.3 protegido con un rectificador en un extremo

Gráfica A11.5. Potencial de polarización del tramo 1.3 protegido con un rectificador en un extremo

Gráfica A11.6. Corriente longitudinal del tramo 1.3 protegido con un rectificador en un extremo

A11.4 Tramo 2.1

Datos	Valor	Unidad
Desde	km	0
Hasta	km 4	1,6
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	4,6	km
Tensión del rectificador V_R	30,11	V
Resistencia total de ánodos y cables R_A	0,8729	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.4. Datos del tramo 2.1 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.7. Potencial de polarización del tramo 2.1 protegido con un rectificador en un extremo

Gráfica A11.8. Corriente longitudinal del tramo 2.1 protegido con un rectificador en un extremo

En el km 2 se tiene electricidad disponible (véase tabla 3.2), por lo tanto, de ubicarse en este lugar un rectificador para proteger este tramo, se tienen los siguientes resultados.

Potencial de polarización

Gráfica A11.9. Potencial de polarización del tramo 2.1 protegido con un rectificador en el km 2

Gráfica A11.10. Corriente longitudinal del tramo 2.1 protegido con un rectificador en el km 2

A11.5 Tramo 2.2

Datos	Valor	Unidad
Desde	km 4,6 (Pla	nta GLP)
Hasta	km 1	15
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	10,4	km
Ubicación del rectificador D	4	km
Tensión del rectificador V_R	30,13	V
Resistencia total de ánodos y cables R_A	0,3862	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_c	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.5. Datos del tramo 2.2 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.11. Potencial de polarización del tramo 2.2 protegido con un rectificador en un

extremo

Gráfica A11.12. Corriente longitudinal del tramo 2.2 protegido con un rectificador en un extremo

A11.6 Tramo 2.3

Datos	Valor	Unidad
Desde	km 15	
Hasta	km 31	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	16	km
Ubicación del rectificador D	2,3	km
Tensión del rectificador V_R	32,6	V
Resistencia total de ánodos y cables R_A	0,2731	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.6. Datos del tramo 2.3 protegido con un rectificador en el km 17

Potencial de polarización

Gráfica A11.13. Potencial de polarización del tramo 2.3 protegido con un rectificador en el km 17

Gráfica A11.14. Corriente longitudinal del tramo 2.3 protegido con un rectificador en el km 17

En este tramo también se tiene un rectificador en el km 24, el cual puede ser utilizado para su protección catódica (véase tabla 3.2). Las siguientes gráficas presentan los resultados para este caso.

Potencial de polarización

Gráfica A11.15. Potencial de polarización del tramo 2.3 protegido con un rectificador en el km 24

Gráfica A11.16. Corriente longitudinal del tramo 2.3 protegido con un rectificador en el km 24

A11.7 Tramo 2.4

Datos	Valor	Unidad
Desde	km 31	
Hasta	km 47	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	15,4	km
Tensión del rectificador V_R	34,01	V
Resistencia total de ánodos y cables R_A	0,2969	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.7. Datos del tramo 2.4 protegido con un rectificador en un extremo

Gráfica A11.17. Potencial de polarización del tramo 2.4 protegido con un rectificador en un extremo

Gráfica A11.18. Corriente longitudinal del tramo 2.4 protegido con un rectificador en un extremo

Como también se tiene un rectificador en el km 34, que cumple con las especificaciones necesarias (véase tabla 3.2), la protección catódica de este tramo se puede realizar con dicho rectificador, obteniéndose las siguientes gráficas.

Potencial de polarización

Gráfica A11.19. Potencial de polarización del tramo 2.4 protegido con un rectificador en el km 34

Corriente longitudinal

Gráfica A11.20. Corriente longitudinal del tramo 2.4 protegido con un rectificador en el km 34

A11.8 Tramo 2.5

Datos	Valor	Unidad
Desde	km 47	
Hasta	km 63	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	16,6	km
Tensión del rectificador V_R	33,27	V
Resistencia total de ánodos y cables R_A	0,269	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.8. Datos del tramo 2.5 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.21. Potencial de polarización del tramo 2.5 protegido con un rectificador en un extremo

Gráfica A11.22. Corriente longitudinal del tramo 2.5 protegido con un rectificador en un extremo

De protegerse este tramo del sistema de transporte con el rectificador ubicado en el km 58 (véase tabla 3.2), se tienen las siguientes gráficas.

Potencial de polarización

Gráfica A11.23. Potencial de polarización del tramo 2.5 protegido con un rectificador en el km 58

Corriente longitudinal

Gráfica A11.24. Corriente longitudinal del tramo 2.5 protegido con un rectificador en el km 58

A11.9 Tramo 2.6

Datos	Valor	Unidad
Desde	km 63	
Hasta	km 79	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	16	km
Tensión del rectificador V_R	32,6	V
Resistencia total de ánodos y cables R_A	0,2731	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.9. Datos del tramo 2.6 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.25. Potencial de polarización del tramo 2.6 protegido con un rectificador en un extremo

Gráfica A11.26. Corriente longitudinal del tramo 2.6 protegido con un rectificador en un extremo

A11.10 Tramo 2.7

Datos	Valor	Unidad
Desde	km 79	
Hasta	km 95	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	16	km
Tensión del rectificador V_R	32,6	V
Resistencia total de ánodos y cables R_A	0,2731	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.10. Datos del tramo 2.7 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.27. Potencial de polarización del tramo 2.7 protegido con un rectificador en un extremo

Gráfica A11.28. Corriente longitudinal del tramo 2.7 protegido con un rectificador en un extremo

A11.11 Tramo 2.8

Datos	Valor	Unidad
Desde	km 95	
Hasta	km 106	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	10,3	km
Tensión del rectificador V_R	29,86	V
Resistencia total de ánodos y cables R_A	0,3862	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.11. Datos del tramo 2.8 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.29. Potencial de polarización del tramo 2.8 protegido con un rectificador en un extremo

Gráfica A11.30. Corriente longitudinal del tramo 2.8 protegido con un rectificador en un extremo

A11.12 Tramo 2.10

Datos	Valor	Unidad	
Desde	km 119		
Hasta	km 1	km 134	
Resistividad del medio ρ_m	2000	ohm.cm	
Longitud del tramo de tubería L	14,2	km	
Ubicación del rectificador D	8,5	km	
Tensión del rectificador V_R	32,97	V	
Resistencia total de ánodos y cables R_A	0,3115	ohm	
Diámetro del tubo D	26	pulgadas	
Profundidad del tubo h	1,2	m	
Resistividad del revestimiento ρ_C	1	petaohm.cm	
Grosor del revestimiento	14	mils	
Grosor de la tubería	0,5	pulgadas	
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m	

Tabla A11.12. Datos del tramo 2.10 protegido con un rectificador en el km 128

Potencial de polarización

Gráfica A11.31. Potencial de polarización del tramo 2.10 protegido con un rectificador en el km 128

Gráfica A11.32. Corriente longitudinal del tramo 2.10 protegido con un rectificador en el km 128

A11.13 Tramo 2.11

Datos	Valor	Unidad
Desde	km 134	
Hasta	km 158	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	24,5	km
Ubicación del rectificador D	10,2	km
Tensión del rectificador V_R	33,8	V
Resistencia total de ánodos y cables R_A	0,1854	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.13. Datos del tramo 2.11 protegido con un rectificador en el km 145

Gráfica A11.33. Potencial de polarización del tramo 2.11 protegido con un rectificador en el km 145

Gráfica A11.34. Corriente longitudinal del tramo 2.11 protegido con un rectificador en el km 145

A11.14 Tramo 2.12

Datos	Valor	Unidad	
Desde	km 158		
Hasta	km 1	km 179	
Resistividad del medio ρ_m	2000	ohm.cm	
Longitud del tramo de tubería L	20,2	km	
Tensión del rectificador V_R	34,5	V	
Resistencia total de ánodos y cables R_A	0,2298	ohm	
Diámetro del tubo D	26	pulgadas	
Profundidad del tubo h	1,2	m	
Resistividad del revestimiento ρ_C	1	petaohm.cm	
Grosor del revestimiento	14	mils	
Grosor de la tubería	0,5	pulgadas	
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m	

Tabla A11.14. Datos del tramo 2.12 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.35. Potencial de polarización del tramo 2.12 protegido con un rectificador en un extremo

Gráfica A11.36. Corriente longitudinal del tramo 2.12 protegido con un rectificador en un extremo

En este tramo se tiene en el km 162, un rectificador que cumple con las especificaciones para protegerlo (véase tabla 3.2), con el cual se obtienen las siguientes gráficas.

Potencial de polarización

Gráfica A11.37. Potencial de polarización del tramo 2.12 protegido con un rectificador en el km 162

Gráfica A11.38. Corriente longitudinal del tramo 2.12 protegido con un rectificador en el km 162

También se tiene un rectificador en el km 172, con el cual se puede proteger el presente tramo (véase la tabla 3.2), de ser así se tienen los siguientes resultados.

Potencial de polarización

Gráfica A11.39. Potencial de polarización del tramo 2.12 protegido con un rectificador en el km 172

Gráfica A11.40. Corriente longitudinal del tramo 2.12 protegido con un rectificador en el km 172
A11.15 Tramo 2.13

Datos	Valor	Unidad
Desde	km 179	
Hasta	km 190	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	11,8	km
Tensión del rectificador V_R	31,72	V
Resistencia total de ánodos y cables R_A	0,3597	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.15. Datos del tramo 2.13 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.41. Potencial de polarización del tramo 2.13 protegido con un rectificador en un extremo

Corriente longitudinal

Gráfica A11.42. Corriente longitudinal del tramo 2.13 protegido con un rectificador en un extremo

A11.16 Tramo 2.15

Datos	Valor	Unidad
Desde	km 215	
Hasta	km 217	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	2	km
Tensión del rectificador V_R	21,16	V
Resistencia total de ánodos y cables R_A	1,3679	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.16. Datos del tramo 2.15 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.43. Potencial de polarización del tramo 2.15 protegido con un rectificador en un extremo

Corriente longitudinal

Gráfica A11.44. Corriente longitudinal del tramo 2.15 protegido con un rectificador en un extremoA11.17Tramo 2.16

Datos	Valor	Unidad
Desde	km 217	
Hasta	km 222	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	5,8	km
Tensión del rectificador V_R	29,67	V
Resistencia total de ánodos y cables R_A	0,6812	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.17. Datos del tramo 2.16 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.45. Potencial de polarización del tramo 2.16 protegido con un rectificador en un extremo

Corriente longitudinal

Gráfica A11.46. Corriente longitudinal del tramo 2.16 protegido con un rectificador en un extremo

A11.18 Tramo 2.17

Datos	Valor	Unidad
Desde	km 222	
Hasta	km 230	
Resistividad del medio ρ_m	2000	ohm.cm
Longitud del tramo de tubería L	7	km
Tensión del rectificador V_R	31,82	V
Resistencia total de ánodos y cables R_A	0,6084	ohm
Diámetro del tubo D	26	pulgadas
Profundidad del tubo h	1,2	m
Resistividad del revestimiento ρ_C	1	petaohm.cm
Grosor del revestimiento	14	mils
Grosor de la tubería	0,5	pulgadas
Resistividad del material del tubo ρ_t	1,35E-07	ohm.m

Tabla A11.18. Datos del tramo 2.17 protegido con un rectificador en un extremo

Potencial de polarización

Gráfica A11.47. Potencial de polarización del tramo 2.17 protegido con un rectificador en un extremo

Corriente longitudinal