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We present a numerical study based on a Monte Carlo algorithm of the magnetic properties of a
mixed Ising ferrimagnetic model on a cubic lattice where spins o = £1/2 and spins S = 0,+1 are
in alternating sites on the lattice. We carried out exact ground state calculations and employ a
Monte Carlo simulation to obtain the finite-temperature phase diagram of the model. A compen-
sation point appears when the next-nearest-neighbor interaction between the spins o = £1/2 ex-
ceeds a minimum value. We found a strong dependence of the compensation temperature with the
interactions in the Hamiltonian, particularly the crystal and the external field. An applied field can
change the range of values of the compensation temperature from zero up to a maximum value
that depends on the field.

1. Introduction

Ferrimagnetic alloys have been the object of intense experimental studies because their
role in high-density magneto-optical recording [1, 2]. In a ferrimagnet the different tem-
perature dependences of the sublattice magnetizations raise the possibility of the exis-
tence of compensation temperatures: temperatures below the critical point where the
total magnetization is zero [3]. It has been shown that the coercivity is a function of the
temperature and that it has a peak at the compensation point, favoring the creation of
small, stable, magnetic domains [4, 5]. In magneto-optical recording devices the coerciv-
ity is changed by local heating of the media with a focused beam. Direct overwrite
capability has been demonstrated in amorphous ferrimagnetic films with compensation
temperatures higher than room temperatures [2, 6]. Also, the strong and continuous
effort to synthesize low-density, transparent magnets, with spontaneous moments at
room temperature, has reopened the interest in studying the ferrimagnetic ordering that
plays a fundamental role in these materials [7 to 9]. In this work we describe a three-
dimensional, spin 1/2-spin 1, mixed Ising model with ferrimagnetic ordering that, un-
der certain conditions, exhibits compensation points. Mixed Ising systems have been
studied before with mean-field [10, 11] and nonperturbative techniques [12 to 14] pro-
viding interesting information about the interactions responsible for the existence of
compensation points. In the present study we extend previous Monte Carlo simulations
of a two dimensional model to a three-dimensional case and include the effect of exter-
nal fields. We are interested particularly in the ground state, the finite-temperature
phase diagrams, and the location and characterization of the compensation tempera-
tures.
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2. The Model and Its Ground States

We study a three-dimensional Ising system with spins o0 = +£1/2 and § = £1,0 located
in alternating sites of a cubic lattice. A Hamiltonian for this model that includes nearest
neighbor interactions between the S and the o spins, next-nearest neighbor interactions
between the o spins, crystal field and external magnetic field can be written as
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where J; and J, are the exchange-interaction parameters, D is the crystal field and H is
the external field, all in energy units.

The models to be considered will be labeled by enumerating the parameters different
from zero in the Hamiltonian. For example the J;—D one is the model with all the
parameters in the above Hamiltonian zero except J; and D. Since we are interested in
studying the possible existence of compensation points, all our numerical results are
obtained for the ferrimagnetic coupling, J; < 0, between nearest neighbors. We include
only the next-nearest neighbor interaction, J,, between the o spins because previous
work done in two dimensional models shows that it is responsible for the existence of
compensation temperatures [12, 13].

Since for our Hamiltonian, the ground state is translationally invariant, to obtain the
ground state diagrams we only have to calculate the energy of the configurations of a
2 x 2 x 2 unit cell [15]. This cell has 2* x 3* configurations. Taking into account rota-
tional symmetries we found that there are 75 different configurations. The ground state
of the model depends on the particular choice of parameters in the Hamiltonian, as can
be seen in Figs. 1 and 2. In Fig. 1 we show the ground state diagram for the J;—J,—D
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Fig. 1. Ground state diagram for the J; —J,—D model (J; = —1/2). The configurations of the unit
cell in each of the four regions are labeled as in Table 1
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Fig. 2. Ground state diagram for the J; —J/;—D—H model (J; = —1/2, D =1, H > 0). The config-
urations of the unit cell in each of the six regions are labeled as in Table 1

Table 1

Ground-state configurations, degeneracies and energies of the 2 x 2 x 2 unitary spin cells
indicated in Figs. 1 and 2. The symbol convention is: S=1, |, 0 and o =1, |. The
upper line gives the clockwise alignment of the spins at the top face of the cube, and the
lower one the clockwise alignment at the bottom face
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model (H =0 and J; < 0), there are four different regions. The ground state diagram
for the J;—J,—D—H model (J1 <0, H > 0 and D > 0) is divided in six regions as seen
in Fig. 2. The configurations of the unit cell in each region are labeled as in Table 1.
The equations of the boundaries between regions are obtained by pairwise equating the
ground-state energies.

3. The Monte Carlo Simulations

We used standard importance sampling methods [16], to simulate the model described
by equation (1) on a cubic lattice of volume L x L x L with periodic boundary condi-
tions. Configurations were generated by sequentially traversing the lattice and making
single-spin flip attempts at each site. The flips are accepted or rejected according to a
heat-bath algorithm. One Monte Carlo Step (MCS) was defined as L x L x L at-
tempted spin moves, 10* MCS were used to obtain each data point in lattices with
L = 40, after discarding the first 10° steps. We define 8 = 1/kgT and take Boltzmann’s
constant kg = 1. Our program calculates the internal energy per site,

E == (H), (2)
the specific heat per site,

¢ =y -y, 3

the sublattice magnetizations per site,

2 2
M = iy M, = — i\ 4
1= 73 (28 2= 13 <;o,> (4)

the total magnetization per site, M = (M; + M,)/2, and the susceptibility,
1= BUM) — (M)?). (5)
In order to locate the compensation point, we define an order parameter per spin as
1

O—U<§@+®D, (6)

which is equivalent to the average of the absolute value of the total magnetization.
At the compensation temperature, Tcomp, the sublattice magnetizations have equal
magnitude and opposite signs

|M1(Tcomp)| = |M2(Tc0mp)| (7)
and
sign [Ml(Tcomp)] = —sign [MZ(Tcomp)] ) (8)

such that the total magnetization is zero. The T¢omp is always lower than the critical
temperature, 7.
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4. Results
4.1 Effect of next-nearest-neighbor interactions (I1—J; —D model)

Recent results show that mixed Ising ferrimagnetic models in two dimensions present
compensation points when the next-nearest-neighbor interaction between the o spins
(J2) is taken into account [12, 13]. We found that this is also the case for the three-
dimensional model. The order parameter curves shown in Fig. 3 indicate the presence
of compensation temperatures when J, exceeds some value that depends on the other
parameters in the Hamiltonian. Notice that the compensation temperature remains bas-
ically unchanged once J, exceeds its minimum value; however, as expected, the critical
temperature keeps increasing with increasing values of J,. As can be seen in Fig. 4, the
compensation temperature occurs because as the J, parameter increases, the ferromag-
netic interaction between the o spins grows, such that the o sublattice remains ordered
at higher temperatures. Since at the same time, the S sublattice magnetization (M) is
decreasing as the temperature is increasing, there is a temperature below the critical
one at which both sublattice magnetizations (that have opposite signs) cancel each
other and the compensation point occurs. Further increase of J, does not change the
compensation temperature that has already been reached, but has the effect of keeping
the system ordered at higher temperatures such that the critical point occurs at higher
temperatures. In Fig. 5, we plotted the critical and compensation temperatures as a
function of J,/|J;| for a fixed value of D/|J1|. The critical temperatures were obtained
by locating the maxima of the specific heat. These plots show that the compensation
temperature appears when the J, interaction takes some minimum value, that depends
on D/|J;|, after which T¢omp is almost independent of J,.
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Fig. 3. Order parameter (as defined in equation (6)) vs. temperature for the J; —J, —D model at
D/|Ji| =2 and several values of J,/|J;|. Notice that Tcomp is nearly independent of J»/|J;| (for
Jy <JPM), but T, increases with increasing values of J/|/1|
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Fig. 4. Absolute value of the sublattice magnetizations vs. the temperature for the J; —J, —D model
with D/|J;| = 2. The Tcomp is reached at the crossing point |M(Tcomp)| = |[M2(Tcomp)| Where the
order parameters is a minimum (as seen in Fig. 3)
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Fig. 5. Critical and compensation temperature vs. J,/|J1| (D/|/1| = 2,H/|J1| = 0)
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Fig. 6. Total magnetization vs. temperature for the J;—J,—D—H model with J/|J;| =2 and
D/\J1| =2, for several values of H. For this choice of parameters the compensation point disap-
pears for H/|J1| > 0.55

4.2 Effect of external magnetic fields (J; —J, — D —H model)

In this section we are going to study the behavior of the mixed Ising ferrimagnetic
model in the presence of external magnetic fields. For this study we must be very care-
ful selecting our initial connfiguration. At low temperatures the system has metastable
states with very long lifetimes (longer that our Monte Carlo runs). In order to calculate
the compensation temperature, we start our measurements once the system has been
warmed from its ground state.

In Fig. 6 we plot the total magnetization as a function of the temperature for different
values of H/|/;| and a fixed value of J,/|Ji| and D/|J;|. Notice that the compensation
temperature increases with the field, but the temperature at which the total magnetization
becomes discontinuous, 7p decreases with it, until they become equal for a certain value
of H. For higher values of H the system does not have a compensation temperature. This
limit value of H depends on the other parameters in the Hamiltonian.

In Fig. 7 we plot Teomp versus H/|Ji| for a couple of values of D/|/;|, notice that
Teomp increases with the value of D/|J;|. In general we see that D and H have the
similar effect of increasing Tcomp, but Tp seems to be less sensible to changes in D. The
effect of both, the crystal field and the external field, is to change the temperature from
a range that varies from zero up to Tp.

5. Conclusions

We have applied a Monte Carlo algorithm to simulate a mixed Ising system on a
cubic lattice, where spins, 0 = +1/2 are alternated with spins S = +1,0. The Hamilto-
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Fig. 7. Compensation temperatures vs. H for the Ji—J,—D—H model at J,/|/;] =2 and
D/|J;| =0 and 2

nian includes nearest-, and next-nearest-neighbor interactions, crystal field and exter-
nal field. By choosing an antiferromagnetic nearest-neighbor interaction we have a
simple but interesting model of ferrimagnetic ordering. We have calculated the
ground-state energies and the finite-temperature phase diagram showing the compen-
sation and critical temperatures. Our results show that, as happens in the two dimen-
sional case [12, 13], the compensation temperatures appear when the next-nearest
neighbor interaction between the o spins, J,, is included. The minimum value of J,
for a compensation point to appear depends on the value of the other parameters in
the Hamiltonian. In absence of external field (/;—J,—D model) the compensation
temperature remains approximately constant for any value of J, above the minimum
and for a fixed value of D. The effect of the external field is to change the compen-
sation temperature in a range that varies from zero up to the value at which the total
magnetization becomes discontinuous, Tp. The compensation temperature increases in
a way that seems linear with the field until it disappears for strong enough fields.
Since the compensation point is not a critical point we expect that finite-size effects
are not relevant for this study, except in the region where Tcomp approaches Tp that
is a size dependent quantity. So, finite size effect can change the range of values of
the compensation temperature.

Our study suggests that there is a strong dependence between the compensation tem-
perature and the interactions in the Hamiltonian. Not only the value of the compensa-
tion temperature depends on the parameters but even its existence. An external mag-
netic field can be used to change the range of values of the compensation temperature.
Experimental evidence of the dependence on compensation points with the interactions
has already been found [17, 18].
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