UNIVERSIDAD CENTRAL DE VENEZUELA
FACULTAD DE INGENIERÍA
COORDINACIÓN DE ESTUDIOS DE POSTGRADO
DEPARTAMENTO DE INVESTIGACIÓN DE OPERACIONES Y COMPUTACIÓN.

RECONOCIMIENTO DE COLORES EN UNA IMAGEN DIGITAL UTILIZANDO MÁQUINAS DE APRENDIZAJE NO SUPERVISADO

Trabajo de Grado presentado a la ilustre Universidad Central de Venezuela para optar al Título de Magíster Scientiarum en Computación Emergente.

Lic. Margarita Villarroel.

Caracas, Diciembre 2003

© Margarita Villarroel. 2003 Depósito Legal Ift487200365826

DEDICATORIA

Le dedico este trabajo a mi querido esposo, Antonio, por todo el amor y apoyo que siempre me ha dado.

AGRADECIMIENTOS

A Dios, por todos los dones que me ha concedido.

A mis padres y hermanos por todo su cariño, así como por su apoyo incondicional.

Al Profesor José Alí Moreno, tutor de esta tesis, por su valiosa cooperación y asesoría en la realización de este trabajo.

A la Profesora Maritza Bracho, por su tiempo invertido y colaboración prestados durante las largas jornadas de captura de imágenes.

A los miembros del jurado, profesor Néstor Carrasquero y profesor Miguel Castro por sus acertadas observaciones.

A Mercedes García por su valiosa y desinteresada ayuda.

A Franklin, Laura, Rafael, Nancy, Iván, Yineira, Milagros, Rebeca y José Manuel por su preocupación y por darme ánimos tantas veces.

TABLA DE CONTENIDO

IN	ITRODUCCIÓN	.12
0	BJETIVO GENERAL	.18
O	BJETIVO ESPECÍFICO	.18
	FUNDAMENTOS	
١.	1.1. Luz	
	1.1.1. El Espectro Electromagnético	
	1.2.1. Clasificación de los Colores	.22 25
	1.3. Modelos de colores	
	1.3.1. Modelo RGB	
	1.3.2. Modelo CMY	
	1.3.3. Modelo HSI	
	1.4. RoboCup	
	1.4.1. Breve historia	
	1.5. Análisis de Grupos.	
	1.5.1. Algoritmos de Agrupamiento Jerárquicos	
	1.5.2. Algoritmos de Agrupamiento no Jerárquicos	
	1.5.3. K-Medios	
	1.6. Aprendizaje Competitivo	.40
	1.6.1. Gas Neuronal con Crecimiento	.40
2.	EXPERIMENTOS	.46
	2.1. Fase de Ajuste	.47
	2.2. Fase de Prueba	.50
	2.2.1. Clasificación	.50
	2.2.2. Evaluación	.56
	2.3. Resultados	.59
3.	CONCLUSIONES.	.80
4.	BIBLIOGRAFÍA.	-83
	APÉNDICES.	
ວ.		
	5.1 Evaluación detallada de la clasificación utilizando el archivo de ajuste A1.bm con k-medios.	
	5.2 Evaluación detallada de la clasificación utilizando el archivo de ajuste A1.bm	
	· · · · · · · · · · · · · · · · ·	ч .88
	5.3 Evaluación detallada de la clasificación utilizando el archivo de ajuste A2.bm	
	con k-medios	
	5.4 Evaluación detallada de la clasificación utilizando el archivo de ajuste A2.bm	
	con das neuronal	95

5.5 Evaluación detallada de la clasificación utilizando el método de umbral	es con el
grupo A1	98
5.6 Evaluación detallada de la clasificación utilizando el método de umbral	es con el
grupo A2	102
5.7 Archivo BMP	
5.7.1Estructura de los archivos .BMP	106
5.7.2Consideraciones especiales para el manejo de estos archivos	107

LISTA DE ILUSTRACIONES.

Figura	1. Módulos de Software	.17
Figura	2. Espectro Electromagnético.	.24
Figura	3. Sustracción y Adición de colores	.26
Figura	4. Modelo RGB	.28
Figura	5. Modelo HSI	.30
Figura	6. Colores a identificar	.46
Figura	7. Imágenes de Ajuste	.48
Figura	8. Clasificación 1. Formación de Rangos	.51
Figura	9. Clasificación 2. Formación de Rangos.	.52
Figura	10. Clasificación 3. Formación de Rangos.	.53
Figura	11. Resultados gráficos de la clasificación de una imagen de prueba	.55
Figura	12. Imagen de prueba A1P1.bmp	.61
Figura	13. Imagen de prueba A1P2.bmp.	.61
Figura	14. Imagen de prueba A1P3.bmp.	.61
Figura	15. Imagen de prueba A1P4.bmp.	.62
Figura	16. Imagen de prueba A1P5.bmp.	.62
Figura	17. Imagen de prueba A1P6.bmp.	.62
Figura	18. Imagen de prueba A1P7.bmp.	.63
Figura	19. Imagen de prueba A2P1.bmp.	.63
Figura	20. Imagen de prueba A2P2.bmp	.63

Figura	21. Imagen de prueba A2P3.bmp	.64
J		
Figura	22. Imagen de prueba A2P4.bmp.	.64
3 -	3	
Figura	23. Imagen de prueba A2P5.bmp.	.64

LISTA DE TABLAS

Tabla	1.	Valores Ek. K-Medios	59
Tabla	2.	Valores Ek. Gas-Neuronal	59
Tabla	3.	Evaluación de Clasificación del grupo A1. 60 , Km	67
Tabla	4.	Evaluación de clasificación del Grupo A1. 60 Grupos (20r), GasNeuronal	86
Tabla	5.	Evaluación de clasificación del Grupo A2. 60 Grupos, K-Medios	69
Tabla	6.	Evaluación de clasificación del Grupo A2. 60 Grupos (40r), GasNeuronal	70
Tabla	7.	Valores de umbral ajustados manualmente.	71
Tabla	8.	Evaluación de clasificación del Grupo A1. Valores de umbral	73
Tabla	9.	Evaluación de clasificación del Grupo A2. Valores de umbral	74
Tabla	10	. Comparación de Clasificación: Km, Gas N., Umbrales. Grupo A1	76
Tabla	11	. Comparación de Clasificación: Km, Gas N., Umbrales. Grupo A2	77
Tabla	12	Evaluación de la Clasificación de A1P1.bmp. (60 grupos,KM)	84
Tabla	13	Evaluación de la Clasificación de A1P2.bmp. (60 grupos,KM)	85
Tabla	14	Evaluación de la Clasificación de A1P3.bmp. (60 grupos,KM)	85
Tabla	15	Evaluación de la Clasificación de A1P4.bmp. (60 grupos,KM)	86
Tabla	16	Evaluación de la Clasificación de A1P5.bmp. (60 grupos,KM)	86
Tabla	17	Evaluación de la Clasificación de A1P6.bmp. (60 grupos,KM)	87
Tabla	18	Evaluación de la Clasificación de A1P7.bmp. (60 grupos,KM)	87
Tabla	19	Evaluación de la Clasificación de A1P1.bmp (60 grupos,20 rep, GN)	88
Tabla	20	Evaluación de la Clasificación de A1P2.bmp (60 grupos.20 rep. GN)	89

Tabla	21.	Evaluación de la Clasificación de A1P3.bmp (60 grupos,20 rep, GN)89
Tabla	22.	Evaluación de la Clasificación de A1P4.bmp (60 grupos,20 rep, GN)90
Tabla	23.	Evaluación de la Clasificación de A1P5.bmp (60 grupos,20 rep, GN)90
Tabla	24.	Evaluación de la Clasificación de A1P6.bmp (60 grupos,20 rep, GN)91
Tabla	25.	Evaluación de la Clasificación de A1P7.bmp (60 grupos,20 rep, GN)91
Tabla	26.	Evaluación de la Clasificación de A2P1.bmp. (60 grupos,KM)92
Tabla	27.	Evaluación de la Clasificación de A2P2.bmp. (60 grupos,KM)93
Tabla	28.	Evaluación de la Clasificación de A2P3.bmp. (60 grupos,KM)93
Tabla	29.	Evaluación de la Clasificación de A2P4.bmp. (60 grupos,KM)94
Tabla	30.	Evaluación de la Clasificación de A2P5.bmp. (60 grupos,KM)94
Tabla	31.	Evaluación de la Clasificación de A2P1.bmp. (60 grupos,40 rep,G.N)95
Tabla	32.	Evaluación de la Clasificación de A2P2.bmp. (60 grupos,40 rep,G.N)96
Tabla	33.	Evaluación de la Clasificación de A2P3.bmp. (60 grupos,40 rep,G.N)96
Tabla	34.	Evaluación de la Clasificación de A2P4.bmp. (60 grupos,40 rep,G.N)97
Tabla	35.	Evaluación de la Clasificación de A2P5.bmp. (60 grupos,40 rep,G.N)97
Tabla	36.	Evaluación de la Clasificación de A1P1 con método de umbral98
Tabla	37.	Evaluación de la Clasificación de A1P2 con método de umbral99
Tabla	38.	Evaluación de la Clasificación de A1P3 con método de umbral99
Tabla	39.	Evaluación de la Clasificación de A1P4 con método de umbral100
Tabla	40.	Evaluación de la Clasificación de A1P5 con método de umbral100
Tabla	41.	Evaluación de la Clasificación de A1P6 con método de umbral101
Tabla	42.	Evaluación de la Clasificación de A1P7 con método de umbral101

Tabla	43.	Evaluación de la Clasificación de A2P1 con método de umbral	102
Tabla	44.	Evaluación de la Clasificación de A2P2 con método de umbral	103
Tabla	45.	Evaluación de la Clasificación de A2P3 con método de umbral	103
Tabla	46.	Evaluación de la Clasificación de A2P4 con método de umbral	104
Tabla	47.	Evaluación de la Clasificación de A2P5 con método de umbral	104

INTRODUCCIÓN

El Laboratorio de Computación Emergente del Departamento de Investigación de Operaciones y Computación, de la Facultad de Ingeniería, UCV, está llevando a cabo un proyecto de investigación científica que tiene como objetivo la creación de un equipo de Futbot (robots jugadores de fútbol) para la liga de pequeña escala bajo los lineamientos establecidos en Robocup [1].

Dentro de los elementos de hardware se cuenta con:

- Un servidor, en el cual se encuentran las aplicaciones: Administrador de la red de área local, Administrador de Multiprocesador de área local, Aplicaciones y Administrador de la arquitectura del sistema Robots.
- Cinco estaciones de trabajo, uno por cada agente artificial, las cuales se encargarán de la aplicación y administración del software del agente.
- El servidor y las estaciones de trabajo están comunicadas a través de una LAN con protocolo de comunicación TCP-IP.
- El equipo de robots conformado por cuatro robots jugadores de fútbol y un robot arquero.

Cámara digital para un sistema de visión global, conectada al servidor.

Todos estos elementos se interrelacionan a través de los siguientes módulos de software:

- Sistema administrador de LAN, el cual define y carga los nodos de proceso, establece las funciones que cada nodo ejercerá dentro del sistema, establece y controla la comunicación entre los nodos del sistema y administra y controla la ejecución de las diferentes aplicaciones del sistema.
- Sistema de visión global y *on-board*, el cual adquiere en tiempo real y de manera continua las imágenes del ambiente de trabajo de los robots, transforma las imágenes de la cámara en formatos que puedan ser procesados digitalmente, identifica, segmenta y posiciona los diferentes objetos presentes en el ambiente de trabajo, y transforma los datos obtenidos de las imágenes en información capaz de ser procesadas por el Planificador de Rutas, Administrador de Estrategias y Ejecutor de Jugadas.
- Sistema Administrador de Comunicaciones, el cual recibe del Ejecutor de Jugadas, el conjunto de comunicaciones a ser enviadas a los robots, establece y administra las colas para el envío y recepción de información desde y hacia los

robots, y decodifica y distribuye los mensajes recibidos de los robots para su debido procesamiento

- Planificador de rutas, el cual recibe del Sistema de Visión Global la interpretación de la imagen (identificación, ubicación y segmentación de los objetos), transformar la interpretación de la imagen en posibles rutas de navegación para el robot, realiza los ajustes que puedan surgir por diferencias entre el estado real del ambiente y el estado computado y notifica de la imposibilidad de movimiento por la proximidad de obstáculos o por la inexistencia de rutas viables de navegación.
- Administrador de Estrategias, el cual recibe del Planificador de Rutas las posibles rutas de navegación del robot, identifica las posibles jugadas a ejecutar y seleccionar la más conveniente de acuerdo a criterios y estrategias previamente establecidos y realiza los ajustes que puedan surgir por diferencias entre el estado real del ambiente y el estado computado.
- Ejecutor de Jugadas, el cual recibe la jugada a ejecutar del Administrador de Estrategias, transforma las jugadas en conjuntos de comandos a ser transmitidos al robot y suministrar al Administrador de Comunicaciones el conjunto de comandos a ser efectuados por el robot.

 Sistema Operativo del Robot, el cual recibe, administra y controla las comunicaciones enviadas por el servidor, convierte los comandos recibidos en acciones de motores, mueve al robot y administra, controla y envía las comunicaciones producidas en el robot (Ver figura 1).

En el Módulo de Visión Global se realizan las actividades de segmentación y clasificación por coloración de objetos. Actualmente en este proceso se utiliza una técnica de umbral donde a cada color a identificar se le asigna por el usuario valores mínimos y máximos en cada componente RGB, con el fin de poder determinar si las componentes de un píxel dado se encuentra entre los componentes de umbral de un determinado color, si esto ocurre se dice que el píxel es de ese color. De esta manera es posible identificar los distintos objetos dentro de la cancha de juego del robot: píxeles anaranjados delimitan la pelota, píxeles blancos delimitan las líneas de las distintas zonas de la cancha, etc.

Debido a la naturaleza de la luminosidad del ambiente, los objetos dentro de la cancha presentan leves variaciones en sus tonalidades a través del tiempo, como por acción de leves cambios del ambiente producidos dentro y fuera de la cancha: Los objetos se mueven y proyectan sombras sobre otros, o dejan de proyectarla.

El cerebro humano, en el proceso de producción de la imagen, hace ajustes extraordinariamente rápidos para permitirnos reconocer, por ejemplo, un objeto de color azul a pesar de que en algunas zonas presente variaciones de luz y sombra.

En el módulo de Visión de los robots se modeló este ajuste haciendo variaciones manuales en los valores de umbral de los distintos colores presentes en la cancha de juego.

La motivación de este trabajo es establecer en este módulo nuevas estrategias automáticas con el fin de lograr una mayor velocidad en este proceso clave. Estos nuevos enfoques involucran técnicas y arquitecturas de RNA basadas en aprendizaje no supervisado.

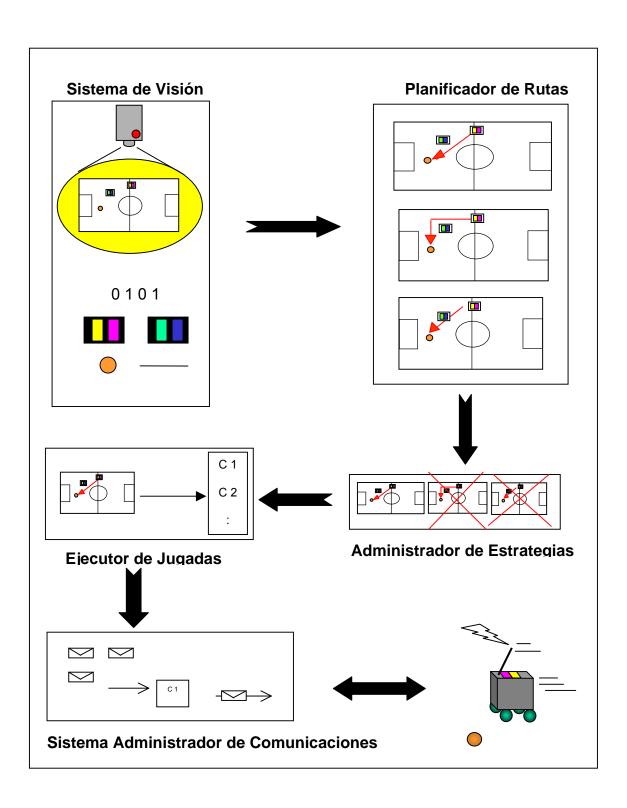


Figura 1. Módulos de Software.

OBJETIVO GENERAL

Emplear máquinas de Aprendizaje no Supervisado para la formación automática de grupos de colores a partir de las imágenes digitales del campo de juego, con el fin de lograr calibrar en tiempo real, el rango en el cual se encuentran los colores de los objetos presentes en el área de juego para un determinado instante, permitiendo su correcta identificación.

OBJETIVO ESPECÍFICO

Comparar y evaluar los resultados obtenidos con los métodos utilizados (Gas Neuronal con Crecimiento Dinámico) y el algoritmo tradicional de agrupamientos (K-Medios), en la determinación de rangos de colores a los que pertenece cada objeto dentro del campo de juego en un instante determinado.

Comparar efectividad de estos métodos con la técnica de umbral utilizada en la actualidad en el sistema de visión del equipo de Futbot del Laboratorio de Computación Emergente.

1. FUNDAMENTOS

1.1. Luz

La luz visible, capaz de impresionar la retina y de generar la formación de imágenes en el cerebro, constituye una pequeña porción del total de radiaciones electromagnéticas existentes.

La luz no es de naturaleza diferente a la de los otros tipos de radiación emitida por cuerpos calientes. Esta tiene una gran importancia, ya que proporciona uno de los más grandes medios de conocimiento del mundo físico. [6]

El fenómeno de la luz ha sido explicado a través de varios modelos, los cuales se han mantenido hasta la actualidad.

El modelo corpuscular de la luz, formulado por Newton en 1682, considera que la luz está formada por partículas. El modelo ondulatorio formulado por Huyghens en 1690, considera la luz como una radiación de naturaleza ondulatoria electromagnética.

Posteriormente en el siglo XX surge el modelo cuántico, que considera la luz constituida por pseudo-partículas llamadas cuantos de luz o fotones. Actualmente se considera que la luz se comporta como onda y como partícula. [4]

Desde el punto de vista ondulatorio, la luz presenta una serie de propiedades que permiten su estudio, de las más importantes tenemos: Propagación rectilínea, Reflexión, Refracción, Interferencia y Polarización.

La intensidad de la onda luminosa está relacionada con la cantidad de energía transportada por la luz.

1.1.1. El Espectro Electromagnético

Es el resultado de la distribución de los componentes de diferentes longitudes de onda y frecuencia del conjunto de radiaciones de naturaleza eléctrica y magnética.

Los fenómenos ondulatorios de naturaleza electromagnética se producen cuando una partícula cargada vibra u oscila alrededor de una posición de equilibrio y su movimiento se transmite a través del espacio en forma de radiación. Una característica de dicha radiación es la longitud de onda (λ), la cual define el espacio comprendido entre dos posiciones idénticas que la partícula adquiere a intervalos regulares de tiempo en su movimiento.

La longitud de onda mide una oscilación completa, mientras que la frecuencia mide el número de oscilaciones por unidad de tiempo. Esta última define la rapidez con que se produce la vibración. Ambas magnitudes (λ) y (f) son inversamente proporcionales entre sí.

El espectro electromagnético cubre una amplia gama de frecuencias o de longitudes de onda pudiéndose clasificar según su principal fuente. La clasificación no tiene límites precisos, ya que fuentes diferentes pueden producir ondas en intervalos de frecuencia superpuestos parcialmente. Su clasificación habitual es la siguiente:

- Ondas de Radio Frecuencia: estas ondas usadas en los sistemas de radio y televisión, son generadas por medio de dispositivos electrónicos, principalmente por circuitos oscilantes.
- **Microondas**: Estas ondas se usan en el radar y otros sistemas de comunicaciones, así como también en el análisis de detalles muy finos de la estructura atómica y molecular. Se genera a través de dispositivos electrónicos.
- **Infrarrojo**: A su vez se divide en infrarrojo lejano, medio y cercano. Son producidos por cuerpos calientes y por dispositivos electrónicos. Tienen muchas aplicaciones en la industria, medicina, astronomía, etc.
- Luz o espectro visible: Es una banda angosta que abarca longitudes de onda a las cuales nuestra retina es sensible. El rango va desde el rojo al violeta.
- **Ultravioleta**: Estas ondas son producidas por átomos y moléculas en descargas eléctricas. Su energía es del orden de magnitud de la energía involucrada en muchas reacciones químicas, lo que explica muchos de sus efectos químicos. El sol es una fuente muy poderosa de radiación ultravioleta siendo este factor el principal responsable del bronceado de la piel.

- Rayos X: Son ondas de alta energía producidas por los electrones atómicos más fuertemente ligados. Son utilizados en medicina con suma precaución, dado que cualquier cantidad de radiación X destruye tejidos sanos.
- Rayos Gamma: son producidos por sustancias radiactivas y están presentes en grandes cantidades en los reactores nucleares. Producen efectos graves al ser absorbidos por el tejido vivo. [5]

1.2. Color

Dentro del rango de la luz visible se presentan una serie de diferentes sensaciones que la luz produce en el ojo, que se denominan colores. Los colores son una propiedad de la luz. Estos pueden medirse de acuerdo a la frecuencia y a la longitud de onda, como se indica en la Figura 2.

La sensibilidad del ojo humano a los colores depende de la longitud de onda de la luz, para la persona promedio esta es máxima dentro del color verde-amarillento. El color posee las siguientes propiedades:

-Tonalidad: Consiste en los distintos matices que puede presentar un tono determinado cuando se descompone la luz blanca en sus distintos componentes.

-Pureza: Esta propiedad se refiere a la proporción de blanco que posee un determinado color espectral.

-Saturación: Un color saturado tiene un aspecto oscuro. Los colores rojo, verde y azul pueden presentar alta saturación y los mismos se aclaran cuando la saturación se reduce. El color amarillo más puro por el contrario, tiene una saturación baja.

-Brillo: Se refiere a la intensidad del color y al cambiar este, afecta a la tonalidad, pareciendo más amarillentas, azuladas o verdosas.

El número de colores posibles es infinito y se estima que el ojo puede distinguir unos 10 millones de tonalidades diferentes. [4]

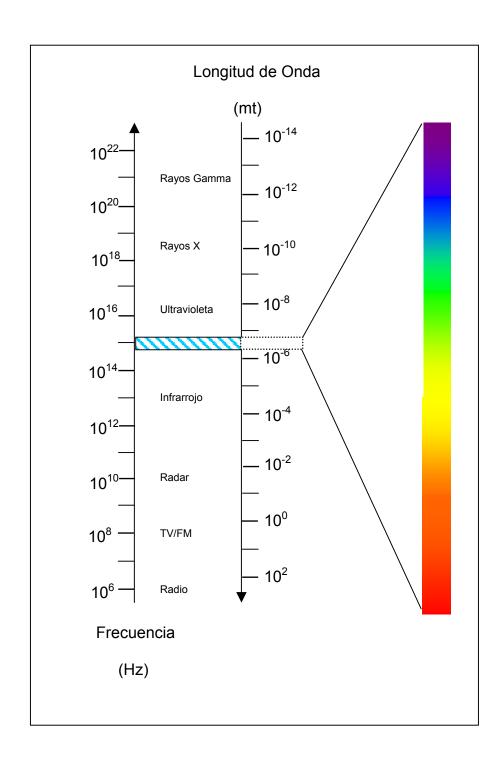


Figura 2. Espectro Electromagnético.

1.2.1. Clasificación de los Colores

En función de las cualidades cromáticas definidas, se han establecido numerosas escalas de clasificación del color, diferentes de la primera elaborada por Newton. Así el físico británico James Clerk Maxwell, que analizó pormenorizadamente distintos aspectos de las radiaciones electromagnéticas, realizó en el siglo XIX la primera diferenciación cromática, según métodos de síntesis aditiva y sustractiva. Por su parte, el estadounidense Albert Munsell estableció a principios del siglo XX un catálogo de colores en el que se disponía de veinte tonos diferentes ordenados en un círculo. También estableció una escala de luminosidad numerada del uno al nueve, y otra de saturación dividida en 16 grados convencionales.

El principal problema de estas clasificaciones es asignar a cada color una denominación inequívoca. De esta forma el procedimiento para especificar los colores a partir de palabras, si bien es útil cuando no se requiere de gran precisión, resulta poco formal puesto que no proporciona exactitud. A fin de resolver este problema se recurre al llamado método de las mezclas.

Adoptado en 1931 por la Comisión Internacional de Iluminación o CIE (*Commission Internationale de l'Eclairage*) el método de mezclar se basa en el uso de tres colores básicos, puros, formados por una sola longitud de onda, que combinados en determinadas proporciones dan como resultado el resto de los colores del espectro. Tales son el rojo, verde y azul. Los demás surgen a partir de ciertas leyes cuyos principios básicos son la adición y la sustracción.

Dos o más colores se llaman complementarios si su adición origina el color blanco. Por ejemplo, azul, verde y rojo son colores complementarios. Si, por el contrario, se recurre a la ley de sustracción, el color resultante es el negro.

En el método de las mezclas, las ecuaciones que regulan las combinaciones pueden llegar a alcanzar una notable complejidad. En ellas se introducen términos y variables, como los llamados iluminantes, magnitudes referidas a la intensidad y las demás cualidades de la luz que ilumina el cuerpo observado. También intervienen los colores conocidos con el nombre de metámeros, iguales para la percepción del ojo humano, pero que, sin embargo, tienen diferente composición espectral. La introducción de estos factores permite disponer de diferentes parámetros para tabular todos los colores de la naturaleza de forma no exclusivamente descriptiva. [7]

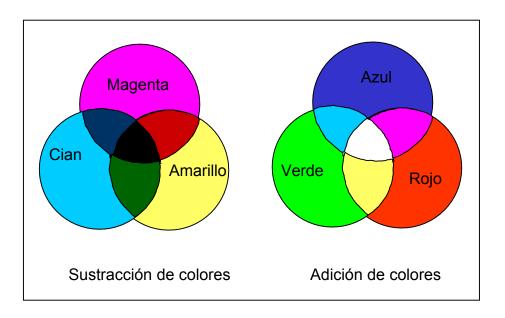


Figura 3. Sustracción y Adición de colores.

1.3. Modelos de colores.

Los modelos de colores proveen una manera estándar para especificar un color particular, definiendo un sistema de coordenadas en 3D, y un sub-espacio que contiene todos los colores que se pueden construir con un modelo particular. Cualquier color que puede ser especificado usando un modelo corresponderá a un punto dentro del sub-espacio definido. Cada modelo de color está orientado bien sea a un hardware específico (RGB, CMY, YIQ) o a una aplicación de procesamiento de imágenes (HSI)

1.3.1. Modelo RGB

El modelo RGB es un modelo aditivo, donde se utilizan cantidades variables de los colores primarios rojo, verde y azul para formar cualquier otro color. A esto se debe su nombre ya que son las siglas inglesas de estos colores primarios (*red, green, blue*). En la figura 4 se muestra la geometría del modelo de color RGB para la especificación de colores utilizando un sistema de coordenadas cartesianas. El espectro de grises se ubica en la línea que une los vértices blanco y negro, estos colores poseen la misma cantidad de los tres componentes. Este modelo es usado para monitores de color y por la mayor parte de las cámaras de video.

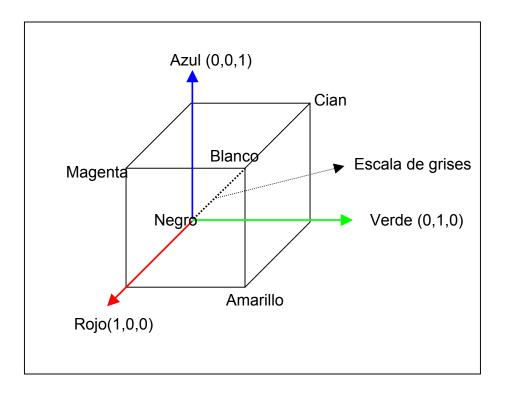


Figura 4. Modelo RGB

1.3.2. Modelo CMY

Este modelo sustractivo se denomina así por las iniciales de los nombres ingleses de cian, magenta y amarillo (se agrega letra K para representar los valores de negro y gris de la imagen). En este modelo sustractivo estos colores pasan a ser primarios y los colores rojo, verde y azul pasan a ser considerados secundarios, de igual manera el color blanco representa la ausencia de un color, y el negro es la suma de todos. Este modelo generalmente es el utilizado para impresiones.

Para transformar coordenadas CYM a RGB se utiliza la siguiente igualdad.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

1.3.3. Modelo HSI

En este modelo los colores se representan mediante sus propiedades: Intensidad, Tono y Saturación (HSI: *Hue, Saturation, Intensity*), que describen las sensaciones subjetivas de brillo, color y pureza del color.

El tono procede de la longitud de onda en donde se produce la máxima reflectividad del objeto: equivale al color que aprecian nuestros ojos. La saturación se refiere a la pureza de dicho color, su grado de mezcla con los otros colores primarios. Por último, la intensidad puede identificarse como el brillo, en función del porcentaje de reflectividad recibido.

El espacio completo de colores que pueden ser especificados se muestra a continuación:

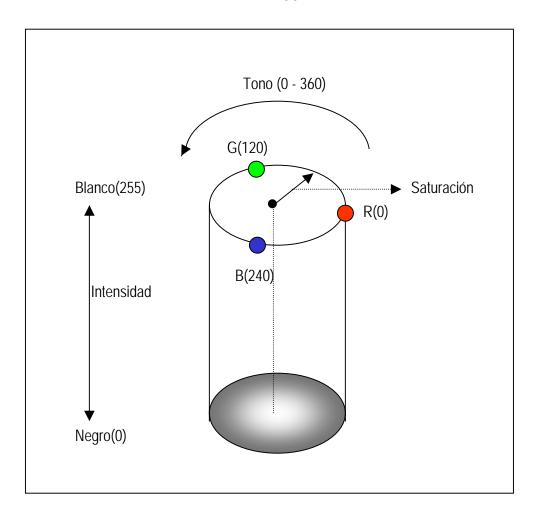


Figura 5. Modelo HSI

Un valor de color es representado como un punto en el cilindro. El tono es simplemente el ángulo de rotación sobre la superficie circular del cilindro. El rojo es definido a cero grados. La saturación es representada por la longitud del vector desde el centro del círculo al valor del color en cuestión. Para los colores puros, este vector se extiende al borde de la superficie cilíndrica. La intensidad es representada por la longitud del vector desde la base del cilindro al valor del color.

La conversión de la representación RGB a HSI puede ser llevada a cabo considerando las siguientes ecuaciones:

$$\theta = \cos^{-1} \left(\frac{1/2((R-G)+(R-B))}{\left[(R-G)^2 + (R-B)(G-B)^{1/2} \right]} \right)$$

$$H = \begin{cases} \theta, & \text{si } G \ge B \\ 2\pi - \theta & \text{en caso contrario} \end{cases}$$

$$S = 1 - \frac{\min(R, G, B)}{I}$$

$$I = \frac{R + G + B}{3}$$

Para el caso de conversión de HSI a RGB hay que considerar las siguientes:

Donde H, S e I son los valores de tono, saturación e intensidad de la imagen de salida en HSI; y R, G y B con los componentes de rojo, verde y azul de la imagen RGB.

1.4. RoboCup

RoboCup es una iniciativa internacional de investigación y educación, nace como un intento para fomentar la investigación de la Inteligencia Artificial y Robótica.

Este proyecto ha adoptado el juego de Fútbol como un problema estándar a resolver, para el cual es necesario integrar una amplia gama de tecnologías como: principios de diseño de agentes autónomos, colaboración de multi-agentes, adquisición de estrategias, razonamiento en tiempo real, y robótica entre otros.

El objetivo final de RoboCup se estableció como:

A mediados del siglo 21, un equipo de jugadores robots humanoides totalmente autónomos ganará un juego de fútbol, de acuerdo a las reglas oficiales de la FIFA, contra el ganador de la Copa del Mundo más reciente.

Esta meta será uno de los grandes retos compartidos entre la Robótica y la Inteligencia Artificial para los próximos 50 años. Esta meta puede sonar ambiciosa dado el estado del arte de la tecnología actualmente, sin embargo, gracias a iniciativas de este tipo se fomenta la investigación de nuevas tecnologías para conseguir una serie de objetivos secundarios que están más al alcance.

Las competencias del campeonato del mundo de robots engloban tres áreas principales:

RoboCupSoccer

- Liga de Simulación
- Liga de robots de tamaño pequeño (f-180)
- Liga de robots de tamaño medio (f-2000)
- Liga de Robots Sony *Legged* (apoyada por Sony)
- Liga de Humanoides
- Exhibición de comentaristas de RoboCup

RoboCupRescue

- Liga de Simulación de Rescate
- Liga de Robots de Rescate

RoboCupJunior

- Desafío de Fútbol
- Desafío de Danza
- Desafío de Rescate

Además de estas competencias se realizan actividades de: Conferencias Técnicas, Programas de Desafío de RoboCup, Programas Educativos.

1.4.1. Breve historia.

La idea de robots jugadores de fútbol fue mencionada primero por el profesor Alan Mackworth (Universidad de Columbia Británica, Canadá) en un documento titulado *On Seeing Robots* presentado en VI-92, 1992, y más adelante publicado en el libro *Computer Vision: System, Theory, and Applications, (*página 1-13, World Scientific Presss, Singapur, 1993).

A partir de este momento y de manera independiente, distintos investigadores del mundo adoptaron la idea de trabajar con robots jugadores de fútbol, empleando diferentes tecnologías. Itsuki Noda, en el laboratorio ETL (*Electrotecnical Laboratory*), un centro de investigación del gobierno Japonés, conducía una investigación de multiagentes usando fútbol, y comenzó el desarrollo de un simulador dedicado para los juegos del fútbol. Este simulador se convirtió mas tarde en el servidor oficial de fútbol de RoboCup. Independientemente, el profesor Minoru Asada de la Universidad de Osaka, y la profesora Manuela Veloso y su estudiante Peter Stone en la universidad de Carnegie Mellon había estado trabajando con robots jugadores de fútbol.

En junio de 1993, un grupo de investigadores, incluyendo Minoru Asada, Yasuo Kuniyoshi, e Hiroaki Kitano, decidía lanzar una competencia robótica, tentativamente nombrada la Liga J de robots (la Liga J es el nombre de la Liga Profesional Japonesa de Fútbol). Debido a la gran aceptación mundial dentro de la comunidad de

investigadores, el proyecto se amplió a la Copa del Mundo de Robots, o simplemente RoboCup.

En septiembre de 1993, se efectuó el primer aviso público de la iniciativa RoboCup, y las regulaciones específicas fueron bosquejadas y difundidas.

Mientras tanto, el equipo de Noda en ETL anunció la versión 0 de *Soccer Server* (versión en LISP), el primer simulador del servidor de fútbol de sistema abierto para el dominio del fútbol permitiendo la investigación de sistemas multiagentes, seguido por la versión 1.0 del servidor del fútbol (versión de C++) que fue distribuido vía web. La primera demostración pública de este simulador fue hecha en IJCAI-95 (*International Joint Conference on Artificial Intelligence*)

Durante este evento (IJCAI-95) llevado a cabo en Agosto de 1995 en Montreal, Canadá, se comunicó la celebración de la primera Copa del Mundo de Robots y Conferencias conjuntamente con IICAI-97, Nagoya. Además se tomó la decisión de organizar Pre-RoboCup-96 con la intención de identificar los problemas potenciales asociados a organizar un evento de mayor dimensión. [1]

Desde la celebración de Pre-RoboCup-96 durante la *International Conference on Intelligent Robots and Systems* (IROS-96), con ocho equipos compitiendo en una liga

de simulación y una demostración de robots para la liga de tamaño mediano, se han celebrado cinco distintos campeonatos oficiales (RoboCup-98,Francia, RoboCup-99, Suecia, RoboCup-01,USA, RoboCup-02, Japón), todos con un marcado crecimiento en el número de equipos competidores. El encuentro pautado para el año 2003, se llevará a cabo en Padua, Italia.

El reconocimiento y aceptación por parte de la comunidad científica internacional indica claramente que la principal motivación de Robocup, como es promover y alentar la investigación en el área de la Inteligencia Artificial y la Robótica se ha cumplido exitosamente.

1.5. Análisis de Grupos.

El propósito del análisis de grupos es particionar un conjunto de datos u objetos en grupos (también denominados "*clusters*", subconjuntos, clases) de elementos similares. Estas particiones deben tener las siguientes propiedades:

- Homogeneidad dentro del grupo: Los elementos que pertenecen al mismo grupo deberían ser tan similares como sea posible.
- Heterogeneidad entre grupos: Los elementos que pertenecen a distintos grupos deberían ser tan diferentes como sea posible.

Los Algoritmos de Agrupamiento se suelen dividir de manera general, como Jerárquicos y no Jerárquicos.

1.5.1. Algoritmos de Agrupamiento Jerárquicos

En una clasificación jerárquica la partición de la data no es realizada en un solo paso. Primero se separa en unas pocas clases, luego cada una de ellas es dividida en clases más pequeñas, e iterativamente cada una de ellas se volverá a dividir, hasta que las clases finales sean indivisibles. [2]

Gráficamente se obtiene una suerte de árbol, en el cual la raíz representa la data de entrada, los nodos representan subconjuntos de la data simulando la estructura encontrada en la data original, las hojas son los elementos individuales, los nodos internos se definen como la unión entre los hijos, y cada nivel del árbol representa la partición de la data en distintos grupos.

Los algoritmos de Agrupamiento Jerárquicos esencialmente se pueden subdividir en Aglomerativos (*bottom-up*) los cuales proceden por una serie de fusiones sucesivas de N entidades en grupos, y Divisivos (*top-down*), los cuales particionan el conjunto de N entidades sucesivamente en particiones más finas.

1.5.2. Algoritmos de Agrupamiento no Jerárquicos

Este enfoque particiona los datos en un número específico de grupos, y luego asigna cada elemento a uno de los k grupos, de acuerdo a una medida de distancia. La más usual de estas medidas es la distancia Euclídea.

1.5.3. K-Medios

El algoritmo de K-Medios es uno de los más representativos de la categoría de los No Jerárquicos. De manera general, el procedimiento es el siguiente:

Sea que se tienen n vectores patrón $x_1, x_2, ..., x_n$, y se sabe que se pueden distribuir entre k grupos compactos, k < n. Sea C_i la media de los vectores en el Grupo i, es decir el centroide. Si los grupos están bien separados, se puede utilizar un clasificador de distancia mínima para separarlos. Es decir, Y pertenece al grupo i si $\|Y - Ci\| < \|Y - Cj\| \forall j \neq i$.

Esto sugiere el siguiente procedimiento para determinar los centroides prototipos.

- 1.- Tomar *k* vectores como centroides.
- 2.- Usar la media estimada para clasificar la data en un determinado grupo.

- 3.- Para i =1 hasta k: Reemplazar C_i con la media de todos los datos pertenecientes al grupo i.
- 4.- Si hay variación en el reemplazo de los C_i , ir al paso 2, sino terminar.

Este método posee algunas debilidades:

- La forma de inicializar los vectores prototipo no se ha especificado. Una forma común de hacerlo es escogiendo de manera aleatoria k vectores.
- El resultado depende de los valores iniciales, así que ocurre frecuentemente que se obtienen agrupamiento subóptimos. La alternativa es repetir el algoritmo con diferentes iniciaciones.

Una manera de establecer la calidad de cada agrupamiento es estudiando las propiedades de homogeneidad dentro de cada grupo. Para esto se puede considerar el valor del promedio de las variaciones intra-grupo normalizada por el máximo valor de todas las variaciones intra-grupo : $E_k = \frac{1}{K \max_{j=1}^k \{e_j\}} \sum_{i=1}^k e_i$,

donde , $e_k = \frac{1}{|Ck|} \sum_{x \in C_k} d(\vec{x}, \vec{m}_k)$, representa la distancia promedio de todos los puntos en el grupo C_k a su centroide \vec{m}_k . [10]

 Puede ocurrir que algunos prototipos se queden aislados, en ese caso hay que eliminarlo.

- El resultado depende de la métrica utilizada para medir la distancia a los prototipos. $\|\mathbf{Y} \mathbf{C}_i\| < \|\mathbf{Y} \mathbf{C}_j\| \qquad \forall j \neq i$
- Una solución común es normalizar cada rasgo del vector patrón por su desviación estándar, aunque esto no siempre es deseable.

1.6. Aprendizaje Competitivo

En el área del aprendizaje competitivo existe un gran número de modelos que a pesar de tener propósitos similares difieren sustancialmente de la manera en la que trabajan. Un propósito común de estos algoritmos es distribuir un cierto número de vectores en un espacio de alta dimensión. La distribución de estos vectores debe reflejar la distribución de probabilidad de los vectores de entrada la cual en general no se conoce.

Estos algoritmos tienen un número de propósitos diferentes y mutuamente excluyentes. Estos pueden ser: Minimización del Error, Maximización de la entropía, Mapeo de Características (*Feature Mapping*), Estimación de Densidad, y Generación de Grupos (*Clustering*).[8]

1.6.1. Gas Neuronal con Crecimiento

Este método ideado por Bernd Fritzke [8], se basa en el método de Crecimiento de estructura de celdas, del mismo autor, y la generación topológica de aprendizaje hebbiano de Martinetz y Shulten, se caracteriza porque el número de prototipos por lo

general se incrementa durante el proceso de auto-organización. Para determinar dónde serán insertados los nuevos prototipos, se toman medidas de error local durante la dinámica de adaptación. Cada nuevo prototipo se inserta cerca del que ha acumulado el mayor error.

El algoritmo completo del gas neuronal con crecimiento es el siguiente:

1.- Iniciar el conjunto A con dos vectores prototipo p_1 y p_2 , escogidos de manera aleatoria de acuerdo a $P(\xi)$ (función de distribución de los patrones de entrenamiento).

$$A = \{p_1, p_2\}$$

Inicializar el conjunto de conexiones C, $C \subset AxA$, con el conjunto vacío:

$$C = \phi$$

- 2.- Generar de manera aleatoria un patrón de entrada ξ de acuerdo a $P(\xi)$.
- 3.- Determinar los dos prototipos ganadores s_1 y s_2 por

$$s_1 = \operatorname{arg\,min}_{P_i \in A} \left\| \xi - \vec{P}_i \right\| y$$

$$s_2 = \operatorname{arg\,min}_{P_i \in A \setminus \{s_1\}} \left\| \xi - \vec{P}_i \right\|, \qquad (s_1, s_2 \in A)$$

4.- Si la conexión entre s_1 y s_2 no existe en el conjunto C, crearla:

$$C = C \cup \{(s_1, s_2)\}$$

Colocar la edad de la conexión entre s_1 y s_2 a cero: $edad(s_1, s_2) = 0$

5.- Asignar la distancia cuadrática entre el patrón de entrada y el prototipo ganador a una variable de error local.

$$\Delta E_{s1} = \left\| \vec{\xi} - \overrightarrow{p}_{s1} \right\|^2$$

6.- Adaptar los patrones prototipo de el ganador y sus vecinos topológicos directos en una fracción \mathcal{E}_b y \mathcal{E}_n , respectivamente, de su distancia al patrón de entrada:

$$\Delta \vec{p}_{s1} = \mathcal{E}_b(\vec{\xi} - \vec{p}_{s1})$$
, $\Delta \vec{p}_i = \mathcal{E}_n(\vec{\xi} - \vec{p}_i)$ $(\forall i \in N_{s1})$

Se denomina a N_{s1} como los vecinos topológicos directos de p_1 .

7.- Incrementar la edad de todas las conexiones generadas de s_1 :

$$edad(s_1,i) = edad(s_1,i) + 1$$
 $(\forall i \in N_{s1})$

- 8. Remover las conexiones con una edad mayor de e_{max} . Si de esto resultan prototipos desconectados, hay que removerlos.
- 9. Si el número de patrones de entrenamiento es un múltiplo entero de un parámetro λ , insertar nuevos prototipos, de la siguiente manera:
 - Determinar el prototipo q con el máximo error acumulado: $q = \arg \max_{c \in A} E_c$
 - Determinar entre los vecinos de q el prototipo f con el máximo error acumulado.

$$f = \operatorname{arg\,max}_{c \in N_a} E_c$$

- Agregar un nuevo prototipo r al sistema interpolando los prototipos q y f

$$A = A \cup \{r\},$$
 $\vec{p}_r = (\vec{p}_q + \vec{p}_f)/2$

-Insertar una conexión entre el prototipo r y los prototipos q y f. Remover la conexión original entre q y f.

$$C = C \cup \{(r,g),(r,f)\}, C = C \setminus \{(q,f)\}$$

- Decrementar las variables de error de los prototipos q y f en una fracción de α

$$\Delta E_q = -\alpha E_q \qquad , \qquad \Delta E_f = -\alpha E_f$$

-Incorporar un valor de error para el prototipo r interpolando los errores de los prototipos q y f.

$$E_r = (E_q + E_f)/2$$

10. Decrementar las variables de error de todas las unidades en:

$$\Delta E_{c} = -\beta E_{c} \qquad (\forall c \in A)$$

11. Aplicar el criterio de parada, si la condición no se cumple continuar en el paso 2. El criterio podría ser el tamaño de la red o alguna medida de rendimiento.

Este método difiere de otros enfoques, como el Gas Neural de Martinetz y Schulten, en que sus parámetros no cambian a lo largo del tiempo y el proceso de crecimiento puede continuar hasta cumplirse una condición definida por el usuario o bien porque se alcanzó un tamaño predefinido. Se utilizaron los siguientes parámetros:

- $\lambda = 300$ Control para insertar nuevos prototipos
- $\varepsilon_b = 0.05$ Constante de Aprendizaje
- $\varepsilon_n = 0.0006$ Constante de Aprendizaje
- $\alpha = 0.5$ Constante de Decremento de error
- $\beta = 0.0005$ Constante de Decremento de error

Al comparar este método con K-medios, se hace evidente su mayor complejidad computacional, lo que afecta su tiempo de respuesta, no así la calidad de los resultados.

2. EXPERIMENTOS

Para llevar a cabo los distintos experimentos, los métodos de K-Medios y Gas Neuronal con Crecimiento Dinámico se implementaron utilizando el lenguaje de programación Borland C, respetando el estándar ANSI.

En la siguiente imagen capturada con el sistema de visión del equipo de Futbot del Laboratorio de Computación Emergente, se pueden distinguir los distintos colores que son objeto de identificación.

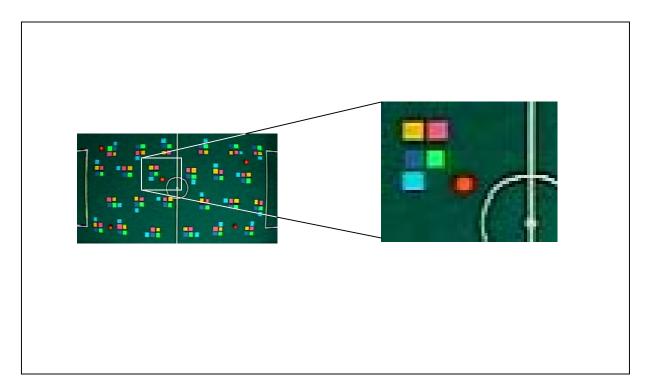


Figura 6. Colores a identificar.

El anaranjado representa a la pelota, blanco a las líneas de división, verde oscuro representa la cancha de juego, azul, cyan, magenta, amarillo y verde representan los componentes de identificación de los robots. Durante el procesamiento de las imágenes se obvian los pixeles que se encuentran fuera de la cancha de juego.

Los experimentos realizados se dividieron en dos fases: Ajuste y Prueba.

2.1. Fase de Ajuste

En esta primera fase se obtuvieron los vectores prototipo al ejecutar los métodos de K-Medios y Gas Neuronal sobre las imágenes de Ajuste (Figura 7). Para obtener la imagen A1.bmp y A2.bmp se utilizó una tarjeta de video Ranch atis 128 pro, utilizando el módulo capturador del sistema de visión actual. Para el caso de la imagen A3.bmp se utilizó una tarjeta Computer Eyes/rt, TrueVision, utilizándose el software proporcionado por este hardware.

Durante esta fase se generaron los grupos de pixeles de ajuste con aquellos cuya distancia fue mínima a un determinado prototipo, además se le dio un sentido semántico a los prototipos generados, asociando uno o más de ellos a un color determinado.

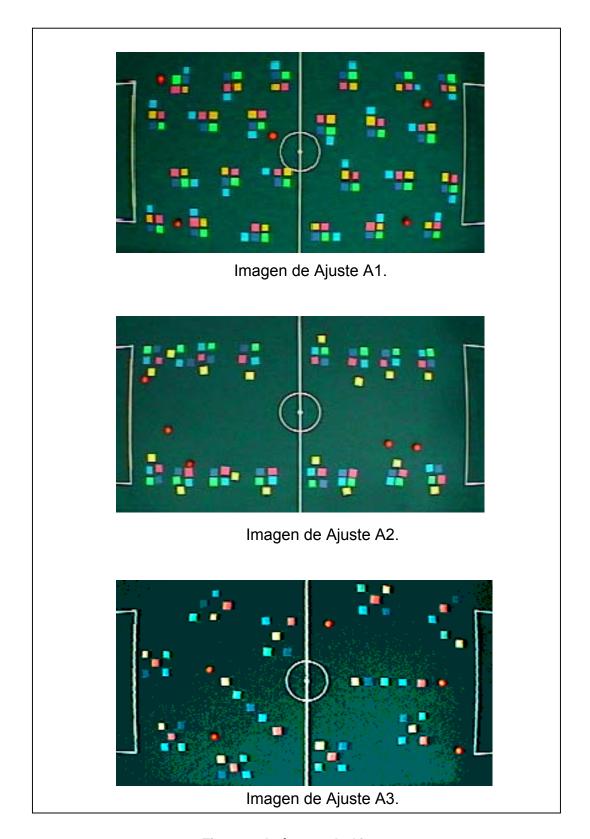


Figura 7. Imágenes de Ajuste.

Debido a la naturaleza de los métodos, al realizar distintas ejecuciones sobre un mismo grupo de parámetros los resultados varían levemente, se hizo necesario aplicar una medida de calidad a los grupos obtenidos para seleccionar a los mejor evaluados. La calidad se determinó en términos del promedio de las variaciones intra-grupo normalizada por el máximo valor de todas las variaciones intra-grupo : $E_k = \frac{1}{K \max_{j=1}^k \{e_j\}} \sum_{i=1}^k e_i \quad , \quad \text{donde} \quad , \quad e_k = \frac{1}{|C_k|} \sum_{x \in C_k} d(\vec{x}, \vec{m}_k) \quad , \quad \text{representa la distancia}$ promedio de todos los puntos en el grupo C_k a su centroide \vec{m}_k . [10]. Las agrupaciones con menor Ek se consideraron de mejor calidad.

2.2. Fase de Prueba

Durante la fase de prueba se utilizaron los prototipos generados para llevar a cabo el proceso de Clasificación de pixeles pertenecientes a un grupo de imágenes de prueba, y posteriormente el proceso de Evaluación de las clasificaciones realizadas.

2.2.1. Clasificación

Durante este proceso se determinó el color de los pixeles de una imagen de prueba, basándose en la información aportada por los prototipos generados por los distintos métodos.

De manera general, se clasifica un pixel de la imagen de prueba como un color en particular, si cada una de sus componentes RGB se encuentran dentro de un rango determinado para dicho color. Los distintos criterios utilizados en la formación de estos rangos generaron los siguientes esquemas de clasificación.

Clasificación 1.

Para cada color identificado en la imagen de ajuste se crearon todas las posibles duplas con los prototipos asociados, de manera que, la primera componente de ambos prototipos conforma un rango para el valor R, las segundas para el valor G y las últimas para las componentes B. Cada color presenta más de un posible rango para cada componente RGB.

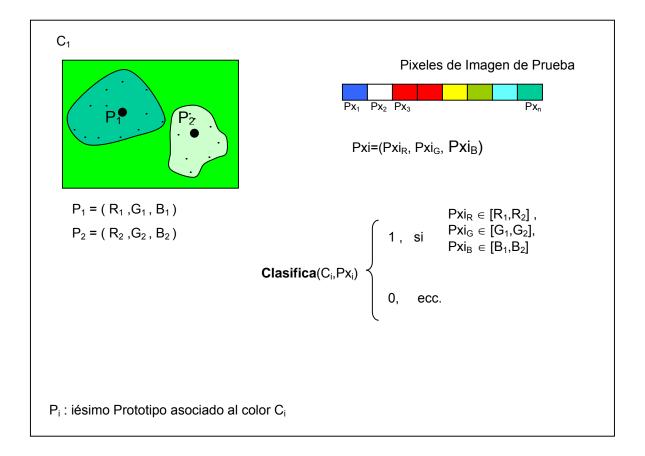


Figura 8. Clasificación 1. Formación de Rangos.

Clasificación 2.

Una vez calculados los prototipos, el grupo lo conforman los pixeles de la imagen de ajuste con la menor distancia a éste. Para este esquema de clasificación, los rangos se conformaron con la información suministrada por las componentes del pixel con menor distancia y con el de mayor distancia al prototipo dentro de cada grupo, de esta manera, cada color presentará un rango por cada prototipo asociado.

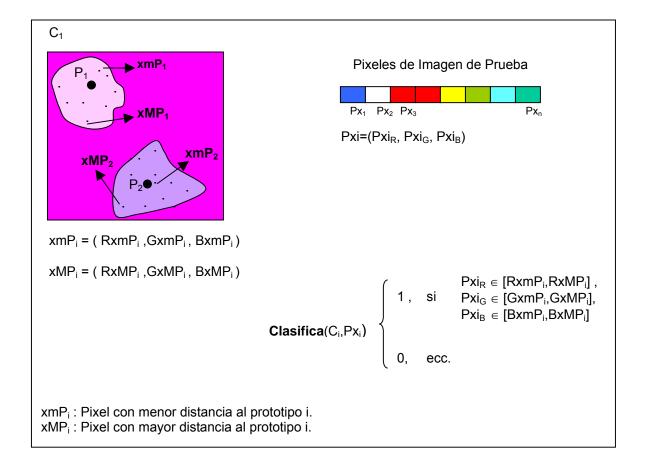


Figura 9. Clasificación 2. Formación de Rangos.

Clasificación 3.

En este esquema de clasificación se generó un rango de componentes por cada grupo obtenido. Los elementos del rango en su límite inferior lo determinan las componentes de menor valor de los pixeles que conforman el grupo, y el límite superior lo determinan las componentes de mayor valor dentro del grupo.

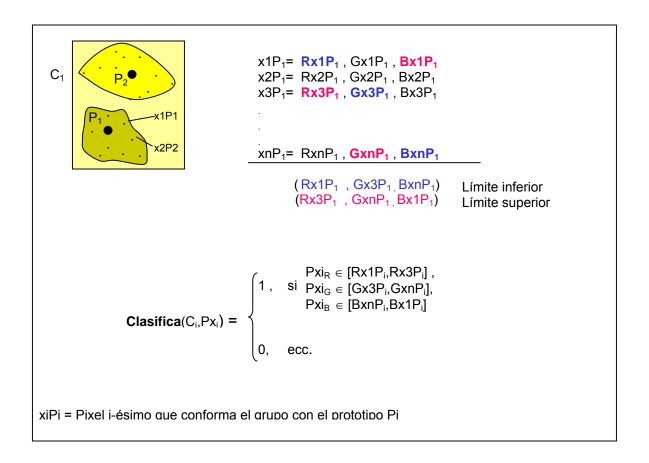


Figura 10. Clasificación 3. Formación de Rangos.

Clasificación 4

Este esquema de clasificación no se utilizó rangos de valores RGB. El pixel de prueba clasificó como un color determinado si su distancia Euclidea entre éste y un determinado prototipo es la menor a todos los demás.

En la siguiente figura se puede comparar visualmente los resultados obtenidos para la clasificación de una imagen. Como imagen de Ajuste se utilizó el archivo A2.BMP, al cual se le aplicó el proceso de Gas Neuronal para 60 grupos. Como imagen de Prueba se utilizó el archivo A2P1.BMP.

Para una mejor visualización el color verde grama asociado a la cancha de juego se le asigno el color blanco, y al color blanco (representado las líneas de división) se le asignó el color rojo. El color negro representa aquellos pixeles de tipo desconocido, es decir que no clasificaron en ningún umbral determinado.

55

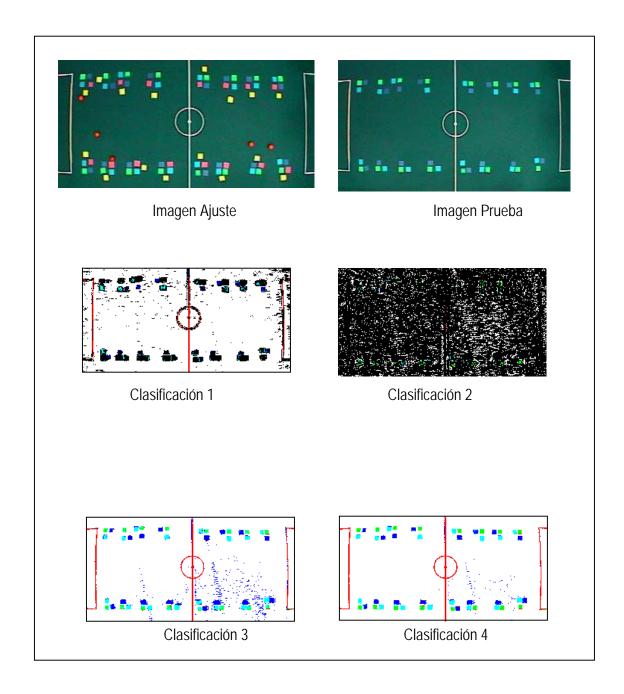


Figura 11. Resultados gráficos de la clasificación de una imagen de prueba.

2.2.2. Evaluación.

Para poder realizar la evaluación de la clasificación se determinó previamente en cada imagen de prueba a que color pertenece cada pixel, para poder realizar las comparaciones correspondientes.

La evaluación de los resultados del proceso de clasificación se realizó considerando dos criterios. El primero es muy general, y considera la cantidad de pixeles clasificados correcta e incorrectamente.

El segundo enfoque es una generalización del método para medir la calidad en clasificadores binarios[11], en este enfoque se diferencian los valores clasificados erróneamente en Falsos Positivos y Falsos Negativos, de esta manera la calidad del clasificador se puede medir en términos de Sensitividad, Especificidad y Precisión.

Los posibles valores obtenidos por el clasificador se pueden resumir en el siguiente cuadro:

		Valores Esperados	
		Р	N
Valores	Р	VP	FP
Clasificados	N	FN	VN

Donde:

P (Positivo): En las columnas de Valores Esperados, indica la certeza de un pixel de ser un color determinado. En las columnas de Valores Clasificados, indica el resultado al clasificar un pixel de un color determinado.

N (Negativo): En las columnas de Valores Esperados, indica la certeza de un pixel de no ser de un color determinado. En las columnas de Valores Clasificados, indica el resultado al no clasificar un pixel de un color determinado.

VP (Verdadero Positivo): Cuando se determina previamente que un pixel es de un color determinado y durante la clasificación se identifica correctamente.

FP (Falso Positivo): Cuando se conoce que un pixel no es de un determinado color y se clasifica como tal.

FN (Falso Negativo): Cuando se determina previamente que un pixel es de un color determinado y durante la clasificación no se identifica de ese color.

VN (Verdadero Negativo): Cuando se conoce que un pixel no es de un determinado color y no se clasifica como tal.

Tomando en cuenta estos valores se definen los siguientes indicadores: Sensitividad, Especificidad y Precisión.

Sensitividad: $\frac{VP}{VP + FN} \ll 1$, es la proporción entre el número de verdaderos positivos y el número de casos positivos.

Especificidad = $\frac{VN}{VN + FP}$ <= 1, es la proporción entre el número de verdaderos negativos y el número de casos negativos.

2.3. Resultados

Para cada imagen de ajuste se calcularon los prototipos para 20, 40 y 60 grupos. En el caso de Gas Neuronal se introdujo la variante del número de repeticiones de procesamiento de la data de ajuste, la cual varió en 20, 40 y 60 veces. Para cada caso se realizaron 15 ejercicios, seleccionando el que presentó el menor valor de Ek. Este valor es el que se refleja en las tablas 1 y 2.

Archivo	Grupos Calculados					
	20 40 60					
A1.bmp	0.4285569	0.3581325	0.3642253			
A2.bmp	0.4527037	0.4076459	0.3406717			
A3.bmp	0.3354619	0.2337568	0.1675794			

Tabla 1. Valores Ek. K-Medios

Archivo	Rep.	Gr	Grupos Calculados		
		20	40	60	
A1.bmp	20r	0.4339116	0.3729005	0.3467259	
	40r	0.4425032	0.3916045	0.3455330	
	60r	0.4241830	0.3908480	0.3415314	
A2.bmp	20r	0.4046357	0.3429867	0.3413542	
	40r	0.3999861	0.3473621	0.3366901	
	60r	0.4220771	0.3489355	0.3367939	
A3.bmp	20	0.3812937	0.2400563	0.1796194	
	40	0.3827882	0.3086839	0.1768501	
	60	0.3879647	0.3187587	0.1740058	

Tabla 2. Valores Ek. Gas-Neuronal

Es importante detallar los resultados obtenidos para el archivo A3.bmp. Los valores de Ek para 60 grupos, con Km o Gas Neuronal, son muy bajos comparados con los demás, en este caso se debe a que este número de grupos quedó sobredimensionado para las características del archivo, el cual tiene una resolución de 256 colores, no existe la variedad necesaria en los datos para generar 60 grupos, y quedan algunos donde sólo tienen como elemento al vector prototipo. Por lo contrario, cuando se calculan 20 prototipos, se pierde información, ya que no se puede diferenciar entre el amarillo y el fucsia. Un caso parecido ocurre para el archivo A2.bmp al calcular 20 grupos con Gas Neuronal, ya que no se diferencia entre el verde y cyan, y entre fucsia y anaranjado.

El archivo A3.bmp sólo se consideró para estos cálculos, la resolución con la que fue capturado no fue suficiente para obtener buenos resultados.

Cada imagen de ajuste tiene asociado un grupo de imágenes de prueba. El primer grupo está asociado a la imagen A1.bmp

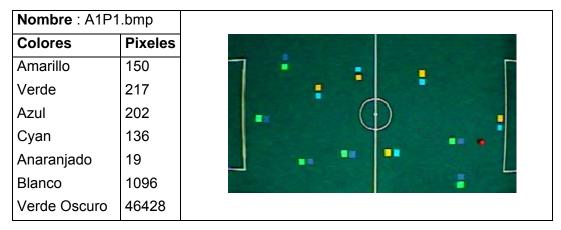


Figura 12. Imagen de prueba A1P1.bmp.

Nombre: A1P2	2.bmp
Colores	Pixeles
Amarillo	133
Verde	205
Azul	153
Cyan	158
Anaranjado	12
Blanco	1105
Verde Oscuro	46488

Figura 13. Imagen de prueba A1P2.bmp.

Nombre : A1P3	3.bmp
Colores	Pixeles
Amarillo	131
Fucsia	131
Cyan	130
Azul	122
Anaranjado	12
Blanco	1121
Verde Oscuro	46616

Figura 14. Imagen de prueba A1P3.bmp.

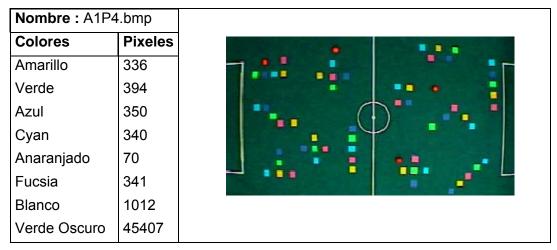


Figura 15. Imagen de prueba A1P4.bmp.

Nombre : A1P5	5.bmp	
Colores	Pixeles	
Amarillo	471	
Verde	597	
Azul	547	
Fucsia	470	1 1 1 1 1 1
Blanco	1039	
Verde Oscuro	45128	

Figura 16. Imagen de prueba A1P5.bmp.

Nombre : A1P6	6.bmp	
Colores	Pixeles	
Amarillo	422	7 # # #
Fucsia	428	
Cyan	475	
Azul	453	** ** ** **
Verde	571	
Blanco	1059	
Verde Oscuro	44842	

Figura 17. Imagen de prueba A1P6.bmp.

Figura 18. Imagen de prueba A1P7.bmp.

El segundo grupo está asociado a la imagen de ajuste A2.bmp

Figura 19. Imagen de prueba A2P1.bmp.

Nombre : A2P2	2.bmp
Colores	Pixeles
Fucsia	434
Verde	500
Azul	457
Cyan	476
Anaranjado	86
Blanco	879
Verde Oscuro	36207

Figura 20. Imagen de prueba A2P2.bmp

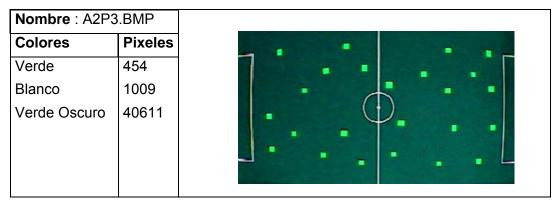


Figura 21. Imagen de prueba A2P3.bmp.

Nombre : A2P4	1.BMP
Colores	Pixeles
Verde	531
Cyan	552
Blanco	942
Verde Oscuro	40043

Figura 22. Imagen de prueba A2P4.bmp.

Nombre : A2P5	5.bmp
Colores	Pixeles
Verde	521
Azul	508
Cyan	503
Anaranjado	107
Blanco	1104
Verde Oscuro	39325

Figura 23. Imagen de prueba A2P5.bmp.

Luego de realizar la clasificación de los archivos de prueba, se procedió a la cuantificar los resultados, utilizándose el esquema de Evaluación 1, donde se consideran los pixeles clasificados correctamente e incorrectamente y el Esquema de Evaluación 2, donde se consideran los valores de Sensitividad, Especificidad y Precisión.

Los resultados de las distintas clasificaciones realizadas son las siguientes:

Caso 1. Archivo de Ajuste A1.bmp, K-Medios

Se pudo observar una constante donde se encontraban los mejores valores de las evaluaciones, estos casos correspondieron a la clasificación utilizando los prototipos calculados con 60 Grupos. En la Tabla 3, se encuentran los resultados de las evaluaciones con estas condiciones. En el Apéndice 5.1 se encuentran los resultados ampliados y detallados para cada archivo BMP de la Tabla 3.

Caso 2. Archivo de Ajuste A2.bmp, Gas Neuronal.

Los mejores valores de la evaluación se obtuvieron al utilizar los prototipos calculados para 60 Grupos y 20 repeticiones. Los resultados se encuentran en la Tabla 4. Ver Apéndice 5.2 para los resultados ampliados y detallados para este caso.

Caso 3. Archivo de ajuste A2.bmp. K-Medios.

Con el grupo de imágenes de prueba A2 también se obtuvieron los mejores resultados con 60 grupos. Resultados en la tabla 5. Ver Apéndice 5.3 para resultados detallados y ampliados.

Caso 4. Archivo de ajuste A2.bmp. Gas Neuronal

Con este grupo de imágenes de prueba los mejores resultados se encontraron para el caso de 60 Grupos con 40 repeticiones (Tabla 6). Ver Apéndice 5.4 para resultados detallados y ampliados.

Archivo de Ajuste: A1.BMP **Método:** K-Medios

Grupos: 60

A1P1.bmp	Esquen	Esquema Evaluación 1		
	P(+)		N(-)	
Clasif. 1		47.115		1.133
Clasif. 2		46.485		1.763
Clasif. 3		47.886		362
Clasif. 4		47.983		265

A1P2.bmp	Esquema Evaluación 1		
	P(+)	N(-)	
Clasif. 1	47.156	1.092	
Clasif. 2	46.543	1.705	
Clasif. 3	47.848	400	
Clasif. 4	47.953	295	

A1P3.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	47.387	861
Clasif. 2	46.675	1.573
Clasif. 3	47.901	347
Clasif. 4	47.973	275

A1P4.bmp	Esquei	Esquema Evaluación 1		
	P(+)	P(+) N(-)		
Clasif. 1		46.187		2.061
Clasif. 2		45.573		2.675
Clasif. 3		47.620		628
Clasif. 4		47.686		562

A1P5.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	45.947	2.301
Clasif. 2	45.320	2.928
Clasif. 3	47.731	517
Clasif. 4	47.703	545

A1P6.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	45.715	2.533
Clasif. 2	44.991	3.257
Clasif. 3	47.513	735
Clasif. 4	47.522	726

A1P7.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	46.403	1.845
Clasif. 2	45.734	2.514
Clasif. 3	47.746	502
Clasif. 4	47.799	449

Esquema Evaluación 2			
Sens.	Espec.	Prec.	
0,279079	0,911747	0,993291	
0,192697	0,861919	0,989560	
0,857158	0,986462	0,997856	
0,881167	0,995808	0,998431	

Esquema Evaluación 2			
Sens.		Espec.	Prec.
	0,272414	0,913709	0,993533
	0,189626	0,862076	0,989903
	0,927958	0,990286	0,997631
	0,935145	0,998336	0,998253

Esquema Evaluación 2			
Sens.	Espec.	Prec.	
0,332803	0,925732	0,994901	
0,216362	0,863153	0,990685	
0,944528	0,989497	0,997945	
0,964359	0,997993	0,998372	

	Esquema Evaluación 2			
Sens.		Espec.	Prec.	
	0,269677	0,910726	0,989321	
	0,196229	0,883670	0,986139	
	0,931928	0,992234	0,996746	
	0,943731	0,994885	0,997088	

Esquema Evaluación 2			
Sens.	Espec.	Prec.	
0,332798	0,878031	0,984103	
0,227079	0,844089	0,979771	
0,900406	0,981768	0,996428	
0,904315	0,983812	0,996235	

Esquema Evaluación 2			
Sens.	Espec.	Prec.	
0,311648	0,895550	0,985000	
0,196135	0,865223	0,980713	
0,931598	0,990439	0,995648	
0,929861	0,991084	0,995701	

Esquema Evaluación 2			
Sens.	Espec.	Prec.	
0,461591	0,828147	0,980880	
0,301800	0,766636	0,973947	
0,914721	0,974407	0,994798	
0,949104	0,985981	0,995347	

Tabla 3. Evaluación de Clasificación del grupo A1. 60, Km.

Archivo de Ajuste: A1.BMP Método: Gas Neuronal Grupos: 60 (20 Rep)

A1P1.bmp	Esquema Evaluación 1		
	P(+) N(-)		
Clasif. 1	47.008	1.240	
Clasif. 2	46.512	1.736	
Clasif. 3	47.849	399	
Clasif. 4	47.939	309	

A1P2.bmp	Esquema Evaluación 1		
	P(+) N(-)		
Clasif. 1	47.068	1.180	
Clasif. 2	46.573	1.675	
Clasif. 3	47.836	412	
Clasif. 4	47.942	306	

A1P3.bmp	Esquema Evaluación 1	
	P(+) N(-)	
Clasif. 1	47.310	938
Clasif. 2	46.713	1.535
Clasif. 3	47.861	387
Clasif. 4	47.955	293

A1P4.bmp	Esquema Evaluación 1	
	P(+) N(-)	
Clasif. 1	46.125	2.123
Clasif. 2	45.591	2.657
Clasif. 3	47.541	707
Clasif. 4	47.684	564

A1P5.bmp	Esquema Evaluación 1		
	P(+) N(-)		
Clasif. 1	45.860	2.388	
Clasif. 2	45.288	2.960	
Clasif. 3	47.568	680	
Clasif. 4	47.643	605	

A1P6.bmp	Esquema Evaluación 1		
	P(+)	N(-)	
Clasif. 1	45.693	2.555	
Clasif. 2	44.988	3.260	
Clasif. 3	47.424	824	
Clasif. 4	47.555	693	

A1P7.bmp	Esquema Evaluación 1	
	P(+) N(-)	
Clasif. 1	46.266	1.982
Clasif. 2	45.679	2.569
Clasif. 3	47.665	583
Clasif. 4	47.701 547	

Esquema Evaluación 2			
Sens.	ns. Espec. Prec.		
0,264708	0,903650	0,992657	
0,203212	0,864793	0,989720	
0,882647	0,990197	0,997637	
0,883243	0,995297	0,998170	

	Esquema Evaluación 2			
Sens.	Sens. Espec. Prec.			
	0,260440	0,905941	0,993012	
	0,203668	0,865449	0,990081	
	0,940694	0,993608	0,997560	
	0,936135	0,998145	0,998188	

Esquema Evaluación 2				
Sens. Espec. Prec.				
0,328	3900	0,91899	91	0,994445
0,207	7532	0,86698	36	0,990910
0,964	1102	0,99402	24	0,997708
0,962	2248	0,9978	52	0,998265

Esquema Evaluación 2			
Sens. Espec. Prec.			
0,269934	0,908039	0,988999	
0,205414	0,884709	0,986233	
0,935624	0,992893	0,996337	
0,946300	0,995624	0,997078	

Esquema Evaluación 2			
Sens. Espec. Prec.			
0,324453	0,874282	0,983502	
0,217757	0,843128	0,979550	
0,911146	0,982841	0,995302	
0,915004	0,984750	0,995820	

Esquema Evaluación 2			
Sens.	Espec.	Prec.	
0,322354	0,894861	0,984870	
0,198780	0,865447	0,980695	
0,933459	0,989156	0,995120	
0,946616	0,991571	0,995896	

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,424752	0,815334	0,979460
0,292434	0,763698	0,973377
0,929575	0,978478	0,993958
0,937606	0,981579	0,994331

Tabla 4. Evaluación de clasificación del Grupo A1. 60 Grupos (20r), Gas Neuronal

Archivo de Ajuste: A2.BMP

Método: K-Medios

Grupos: 60

A2P1.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	37.547	1.492
Clasif. 2	36.849	2.190
Clasif. 3	37.783	1.256
Clasif. 4	38.000	1.039

A2P2.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	37.220	1.819
Clasif. 2	36.453	2.586
Clasif. 3	38.235	804
Clasif. 4	38.519	520

A2P3.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	44.100	828
Clasif. 2	43.466	1.462
Clasif. 3	44.626	302
Clasif. 4	44.760	168

A2P4.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	43.780	1.148
Clasif. 2	43.051	1.877
Clasif. 3	44.606	322
Clasif. 4	44.713	215

A2P5.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	43.186	1.742
Clasif. 2	42.277	2.651
Clasif. 3	43.612	1.316
Clasif. 4	43.836	1.092

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,479774	0,883801	0,984713
0,242943	0,809785	0,977561
0,835329	0,962055	0,987131
0,858557	0,967491	0,989354

Esquema Evaluación 2		
Sens.	Espec. Prec.	
0,384728	0,913148	0,986687
0,233029	0,870019	0,981074
0,910913	0,990523	0,994116
0,935372	0,994753	0,996194

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,565871	0,822361	0,987714
0,344398	0,671741	0,978306
0,930632	0,960714	0,995519
0,983866	0,990584	0,997507

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,540008	0,864868	0,987224
0,314673	0,768743	0,979911
0,928270	0,977682	0,996416
0,958802	0,990184	0,997607

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,410806	0,904072	0,987076
0,215042	0,840804	0,980332
0,795374	0,967979	0,990236
0,831140	0,973436	0,991898

Tabla 5. Evaluación de clasificación del Grupo A2. 60 Grupos, K-Medios

Archivo de Ajuste: A2.BMP Método: Gas Neuronal Grupos: 60 (40 Rep)

A2P1.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	37.421	1.618
Clasif. 2	36.829	2.210
Clasif. 3	38.004	1.035
Clasif. 4	38.103	936

A2P2.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	36.992	2.047
Clasif. 2	36.364	2.675
Clasif. 3	38.444	595
Clasif. 4	38.530	509

A2P3.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	44.130	798
Clasif. 2	43.494	1.434
Clasif. 3	44.627	301
Clasif. 4	44.741	187

A2P4.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	43.623	1.305
Clasif. 2	43.054	1.874
Clasif. 3	44.576	352
Clasif. 4	44.662	266

A2P5.bmp	Esquema Evaluación 1	
	P(+)	N(-)
Clasif. 1	42.992	1.936
Clasif. 2	42.285	2.643
Clasif. 3	43.766	1.162
Clasif. 4	43.905	1.023

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,387728	0,863744	0,983422
0,235117	0,807856	0,977356
0,796475	0,954411	0,989395
0,818816	0,958489	0,990410

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,306834	0,899123	0,985019
0,202308	0,866137	0,980423
0,872401	0,985830	0,995645
0,879567	0,987175	0,996275

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,576104	0,829196	0,988159
0,363904	0,678781	0,978722
0,936212	0,960281	0,995534
0,975330	0,984492	0,997225

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,462547	0,843953	0,985477
0,319822	0,769820	0,979144
0,896093	0,969501	0,996083
0,924978	0,979411	0,997040

Esquema Evaluación 2		
Sens.	Espec.	Prec.
0,325887	0,887324	0,985636
0,213489	0,840777	0,980391
0,763114	0,962001	0,991379
0,791971	0,965485	0,992410

Tabla 6. Evaluación de clasificación del Grupo A2. 60 Grupos (40r), Gas Neuronal

Caso 5. Umbrales del módulo de visión.

Actualmente el módulo de visión del equipo de Futbot del Laboratorio, realiza la clasificación de colores asignándole manualmente un umbral (en sus componentes R G y B) a los colores a identificar, de acuerdo a las variaciones del ambiente hay que reajustarlos manualmente. Estos umbrales se utilizaron como prototipos al realizar la clasificación de las imágenes de prueba del grupo A1 y A2.

Todos los colores tienen asignado un umbral, a excepción del color Blanco, el cual actúa como un color por defecto, cuando un pixel de prueba no se encuentra entre ningún umbral pre-definido se clasifica como color Blanco. Los valores utilizados para los experimentos fueron:

Color	RGB mínimo	RGB Máximo
Azul	0, 0, 100	100, 145, 255
Rojo	120, 0 ,0	255, 120, 120
Amarillo	125, 162, 0	255, 255, 125
Verde	0, 120, 0	100, 255, 170
Magenta	120, 0, 120	255, 150, 255
Cyan	0, 170, 170	100, 255, 255
Campo	0, 0, 0	120, 125, 125

Tabla 7. Valores de umbral ajustados manualmente.

Dado que los esquemas de clasificación 2 y 3 utilizan información de los grupos generados por los prototipos con los pixeles de ajuste, para formar los rangos de colores, y que no se dispone de esta información con los valores de umbral, sólo se cuantificaron los resultados para el esquema de clasificación 1 y 4.

Los valores especificados en la tabla 8 corresponden a los resultados de clasificar utilizando los valores de umbral, para el grupo de archivos A1, y la tabla 9 tiene los valores de las clasificaciones para los archivos A2. Los Apéndices 5.5 y 5.6 contienen los valores detallados para estos casos.

Archivo de Prueba: Grupo A1.

A1P1.bmp	Esquema d	Evaluación 1	Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	4754	700	0,917146	0,997312	0,995855
Clasif 4	340	8 44840	0,556459	0,831070	0,734467

A1P2.bmp	Esquema de Evaluación 1		Esquema de Evaluación 2		
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	47505	743	0,942250	0,997789	0,995600
Clasif 4	3875	44373	0,571931	0,831158	0,737233

A1P3.bmp	Esquema de Evaluación 1		Esquema de Evaluación 2		n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	47749	499	0,958742	0,998515	0,997045
Clasif 4	10023	38225	0,466698	0,830974	0,773640

A1P4.bmp	Esquema de Evaluación 1		Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	47036	1212	0,910978	0,996339	0,993720
Clasif 4	7808	40440	0,507134	0,872078	0,790458

A1P5.bmp	Esquema de Evaluación 1		Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	47086	1162	0,841138	0,993429	0,991972
Clasif 4	7986	40262	0,465969	0,802880	0,721840

A1P6.bmp	Esquema d	e Evaluación 1	Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	4667	6 1572	0,867056	0,994504	0,990691
Clasif 4	904	7 39201	0,459826	0,847176	0,767860

A1P7.bmp	Esquema de Evaluación 1		Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	47236	1012	0,888073	0,992723	0,989513
Clasif 4	6324	41924	0,396650	0,697073	0,565536

Tabla 8. Evaluación de clasificación del Grupo A1. Valores de umbral

Archivo de Prueba: Grupo A2

A2P1.bmp	Esquema de Evaluación 1		Esquema de Evalua		n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	35873	3166	0,713981	0,962918	0,967561
Clasif 4	5191	33848	0,420872	0,781032	0,653188

A2P2.bmp	Esquema de Evaluación 1		Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	36526	2513	0,799579	0,990685	0,981608
Clasif 4	4418	34621	0,447966	0,848201	0,746620

A2P3.bmp	Esquema de Evaluación 1		Esquema de Evaluación 2		
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	44388	540	0,866810	0,995939	0,991987
Clasif 4	5537	39391	0,370135	0,612879	0,415494

A2P4.bmp	Esquema de Evaluación 1		Esque	ma de Evaluació	n 2
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	4437	550	0,871785	0,996897	0,993879
Clasif 4	656	7 38361	0,484743	0,735443	0,573084

A2P5.bmp	Esquema de Evaluación 1		Esque	n 2	
	P (+)	N(-)	Sensitividad	Especificidad	Precisión
Clasif 1	42563	2365	0,754453	0,974523	0,982453
Clasif 4	3941	40987	0,472135	0,806505	0,695906

Tabla 9. Evaluación de clasificación del Grupo A2. Valores de umbral

Como se puede ver, los umbrales predefinidos no se adaptan bien a una clasificación por distancia mínima como lo es el caso de la clasificación tipo 4, al utilizarlos es conveniente realizar la clasificación tipo 1.

En las tablas 10 y 11 se comparan los mejores valores para Km, Gas y Umbrales predefinidos, para los dos grupos de archivos de prueba.

Archivo de Prueba: Grupo A1

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.983	265	0,881167	0,995808	0,998431
Gas	47.939	309	0,883243	0,995297	0,998170
Umbrales	47.548	700	0,917146	0,997312	0,995855

A1P2.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.953	295	0,935145	0,998336	0,998253
Gas	47.942	306	0,936135	0,998145	0,998188
Umbrales	47.505	743	0,942250	0,997789	0,995600

A1P3.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.973	275	0,964359	0,997993	0,998372
Gas	47.955	293	0,962248	0,997852	0,998265
Umbrales	47.749	499	0,958742	0,998515	0,997045

A1P4.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.686	562	0,943731	0,994885	0,997088
Gas	47.684	564	0,946300	0,995624	0,997078
Umbrales	47.036	1212	0,910978	0,996339	0,993720

A1P5.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.703	545	0,904315	0,983812	0,996235
Gas	47.643	605	0,915004	0,984750	0,995820
Umbrales	47.086	1162	0,841138	0,993429	0,991972

A1P6.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.522	726	0,929861	0,991084	0,995701
Gas	47.555	693	0,946616	0,991571	0,995896
Umbrales	46.676	1572	0,867056	0,994504	0,990691

A1P7.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	47.799	449	0,949104	0,985981	0,995347
Gas	47.701	547	0,937606	0,981579	0,994331
Umbrales	47.236	1012	0,888073	0,992723	0,989513

Tabla 10. Comparación de Clasificación: Km, Gas N., Umbrales. Grupo A1

Archivo de Prueba: Grupo A2

A2P1.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	38.000	1.039	0,858557	0,967491	0,989354
Gas	38.103	936	0,818816	0,958489	0,990410
Umbrales	35.873	3166	0,713981	0,962918	0,967561

A2P2.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	38.519	520	0,935372	0,994753	0,996194
Gas	38.530	509	0,879567	0,987175	0,996275
Umbrales	36.526	2513	0,799579	0,990685	0,981608

A2P3.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	44.760	168	0,983866	0,990584	0,997507
Gas	44.741	187	0,975330	0,984492	0,997225
Umbrales	44.388	540	0,866810	0,995939	0,991987

A2P4.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	44.713	215	0,958802	0,990184	0,997607
Gas	44.662	266	0,924978	0,979411	0,997040
Umbrales	44.378	550	0,871785	0,996897	0,993879

A2P5.bmp

	P(+)	N(-)	Sens.	Espec.	Prec.
Km	43.836	1.092	0,831140	0,973436	0,991898
Gas	43.905	1.023	0,791971	0,965485	0,992410
Umbrales	42.563	2365	0,754453	0,974523	0,982453

Tabla 11. Comparación de Clasificación: Km, Gas N., Umbrales. Grupo A2

Con respecto a los archivos de prueba A1, los mejores valores se obtuvieron con los prototipos generados con K-medios de 60 grupos, y Gas Neuronal de 60 Grupos 20 Repeticiones respectivamente. Para estos métodos el esquema de clasificación utilizado es el de distancia mínima a los prototipos generados (tipo 4).

Para los archivos de prueba A2 no siempre es con K-medios que se encuentran los mejores prototipos para la clasificación, el Gas neuronal, también arroja buenos resultados al respecto, el único punto a considerar para este método, es que el tiempo de ejecución (para un experimento) invertido en la generación de los prototipos (aproximadamente 186 seg.) es un poco más del doble que el tiempo utilizado con K-Medios (85 seg.).

El tiempo promedio invertido en cada etapa del proceso de clasificación es el siguiente:

- Clasificación de Umbrales: 0.082 seg.
- Clasificación Tipo 1 (Duplas de Prototipos): 0.25 seg.
- Clasificación Tipo 2 (Pixeles min/max distancia): 0.184 seg.
- Clasificación Tipo 3 (Componentes min/max): 0.108 seg.
- Clasificación Tipo 4 (Mínima distancia) :0.35 seg.

79

El proceso de asociación de prototipos generados con los distintos métodos y los colores de la imagen a procesar, se lleva a cabo manualmente, aproximadamente tarda 600 seg.

Cada método tarda aproximadamente durante su ejecución lo siguiente:

- K- Medios para 60 grupos: 88 seg.
- Gas Neuronal para 60 Grupos y 20 Repeticiones: 96 seg.
- Gas Neuronal para 60 Grupos y 40 Repeticiones: 186 seg.

3. CONCLUSIONES.

Los métodos estudiados: K-Medios y Gas Neuronal con crecimiento dinámico logran resolver el problema de identificación de colores en una imagen digital con un porcentaje de acierto en más de un 98%.

Si bien el método de Gas Neuronal realiza una buena partición de la data, incluso en algunos casos con resultados superiores a K-Medios, tiene un algoritmo de mayor complejidad, lo que trae como consecuencia que el tiempo de ejecución con este método sea mayor.

Al comparar los resultados obtenidos con K-Medios y Gas Neuronal contra los resultados del método de umbral se tienen dos resultados: uno en cuanto a la precisión en la identificación de nuevos pixeles y otro referente a la generación de prototipos.

Para el primer caso los métodos K-Medios y Gas Neuronal arrojaron un porcentaje de aciertos entre el 98.8% y el 99%, en contraposición con el método de los umbrales cuyo porcentaje de cierto fue de 97.4% a 98.5%.

Si bien es cierto, que es muy importante la precisión en la clasificación, debe existir un equilibrio entre este valor y el tiempo empleado en la generación de los prototipos. Cada

vez que es necesario reajustar los umbrales en el sistema de visión actual se pueden emplear entre 10 y 30 minutos.

Un ciclo completo de entrenamiento para K-Medios con una imagen de 48300 pixeles y 60 grupos tarda aproximadamente 24 minutos, esto incluye 10 corridas para seleccionar el mejor Ek y el tiempo de la asignación semántica a los prototipos encontrados.

Para el caso de Gas Neuronal, dependiendo de la cantidad de repeticiones de procesamiento de la data, puede estar entre 36 y 41 minutos.

Los futuros trabajos deberían enfocarse a mejorar el equilibrio entre la velocidad de procesamiento y la precisión en la clasificación.

Con respecto a la velocidad, específicamente para el Gas Neuronal, se podría estudiar un generador de números aleatorios de mayor velocidad que el Mersenne Twister [12] utilizado actualmente.

El proceso mediante el cual se le asigna una interpretación semántica a los prototipos es realizado manualmente, se podría mejorar la velocidad del entrenamiento generando una interfaz que permita abrir simultáneamente los archivos involucrados y agilizar el proceso de asociación entre los prototipos y los colores.

Por último, los prototipos iniciales para K-medios, se obtienen aleatoriamente de la data de ajuste, se podría estudiar una estrategia diferente, que permita obtener los resultados mas rápidamente.

4. BIBLIOGRAFÍA.

- [1] http://www.robocup.org
- [2] B. Everitt, "Cluster Analysis", Halsted Press, 1980.
- [3] D. Maravall Gomez-Allende, "Reconocimiento de Formas y Visión Artificial", Addison-Wesley Iberoamericana, RA-MA, 1993
- [4] J. Mauldin, "Luz, Láser y Óptica", McGraw-Hill, 1992
- [5] M. Alonso, E. Finn, "Física", Volumen II, Campos y Ondas, Fondo Educativo Interamericano, S.A. 1976.
- [6] G. Shortley, D. Williams, "Física", Tomo III, URMO, 1976,
- [7] Enciclopedia Hispánica, Tomo 4, pp 199-200
- [8] B. Fritzke, "Some Competitive Learning Methods",5-4-97.
- [9] J. Moreno, Apuntes de Clases. Computación Neuronal, 2001
- [10] 0, Pentakalos, D. Menascé, Y.Yesha. Automated Clustering-Base Workload Characterizacion.
- [11] K. Veropoulos, C.Campbell, N.Cristianini. Cotrolling the Sensitivity of support vector Machines.
- [12] http://www.keio.ac.jp\matumoto\emt.html

5. APÉNDICES.

5.1.- Evaluación detallada de la clasificación utilizando el archivo de ajuste A1.bmp con k-medios.

Este Apéndice contiene información detallada por colores de los valores indicados en la tabla 3, la cual muestra los resultados de la clasificación para el grupo de prueba A1 utilizando el método K-Medios para 60 grupos. Las columnas identificadas con P(+) y N(-) indican la cantidad de pixeles clasificados de manera correcta e incorrecta respectivamente para cada tipo de Clasificación.

Archivo de Prueb	a: A1P1.E	3MP							
			Esquer	na de Eva	luación 1				
60 Grupos	S	Clasifi	cación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
AZUL	202	47	155	11	191	176	26	173	29
VERDE	217	6	211	18	199	211	6	213	4
AMARILLO	150	4	146	7	143	142	8	142	8
AZUL CLARO	136	13	123	6	130	129	7	136	0
ANARANJADO	19	0	19	2	17	8	11	8	11
BLANCO	1096	626	470	17	1079	924	172	1059	37
CANCHA	46428	46419	9	46424	4	46296	132	46252	176
Total		47115	1133	46485	1763	47886	362	47983	265
			Esquer	na de Eva	luación 2				
Sensitividad			0,279079 0,192697			0,857158	0,8	381167	
Especificidad			0,911747	0,861919		0,986462		0,9	995808
Precisión			0,993291		0,989560		0,997856	0,9	998431

Tabla 12. Evaluación de la Clasificación de A1P1.bmp. (60 grupos,KM)

Archivo de pruek	Archivo de prueba: A1P2.BMP								
			Esquen	na de Eva	luación 1				
60 Grupo	s	Clasifi	icación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
AMARILLO	133	5	128	6	127	133	0	133	0
AZUL	153	29	124	10	143	144	9	147	6
AZUL CLARO	158	10	148	5	153	151	7	153	5
VERDE	205	6	199	17	188	203	2	198	7
ANARANJADO	12	0	12	1	11	9	3	8	4
BLANCO	1105	646	453	21	1078	949	150	1088	11
CANCHA	46488	46460	28	46483	5	46259	229	46226	262
Total		47156	1092	46543	1705	47848	400	47953	295
			Esquen	na de Eva	luación 2				
Sensitividad	ensitividad				0,189626		0,927958	0,0	93514
Especificidad			0,913709	0,862076		0,990286		0,0	99833
Precisión			0,993533		0,989903		0,997631	0,0	9825

Tabla 13. Evaluación de la Clasificación de A1P2.bmp. (60 grupos,KM)

Archivo de prueb	a: A1P3.E	3MP							
			Esquen	na de Eva	luación 1				
60 Grupo	s	Clasif	icación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
AZUL	122	42	80	10	112	115	7	116	6
AZUL CLARO	130	19	111	2	128	130	0	130	0
FUCSIA	131	26	105	27	104	129	2	131	0
AMARILLO	131	2	129	3	128	130	1	130	1
ANARANJADO	12	0	12	2	10	10	2	10	2
BLANCO	1121	692	414	24	1082	954	152	1083	23
CANCHA	46616	46606	10	46607	9	46433	183	46373	243
Total		47387	861	46675	1573	47901	347	47973	275
			Esquen	na de Eva	luación 2				
Sensitividad			0,332803		0,216362	0,944528		0,9	964359
Especificidad			0,925732		0,863153	0,989497 0,		997993	
Precisión			0,994901		0,990685		0,997945	0,9	98372

Tabla 14. Evaluación de la Clasificación de A1P3.bmp. (60 grupos,KM)

Archivo de prueb	a: A1P4.E	BMP							
			Esquen	na de Eva	luación 1				
60 Grupo	S	Clasifi	icación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
FUCSIA	341	57	284	69	272	331	10	334	7
AZUL	350	93	257	18	332	312	38	305	45
AZUL CLARO	340	27	313	8	332	330	10	340	0
AMARILLO	336	2	334	7	329	324	12	318	18
VERDE	394	11	383	71	323	373	21	370	24
ANARANJADO	70	0	70	5	65	57	13	59	11
BLANCO	1012	618	392	21	989	916	94	990	20
CANCHA	45407	45379	28	45374	33	44977	430	44970	437
Total		46187	2061	45573	2675	47620	628	47686	562
			Esquen	na de Eva	luación 2				
Sensitividad			0,269677		0,196229	(0,931928	0,9	943731
Especificidad			0,910726		0,883670		0,992234	0,9	994885
Precisión			0,989321		0,986139		0,996746	0,9	97088

Tabla 15. Evaluación de la Clasificación de A1P4.bmp. (60 grupos,KM)

Archivo de prue	ba : A1P5	.BMP							
			Esquen	na de Eva	luación 1				
60 Grupo	os	Clasifi	cación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	olor Pixeles P(+)		N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	597	18	579	89	508	578	19	576	21
AZUL	547	135	412	21	526	416	131	438	109
AMARILLO	471	3	468	10	461	411	60	385	86
FUCSIA	470	53	417	66	404	429	41	415	55
BLANCO	1039	622	413	14	1021	923	112	999	36
CANCHA	45128	45116	12	45120	8	44974	154	44890	238
Total		45947	2301	45320	2928	47731	517	47703	545
			Esquen	na de Eva	luación 2				
Sensitividad 0,332798			0,332798		0,227079	0,900406		0,9	904315
Especificidad			0,878031		0,844089	0,981768		8 0,9838	
Precisión			0,984103	0,996428 0,99				996235	

Tabla 16. Evaluación de la Clasificación de A1P5.bmp. (60 grupos,KM)

Archivo de pruek	a: A1P6.l	BMP							
			Esquen	na de Eva	luación 1				
60 Grupo	s	Clasifica	ción 1	Clasificación 2		Clasifica	ación 3	Clasifica	ición 4
Color	lor Pixeles P(+)		N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	571	21	550	74	497	556	15	552	19
AZUL	453	137	316	23	430	379	74	372	81
AMARILLO	422	2	420	9	413	392	30	359	63
FUCSIA	428	49	379	57	371	410	18	399	29
AZUL CLARO	475	50	425	10	465	447	28	463	12
BLANCO	1059	654	403	19	1038	944	113	1030	27
CANCHA	44842	44802	40	44799	43	44385	457	44347	495
Total		45715	2533	44991	3257	47513	735	47522	726
			Esquen	na de Eva	luación 2				
Sensitividad		0,	0,311648		0,196135	0,931598		0,	929861
Especificidad	Especificidad			0,865223		0,990439		0,99108	
Precisión		0,	0,985000		0,980713		0,995648	0,995701	

Tabla 17. Evaluación de la Clasificación de A1P6.bmp. (60 grupos,KM)

Archivo de pr	ueba : A1P	7.BMP											
	Esquema de Evaluación 1												
40 Gru	pos	Clasific	cación 1	Clasific	ación 2	Clasific	ación 3	Clasifica	ción 4				
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)				
VERDE	833	18	815	110	723	804	29	809	24				
AZUL	770	166	604	38	732	624	146	659	111				
BLANCO	1076	652	418	28	1042	950	120	1044	26				
CANCHA	45575	45567	8	45558	17	45368	207	45287	288				
Total		46403	1845	45734	2514	47746	502	47799	449				
			Esquen	na de Eva	luación 2								
Sensitividad	Sensitividad				0,301800	0,914721		0,9	949104				
Especificidad			0,828147		0,766636		0,974407	0,9	985981				
Precisión	0,980880 0,973947 0,994798			0,995347									

Tabla 18. Evaluación de la Clasificación de A1P7.bmp. (60 grupos,KM)

5.2.- Evaluación detallada de la clasificación utilizando el archivo de ajuste A1.bmp con gas neuronal.

Este Apéndice contiene información detallada por colores de los valores indicados en la tabla 4, la cual muestra los resultados de la clasificación para el grupo de prueba A1 utilizando el método de Gas Neuronal para 60 grupos con 20 repeticiones. Las columnas identificadas con P(+) y N(-) indican la cantidad de pixeles clasificados de manera correcta e incorrecta respectivamente para cada tipo de Clasificación.

Archivo de Pruek	a: A1P1.E	3MP											
	Esquema de Evaluación 1												
60 Grupos 20) Rep	Clasific	ación 1	Clasifica	ición 2	Clasific	ación 3	Clasifica	ición 4				
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)				
AZUL	202	34	168	9	193	178	24	175	27				
VERDE	217	7	210	9	208	210	7	212	5				
AMARILLO	150	11	139	1	149	144	6	143	7				
AZUL CLARO	136	14	122	24	112	130	6	136	0				
ANARANJADO	19	0	19	2	17	10	9	8	11				
BLANCO	1096	522	574	53	1043	978	118	1063	33				
CANCHA	46428	46420	8	46414	14	46199	229	46202	226				
Total		47008	1240	46512	1736	47849	399	47939	309				
			Esquema	de Evalu	ación 2								
Sensitividad	64708	0,20	03212	0	,882647	0,88	83243						
Especificidad	Especificidad 0,90			3650 0,864793		0,990197		0,995297					
Precisión		0,99	2657	2657 0,989720			,997637	0,998170					

Tabla 19. Evaluación de la Clasificación de A1P1.bmp (60 grupos,20 rep, GN).

Archivo de Prueba:	A1P2.BM	P							
		E	squema d	e Evalu	ación 1				
60 Grupos 20	Rep	Clasific	cación 1	Clasificación 2		Clasific	ación 3	Clasifica	ación 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
AMARILLO	133	7	126	3	130	133	0	133	0
AZUL	153	24	129	7	146	145	8	146	7
AZUL CLARO	158	15	143	26	132	149	9	153	5
VERDE	205	4	201	13	192	196	9	201	4
ANARANJADO	12	0	12	1	11	10	2	8	4
BLANCO	1105	549	550	51	1048	1001	98	1087	12
CANCHA	46488	46469	19	46472	16	46202	286	46214	274
Total		47068	1180	46573	1675	47836	412	47942	306
		Е	squema d	e Evalu	ación 2				
Sensitividad			0,260440		03668	0,940694		0,9	36135
Especificidad		0	,905941	0,865449		0,993608		0,998145	
Precisión	_	0	,993012	0,99	90081	0,997	560	0,9	98188

Tabla 20. Evaluación de la Clasificación de A1P2.bmp (60 grupos,20 rep, GN).

Archivo de Prueba:	Archivo de Prueba: A1P3.BMP								
		Е	squema d	e Evalu	ación 1				
60 Grupos 20	Rep	Clasific	Clasificación 1		Clasificación 2		ación 3	Clasifica	ación 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
AZUL	122	28	94	12	110	121	1	118	4
AZUL CLARO	130	32	98	16	114	128	2	125	5
FUCSIA	131	22	109	23	108	131	0	131	0
AMARILLO	131	15	116	0	131	129	2	131	0
ANARANJADO	12	0	12	0	12	11	1	10	2
BLANCO	1121	602	504	62	1044	969	137	1083	23
CANCHA	46616	46611	5	46600	16	46372	244	46357	259
Total		47310	938	46713	1535	47861	387	47955	293
		Е	squema d	e Evalu	ación 2				
Sensitividad	Sensitividad				7532	0,96	64102	0,9	62248
Especificidad		0	,918991	0,86	66986	0,99	94024	0,9	97852
Precisión		0	,994445	0,99	90910	0,99	97708	0,9	98265

Tabla 21. Evaluación de la Clasificación de A1P3.bmp (60 grupos,20 rep, GN).

Archivo de Prueba:	A1P4.BM	P							
		Е	squema d	e Evalu	ación 1				
60 Grupos 20	rep	Clasific	cación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
FUCSIA	341	61	280	66	275	338	3	334	7
AZUL	350	77	273	21	329	315	35	310	40
AZUL CLARO	340	41	299	52	288	330	10	338	2
AMARILLO	336	32	304	1	335	326	10	331	5
VERDE	394	12	382	47	347	367	27	377	17
ANARANJADO	70	0	70	6	64	57	13	56	14
BLANCO	1012	520	490	30	980	928	82	989	21
CANCHA	45407	45382	25	45368	39	44880	527	44949	458
Total		46125	2123	45591	2657	47541	707	47684	564
		E	squema d	e Evalu	ación 2				
Sensitividad		0,2	69934	0,20	05414	0,	935624	0,94	46300
Especificidad	Especificidad 0,9		08039	0,884709		0,992893		0,995624	
Precisión		0,9	88999	0,98	36233	0,	996337	0,99	97078

Tabla 22. Evaluación de la Clasificación de A1P4.bmp (60 grupos,20 rep, GN).

Archivo de Prueba	a: A1P5.BM	1P							
		E	squema d	e Evalu	ación 1				
60 Grupos 2	0 rep	Clasific	ación 1	Clasificación 2		Clasific	ación 3	Clasifica	ción 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	597	21	576	45	552	580	17	589	8
AZUL	547	103	444	29	518	419	128	399	148
AMARILLO	471	37	434	10	461	442	29	436	35
FUCSIA	470	63	407	54	416	424	46	418	52
BLANCO	1039	529	506	44	991	928	107	1000	35
CANCHA	45128	45107	21	45106	22	44775	353	44801	327
Total		45860	2388	45288	2960	47568	680	47643	605
		Е	squema d	e Evalu	ación 2				
Sensitividad	Sensitividad 0,324453 0,217757 0,911146 0,915004								15004
Especificidad		0,8	74282	0,84	13128	0	,982841	0,98	34750
Precisión		0,9	83502	0,97	79550	0,	,995302	0,99	95820

Tabla 23. Evaluación de la Clasificación de A1P5.bmp (60 grupos,20 rep, GN).

Archivo de Prueba	: A1P6.BM	Р							
		E	squema d	e Evalu	ación 1				
60 Grupos 20	Rep	Clasific	cación 1	Clasificación 2		Clasific	ación 3	Clasifica	ición 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	571	23	548	50	521	557	14	561	10
AZUL	453	122	331	38	415	382	71	373	80
AMARILLO	422	43	379	9	413	400	22	408	14
FUCSIA	428	74	354	39	389	407	21	401	27
AZUL CLARO	475	68	407	40	435	441	34	449	26
BLANCO	1059	560	497	26	1031	952	105	1039	18
CANCHA	44842	44803	39	44786	56	44285	557	44324	518
Total		45693	2555	44988	3260	47424	824	47555	693
		Е	squema d	e Evalu	ación 2				
Sensitividad		0	,322354	0,19	98780	0,	933459	0,94	46616
Especificidad			0,894861		0,865447		989156	0,991571	
Precisión		0	0,984870		0,980695		0,995120		95896

Tabla 24. Evaluación de la Clasificación de A1P6.bmp (60 grupos,20 rep, GN).

Archivo de Pru	eba: A1P7.B	MP							
		Е	squema d	e Evalu	ación 1				
60 Grupos	20 rep	Clasifica	ación 1	Clasific	Clasificación 2		ación 3	Clasifica	ación 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	833	20	813	54	779	796	37	819	14
AZUL	770	119	651	47	723	640	130	609	161
BLANCO	1076	557	513	48	1022	1005	65	1053	17
CANCHA	45575	45570	5	45530	45	45224	351	45220	355
Total		46266	1982	45679	2569	47665	583	47701	547
		E	squema d	e Evalu	ación 2				
Sensitividad		0	,424752	0	,292434	0	,929575	0,9	37606
Especificidad		0	,815334	0	,763698	0	,978478	0,9	81579
Precisión 0,979460 0,973377 0,993958 0,99433						94331			

Tabla 25. Evaluación de la Clasificación de A1P7.bmp (60 grupos,20 rep, GN).

5.3.- Evaluación detallada de la clasificación utilizando el archivo de ajuste A2.bmp con k-medios.

Este Apéndice contiene información detallada por colores de los valores indicados en la tabla 5, la cual muestra los resultados de la clasificación para el grupo de prueba A2 utilizando el método K-Medios para 60 grupos. Las columnas identificadas con P(+) y N(-) indican la cantidad de pixeles clasificados de manera correcta e incorrecta respectivamente para cada tipo de Clasificación.

Archivo de Prueb	a: A2P1.E	BMP							
			Esquem	a de Evalu	ación 1				
60 Grupo	s	Clasifi	cación 1	Clasific	ación 2	Clasificación 3		Clasificación 4	
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	450	18	432	14	436	356	94	357	93
AZUL	473	189	284	32	441	384	89	377	96
AZUL CLARO	425	133	292	39	386	357	68	372	53
BLANCO	922	600	322	23	899	696	226	779	143
CANCHA	36769	36607	162	36741	28	35990	779	36115	654
Total		37547	1492	36849	2190	37783	1256	38000	1039
			Esquem	a de Evalu	ación 2				
Sensitividad			0,479774		0,242943		0,8353	0	,858557
Especificidad		0,883801		0,809785		0,9620	0	,967491	
Precisión			0,984713		0,977561		0,9871	0	,989354

Tabla 26. Evaluación de la Clasificación de A2P1.bmp. (60 grupos,KM)

Archivo de Prueba	a: A2P2.B	MP							
			Esquema	a de Evalu	iación 1				
60 Grupos	S	Clasifi	cación 1	Clasific	ación 2	Clasificación 3		Clasificación 4	
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	500	36	464	29	471	479	21	470	30
AZUL	457	212	245	23	434	441	16	437	20
AZUL CLARO	476	159	317	72	404	419	57	447	29
FUCSIA	434	49	385	103	331	419	15	423	11
ANARANJADO	86	0	86	10	76	68	18	69	17
BLANCO	879	626	253	16	863	731	148	831	48
CANCHA	36207	36138	69	36200	7	35678	529	35842	365
Total		37220	1819	36453	2586	38235	804	38519	520
			Esquema	a de Evalu	ıación 2				
Sensitividad			0,384728		0,233029	0,9	10913	0,93	35372
Especificidad	•	·	0,913148		0,870019	0,9	90523	0,99	94753
Precisión			0,986687		0,981074	0,9	94116	0,99	96194

Tabla 27. Evaluación de la Clasificación de A2P2.bmp. (60 grupos,KM)

Archivo de Pruel	a: A2P3.E	BMP							
			Esquema	a de Evalu	ıación 1				
60 Grupo	s	Clasific	cación 1	Clasificación 2		Clasificación 3		Clasificación 4	
Color				P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	454	18	436	9	445	427	27	450	4
BLANCO	BLANCO 1009 665 344 14 995 862 147							972	37
CANCHA	40611	43417	48	43443	22	43337	128	43338	127
Total		44100	828	43466	1462	44626	302	44760	168
			Esquema	a de Evalu	ıación 2				
Sensitividad			0,565871		0,344398	0,9	30632	0,98	33866
Especificidad		0,822361 0,671741		0,671741	741 0,960714		0,990584		
Precisión		0,987714		0,9	95519	0,997507			

Tabla 28. Evaluación de la Clasificación de A2P3.bmp. (60 grupos,KM)

Archivo de Prueb	a: A2P4.B	MP							
			Esquema	a de Evalu	ación 1				
60 Grupo	s	Clasifi	ficación 1 Clasificación 2		Clasificación 3		Clasificación 4		
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	531	25	506	11	520	478	53	482	49
AZUL CLARO	552	206	346	122	430	513	39	538	14
BLANCO	942	698	244	16	926	835	107	900	42
CANCHA	40043	42851	52	42902	1	42780	123	42793	110
Total		43780	1148	43051	1877	44606	322	44713	215
			Esquema	a de Evalu	ıación 2				
Sensitividad			0,540008		0,314673	0,92	28270	0,9	58802
Especificidad	Especificidad			0,864868 0,768743		0,977682		0,9901	
Precisión	recisión			0,987224 0,979111		0,996416		6 0,997607	

Tabla 29. Evaluación de la Clasificación de A2P4.bmp. (60 grupos,KM)

Archivo de Prueba	a: A2P5.B	MP							
			Esquema	a de Evalu	ación 1				
60 Grupos	s	Clasifi	cación 1	Clasificación 2		Clasificación 3		Clasificación 4	
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	521	17	504	15	506	411	110	425	96
AZUL	508	227	281	18	490	438	70	436	72
AZUL CLARO	503	153	350	71	432	375	128	389	114
ANARANJADO	107	0	107	8	99	67	40	73	34
BLANCO	1104	756	348	12	1092	846	258	963	141
CANCHA	39325	42033	152	42153	32	41475	710	41550	635
Total		43186	1742	42277	2651	43612	1316	43836	1092
			Esquema	a de Evalu	ación 2				
Sensitividad			0,410806		0,215042	0,79	95374	0	,831140
Especificidad			0,904072 0,840804 0,967979 0,973436					,973436	
Precisión 0,987076 0,980332 0,990236 0,991898							,991898		

Tabla 30. Evaluación de la Clasificación de A2P5.bmp. (60 grupos,KM)

5.4.- Evaluación detallada de la clasificación utilizando el archivo de ajuste A2.bmp con gas neuronal.

Este Apéndice contiene información detallada por colores de los valores indicados en la tabla 6, la cual muestra los resultados de la clasificación para el grupo de prueba A2 utilizando el método Gas Neuronal para 60 grupos con 40 repeticiones. Las columnas identificadas con P(+) y N(-) indican la cantidad de pixeles clasificados de manera correcta e incorrecta respectivamente para cada tipo de Clasificación.

Archivo de Prueba	: A2P1.BN	ΛP							
			Esquem	a de Evalı	uación 1				
60 Grupos 4	0 rep	Clasifi	cación 1	Clasificación 2		Clasificación 3		Clasifica	ación 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	450	18	432	23	427	354	96	355	95
AZUL	473	77	396	16	457	349	124	325	148
AZUL CLARO	425	43	382	31	394	311	114	338	87
BLANCO	922	587	335	17	905	681	241	770	152
CANCHA	36769	36696	73	36742	27	36309	460	36315	454
Total		37421	1618	36829	2210	38004	1035	38103	936
			Esquem	a de Evalı	uación 2				
Sensitividad			0,387728		0,235117	0,7	96475	0	,818816
Especificidad			0,863744		0,807856	0,9	54411	0	,958489
Precisión			0,983422		0,977356	0,9	89395	0	,990410

Tabla 31. Evaluación de la Clasificación de A2P1.bmp. (60 grupos,40 rep,G.N)

Archivo de Prueba:	A2P2.BM	1P							
			Esquem	a de Eval	uación 1				
60 Grupos 40	Rep.	Clasifi	Clasificación 1		Clasificación 2		Clasificación 3		ación 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	500	33	467	35	465	478	22	471	29
AZUL	457	100	357	11	446	384	73	347	110
AZUL CLARO	476	43	433	55	421	392	84	406	70
FUCSIA	434	38	396	23	411	406	28	413	21
ANARANJADO	86	0	86	10	76	63	23	63	23
BLANCO	879	603	276	33	846	725	154	812	67
CANCHA	36207	36175	32	36197	10	35996	211	36018	189
Total		36992	2047	36364	2675	38444	595	38530	509
			Esquem	a de Evalı	uación 2				
Sensitividad		0,306834		0,202308	0,872401		0,87956		
Especificidad	Especificidad			0,899123 0,86		0	,985830	0	,987175
Precisión			0,985019		0,980423	0	,995645	0	,996275

Tabla 32. Evaluación de la Clasificación de A2P2.bmp. (60 grupos,40 rep,G.N)

Archivo de Prueba	a: A2P3.BN	ИP							
			Esquem	a de Eval	uación 1				
60 Grupos 4	0 rep	Clasific	cación 1	Clasificación 2		Clasificación 3		Clasificación 4	
Color			N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	454	18	436	32	422	440	14	450	4
BLANCO	1009	696	313	22	987	850	159	946	63
CANCHA	40611	43416	49	43440	25	43337	128	43345	120
Total		44130	798	43494	1434	44627	301	44741	187
			Esquem	a de Eval	uación 2				
Sensitividad			0,576104		0,363904	0,9	36212	0,	975330
Especificidad	Especificidad		0,829196 0,678781		0,960281		0,9844		
Precisión			0,988159 0,978722 0,995534			95534	0,997225		

Tabla 33. Evaluación de la Clasificación de A2P3.bmp. (60 grupos,40 rep,G.N)

Archivo de Prueba	a: A2P4.BN	ЛP							
			Esquem	a de Eval	uación 1				
60 Grupos 4	0 rep	Clasifi	cación 1	Clasific	ación 2	Clasificación 3		Clasifica	ación 4
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	531	26	505	35	496	486	45	491	40
AZUL CLARO	552	32	520	112	440	436	116	467	85
BLANCO	942	701	241	10	932	830	112	877	65
CANCHA	40043	42864	39	42897	6	42824	79	42827	76
Total		43623	1305	43054	1874	44576	352	44662	266
			Esquem	a de Eval	uación 2				
Sensitividad	idad 0,462547 0,319822						0,89609	3 0	,924978
Especificidad			0,843953		0,769820	0,96950°		0,97941	
Precisión			0,985477		0,979144		0,99608	3 0	,997040

Tabla 34. Evaluación de la Clasificación de A2P4.bmp. (60 grupos,40 rep,G.N)

Archivo de Prueba: A2P5.BMP									
	Esquema de Evaluación 1								
60 Grupos 40 rep Clasif		Clasifi	cación 1	Clasific	ación 2	Clasific	ación 3	Clasificación 4	
Color	Pixeles	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)	P(+)	N(-)
VERDE	521	15	506	30	491	420	101	425	96
AZUL	508	94	414	9	499	373	135	338	170
AZUL CLARO	503	39	464	57	446	339	164	361	142
ANARANJADO	107	0	107	8	99	68	39	75	32
BLANCO	1104	735	369	20	1084	816	288	952	152
CANCHA	39325	42109	76	42161	24	41750	435	41754	431
Total		42992	1936	42285	2643	43766	1162	43905	1023
			Esquem	a de Evalı	uación 2				
Sensitividad			0,325887		0,213489		0,763114	0,	791971
Especificidad			0,887324 0,840777			0,962001	0,	965485	
Precisión	•		0,985636		0,980391		0,991379	0,	992410

Tabla 35. Evaluación de la Clasificación de A2P5.bmp. (60 grupos,40 rep,G.N)

5.5.- Evaluación detallada de la clasificación utilizando el método de umbrales con el grupo A1.

Este Apéndice contiene información detallada por colores de los valores indicados en la tabla 8, la cual muestra los resultados de la clasificación para el grupo de prueba A1 utilizando los valores de umbral predeterminados. Las columnas identificadas con P(+) y N(-) indican la cantidad de pixeles clasificados de manera correcta e incorrecta respectivamente para cada tipo de Clasificación.

Archivo de prueba: A1P1.BMP								
Esquema de Evaluación 1								
Color	Pixeles	Clasific	ación 1	Clasific	ación 4			
		P(+)	N(-)	P(+)	N(-)			
AZUL	202	187	15	13	189			
VERDE	217	180	37	181	36			
AMARILLO	150	148	2	148	2			
AZUL_CLARO	136	133	3	136	0			
ANARANJADO	19	19	0	18	1			
BLANCO	1096	775	321	0	1096			
CANCHA	46428	46106	322	2912	43516			
Total		47548	700	3408	44840			
	Esquen	na de Evalı	uación 2					
Sensitividad	0,917146 0,5			0,556459				
Especificidad	0,997312 0,8			0,83107				
Precisión			0,995855		0,734467			

Tabla 36. Evaluación de la Clasificación de A1P1 con método de umbral

Archivo de prueba					
	Esque	ma de Evalı	uación 1		
Color	Pixeles	Clasifica	ación 1	Clasifi	cación 4
		P(+)	N(-)	P(+)	N(-)
AMARILLO	133	132	1	133	0
AZUL	153	147	6	5	148
AZUL_CLARO	158	150	8	155	3
VERDE	205	199	6	188	17
ANARANJADO	12	12	0	12	0
BLANCO	1105	804	295	0	1099
CANCHA	46488	46061	427	3382	43106
Total		47505	743	3875	44373
	Esque	ma de Eval	uación 2		
Sensitividad			0,94225		0,571931
Especificidad	0,997789 0,8			0,831158	
Precisión			0,9956		0,737233

Tabla 37. Evaluación de la Clasificación de A1P2 con método de umbral

Archivo de prueba : A1P3.BMP					
	Esque	ma de Eva	aluación 1		
Color	Pixeles	Clasifi	cación 1	Clasifi	cación 4
		P(+)	N(-)	P(+)	N(-)
AZUL	122	122	0	8	114
AZUL_CLARO	130	125	5	129	1
FUCSIA	131	114	17	0	131
AMARILLO	131	131	0	131	0
ANARANJADO	12	12	0	12	0
BLANCO	1121	981	125	0	1106
CANCHA	46616	46264	352	9743	36873
Total		47749	499	10023	38225
	Esque	ma de Ev	aluación 2		
Sensitividad			0,958742		0,466698
Especificidad	0,998515 0,		0,830974		
Precisión			0,997045		0,77364

Tabla 38. Evaluación de la Clasificación de A1P3 con método de umbral

Archivo de prueba : A1P4.BMP									
	Esquema de Evaluación 1								
Color	Pixeles	Clasifi	cación 1	Clasifi	cación 4				
		P(+)	N(-)	P(+)	N(-)				
FUCSIA	341	258	83	8	333				
AZUL	350	326	24	52	298				
AZUL_CLARO	340	338	2	340	0				
AMARILLO	336	331	5	333	3				
VERDE	394	364	30	311	83				
ANARANJADO	70	70	0	67	3				
BLANCO	1012	721	289	0	1010				
CANCHA	45407	44628	779	6697	38710				
Total		47036	1212	7808	40440				
Esquema de Evaluación 2									
Sensitividad		0,910978			0,507134				
Especificidad			0,996339	0,872078					
Precisión			0,99372	0,790458					

Tabla 39. Evaluación de la Clasificación de A1P4 con método de umbral

Archivo de pru	Archivo de prueba : A1P5.BMP				
	Esque	aluación 1			
Color	Pixeles	Clasifi	cación 1	Clasifi	cación 4
		P(+)	N(-)	P(+)	N(-)
VERDE	597	549	48	595	2
AZUL	547	483	64	213	334
AMARILLO	471	428	43	457	14
FUCSIA	470	304	166	138	332
BLANCO	1039	725	310	0	1035
CANCHA	45128	44597	531	6583	38545
Total		47086	1162	7986	40262
	Esque	ma de Ev	aluación 2		
Sensitividad	Sensitividad				0,465969
Especificidad			0,993429		0,80288
Precisión			0,991972		0,72184

Tabla 40. Evaluación de la Clasificación de A1P5 con método de umbral

Archivo de pro	u eba : A1P6.BN	ИΡ							
	Esquema de Evaluación 1								
Color	Pixeles	Clasifi	cación 1	Clasifi	cación 4				
		P(+)	N(-)	P(+)	N(-)				
VERDE	571	536	35	434	137				
AZUL	453	436	17	56	397				
AMARILLO	422	398	24	414	8				
FUCSIA	428	273	155	89	339				
AZUL_CLARO	475	434	41	464	11				
BLANCO	1059	735	322	0	1057				
CANCHA	44842	43864	978	7590	37252				
Total		46676	1572	9047	39201				
	Esquema de Evaluación 2								
Sensitividad		0,867056			0,459826				
Especificidad		0,994504 0,84			0,847176				
Precisión			0,990691		0,76786				

Tabla 41. Evaluación de la Clasificación de A1P6 con método de umbral

Archivo de p	orueba : A1	P7.BI	ΜР			
	E	sque	ma de Eva	aluación 1		
Color	Pixeles		Clasifi	cación 1	Clasifi	cación 4
			P(+)	N(-)	P(+)	N(-)
VERDE		833	764	69	832	1
AZUL		770	702	68	366	404
BLANCO		1076	788	282	0	1070
CANCHA	4	15575	44982	593	5126	40449
Total			47236	1012	6324	41924
	E	Esque	ma de Ev	aluación 2		
Sensitividad				0,888073		0,39665
Especificidad	l			0,992723		0,697073
Precisión				0,989513		0,565536

Tabla 42. Evaluación de la Clasificación de A1P7 con método de umbral

5.6.- Evaluación detallada de la clasificación utilizando el método de umbrales con el grupo A2.

Este Apéndice contiene información detallada por colores de los valores indicados en la tabla 9, la cual muestra los resultados de la clasificación para el grupo de prueba A2 utilizando los valores de umbral predeterminados. Las columnas identificadas con P(+) y N(-) indican la cantidad de pixeles clasificados de manera correcta e incorrecta respectivamente para cada tipo de Clasificación.

Archivo de prueba	: A2P1.BI	MP						
Esquema de Evaluación 1								
Color	Pixeles	Clasi	ficación 1	Clasific	ación 4			
		P(+)	N(-)	P(+)	N(-)			
VERDE	450	209	241	366	84			
AZUL	473	275	198	120	353			
AZUL_CLARO	425	340	85	391	34			
BLANCO	922	729	193	0	922			
CANCHA	36769	34320	2449	4314	32455			
Total		35873	3166	5191	33848			
	Esqu	ıema de	Evaluación 2	2				
Sensitividad 0,713981 0,4208					0,420872			
Especificidad		0,962918 0,78103						
Precisión	•		0,967561		0,653188			

Tabla 43. Evaluación de la Clasificación de A2P1 con método de umbral

Archivo de prueba	Archivo de prueba : A2P2.BMP								
	Esquema de Evaluación 1								
Color	Pixeles	Clasifi	cación 1	Clasific	ación 4				
		P(+)	N(-)	P(+)	N(-)				
VERDE	500	264	236	417	83				
AZUL	457	303	154	90	367				
AZUL_CLARO	476	426	50	458	18				
FUCSIA	434	348	86	32	402				
ANARANJADO	86	76	10	84	2				
BLANCO	879	771	108	0	879				
CANCHA	36207	34338	1869	3337	32870				
Total	•	36526	2513	4418	34621				
Esquema de Evaluación 2									
Sensitividad	0,799579			0,447966					
Especificidad		0,990685			0,848201				
Precisión		0,981608 0,74			0,74662				

Tabla 44. Evaluación de la Clasificación de A2P2 con método de umbral

Archivo de pruel	ba : A2P3.BN	MР						
Esquema de Evaluación 1								
Color	Pixeles	Clasifi	cación 1	Clasific	ación 4			
		P(+)	N(-)	P(+)	N(-)			
VERDE	454	347	107	451	3			
BLANCO	1009	850	159	0	1009			
CANCHA	40611	43191	274	5086	38379			
Total		44388	540	5537	39391			
	Esqu	ema de E	valuación 2					
Sensitividad	Sensitividad 0,86681 0,3701							
Especificidad		0,995939 0,61287			0,612879			
Precisión			0,991987		0,415494			

Tabla 45. Evaluación de la Clasificación de A2P3 con método de umbral

Archivo de pruel	oa : A2P4.BN	ΜР						
Esquema de Evaluación 1								
Color	Pixeles	Clasifi	cación 1	Clasific	ación 4			
		P(+)	N(-)	P(+)	N(-)			
VERDE	531	393	138	441	90			
AZUL_CLARO	552	485	67	540	12			
BLANCO	942	823	119	0	942			
CANCHA	40043	42677	226	5586	37317			
Total		44378	550	6567	38361			
	Esqu	ema de E	valuación 2					
Sensitividad	0,871785			0,484743				
Especificidad		0,996897 0,735			0,735443			
Precisión			0,993879		0,573084			

Tabla 46. Evaluación de la Clasificación de A2P4 con método de umbral

Archivo de prueba	a: A2P5.BN						
Esquema de Evaluación 1							
Color	Pixeles	Clasificación 1		Clasificación 4			
		P(+)	N(-)	P(+)	N(-)		
VERDE	521	295	226	432	89		
AZUL	508	360	148	119	389		
AZUL_CLARO	503	370	133	409	94		
ANARANJADO	107	78	29	95	12		
BLANCO	1104	912	192	0	1104		
CANCHA	39325	40548	1637	2886	39299		
Total		42563	2365	3941	40987		
Esquema de Evaluación 2							
Sensitividad	0,754453			0,472135			
Especificidad	0,974523			0,806505			
Precisión			0,982453		0,695906		

Tabla 47. Evaluación de la Clasificación de A2P5 con método de umbral

5.7.- Archivo BMP.

Los archivos BMP (*Windows Bitmap*) son utilizados por *Windows* como el formato estándar de imagen. El formato original de estos archivos (*Windows* 1.0) era muy simple: tenía una paleta de colores fija, no se utilizaba compresión en la data, y fue creado para soportar el PC IBM más popular y las tarjetas de video compatibles utilizadas en ese tiempo. Este formato es conocido como el *Windows Device Dependent Bitmap* (DDB).

El soporte para una paleta de colores programable fue introducido en Windows2.0. Este tipo de *bitma*p es conocido como un *Windows Device Independt Bitmap* (BID). La paleta de colores programables almacenada con la data del *bitmap* le dió la habilidad de ser independiente del dispositivo a ser desplegado (cualquier tipo de tarjeta gráfica, impresora, etc.). El término "independiente del dispositivo", significa que el *bitmap* especifica el color de los píxeles de una manera independiente del método usado por el dispositivo para representar el color.

5.7.1.-Estructura de los archivos .BMP

El siguiente cuadro contiene una descripción del contenido de los archivos BMP.

Campo	Tamaño en	Descripción		
	bytes			
Identificador	2	Caracteres que identifican el <i>Bitmap</i> . Siempre "BM".		
Tamaño del archivo	4	Tamaño total del archivo en bytes		
Reservado	4	Reservado – Siempre "0"		
Longitud al Bitmap	2	Longitud en bytes desde el inicio del archivo hasta el campo Datos <i>Bitmap</i> .		
Tamaño Encabezado de información	4	Longitud en bytes de los campos utilizados para describir la resolución, compresión, tamaño de la imagen, etc. Abarca desde este campo hasta el campo Paleta, por lo tanto siempre tendrá un valor de "40".		
Ancho	4	Ancho de la imagen en píxeles.		
Alto	4	Alto de la imagen en píxeles.		
Planos	2	Siempre "1".		
Bits por píxel	2	Bits por píxel usados para almacenar las entradas a la paleta de colores. Posibles valores:		
		1 Bitmap monocromático		
		4 Bitmap de 16 colores		
		8 Bitmap de 24 colores		
		24 bit ("true color")		

Compresión	4	Especifica el tipo de compresión. Posibles valores:			
		0 / BI_RGB	Sin compresión		
		1/ BI_RLE8	RLE 8-bit		
		2 / BI_RLE4	RLE 4-bit		
		3 / BITFIELDS	Bitfield		
Tamaño de los datos del <i>Bitmap</i>		Tamaño en bytes utilizados por los datos del <i>Bitmap</i>			
Resolución horizontal	4	Resolución horizontal expresada en píxeles por metro.			
Resolución vertical	4	Resolución vertical expresada en píxeles por metro			
Colores	4	Número de índices de colores en la Paleta de colores.			
Colores Importantes	2	Número de índices de colores que son considerados importantes para desplegar el Bitmap. Si está en "0", todos los colores son importantes.			
Paleta	N*4	Especificaciones de la paleta de colores. Cada entrada en la paleta utiliza 4 bytes para describir los valores RGB de los colores en la siguiente manera: 1 byte para el componente azul, 1 byte para el componente verde, 1 byte para el componente rojo y 1 byte de relleno.			
Datos Bitmap	X bytes	Es un arreglo de bytes con los datos de la imagen. Su tamaño va a depender de lo indicado en el campo Compresión y bits por píxel.			

5.7.2.-Consideraciones especiales para el manejo de estos archivos.

Alineación de bytes.

El tamaño de cada línea se calcula como Longitud_linea = ((Ancho_en_bytes-1)/4)+1)*4, esto se debe a que los bytes vienen alineados a múltiplos de 4.

Almacenamiento de las líneas.

Las líneas de la imagen son almacenadas de abajo hacia arriba, y de izquierda a derecha. El inicio de las coordenadas se sitúa en (0,0).

Bits por pixel

Como se vio en la estructura de archivo .BMP, este campo indica el número de bits que definen cada píxel. Además de manera indirecta indica el número máximo de colores distintos en el *bitmap*. Los distintos casos a considerar son:

- Cuando este campo es igual a 1, el bitmap es monocromático y la Paleta de colores contiene dos entradas. Cada bit en el campo Datos Bitmap representa un píxel. Si el bit está en "0", el píxel es desplegado con el color de la primera entrada en la paleta, de lo contrario tiene el color de la segunda entrada en la tabla.
- Cuando el campo es igual a 4, el bitmap tiene un máximo de 16 colores, y la paleta contiene hasta 16 entradas. Cada byte en el campo Datos Bitmap almacena dos índices a la Paleta de colores. El nible superior para el primer píxel y el nible inferior para el segundo píxel.
- Cuando el campo es igual a 8, el bitmap tiene un máximo de 256 colores, y la paleta contiene hasta 256 entradas En este caso, cada byte del campo Datos del Bitmap es un índice dentro de la paleta de colores.

Cuando el campo es igual a 24, el bitmap tiene un máximo de 2²⁴ colores, y el campo Paleta no contiene entradas. En el campo Datos Bitmap se almacenan de manera continua bloques de 3 bytes representando las intensidades relativas de azul, verde y rojo respectivamente, para cada pixel de la imagen.

Almacenamiento de componentes RGB

En la Paleta de colores los componentes RGB de cada pixel se almacenan en el orden Azul, Verde y Rojo.

Compresión.

Los archivos de 4 y 8 bits pueden presentar compresión. En estos archivos se usa una forma simple de compresión denominada RLE (*Run Length Encoded*), en vez de almacenar un valor para cada píxel, se almacena un número N seguido por un índice. Esto significa que los próximos N píxeles son del color del índice. Esto trabaja muy bien para aquellas imágenes donde hay grandes extensiones de un mismo color.