TRABAJO ESPECIAL DE GRADO

ANÁLISIS DEL COMPORTAMIENTO MECÁNICO DEL SISTEMA FORMACIÓN – CEMENTO – TUBERÍA EN POZOS PETROLEROS UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS

TUTOR ACADÉMICO: Prof. Manuel Martínez

Presentado ante la Ilustre Universidad Central de Venezuela Por los bachilleres: Ávila R., María J. Tovar M., Germán O. Para optar al Título de Ingeniero Mecánico

Caracas, 2006

TRABAJO ESPECIAL DE GRADO

ANÁLISIS DEL COMPORTAMIENTO MECÁNICO DEL SISTEMA FORMACIÓN – CEMENTO – TUBERÍA EN POZOS PETROLEROS UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS

Presentado ante la Ilustre Universidad Central de Venezuela Por los bachilleres: Ávila R., María J. Tovar M., Germán O. Para optar al Título de Ingeniero Mecánico

Caracas, 2006

Caracas, 28 de junio de 2006

АСТА

Los abajo firmantes, Miembros del jurado del Jurado designado por el consejo de Escuela de Ingeniería Mecánica, para evaluar el Trabajo Especial de Grado presentado por los bachilleres Ávila R., María J. y Tovar M., Germán O., titulado:

"ANÁLISIS DEL COMPORTAMIENTO MECÁNICO DEL SISTEMA FORMACIÓN – CEMENTO – TUBERÍA EN POZOS PETROLEROS UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS"

Consideran que el mismo cumple con los requisitos exigidos por el Plan de Estudios para optar al Titulo de Ingeniero Mecánico.

CENTRA Prof. Jorge Cruz **Prof. Alberto Pertuz** Jurado Jurado DI Prof. Manuel Martínez Tutor

Ávila R., María J. Tovar M., Germán O.

ANÁLISIS DEL COMPORTAMIENTO MECÁNICO DEL SISTEMA FORMACIÓN – CEMENTO – TUBERÍA EN POZOS PETROLEROS UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS

Tutor: Prof. Manuel Martínez. Tesis de Pre – Grado. UCV, Facultad de Ingeniería, Escuela de Ingeniería Mecánica, Caracas, 2006.

Palabras Claves: Cementación, Método de Elementos Finitos, Pozos Petroleros

RESUMEN

El presente trabajo está basado en la implementación del Método de Elementos Finitos para un análisis de los esfuerzos que suelen presentarse en el sistema formación–cemento–tubería de pozos petroleros. Se demostró que con la implementación de esta técnica numérica se pueden obtener resultados que se ajustan aceptablemente a las características mecánicas esperadas y con precisión adecuada para modelos de secciones transversales de pozos en los que se consideran diferentes cargas estáticas.

El estudio está basó en la construcción de modelos en los cuales se varían el tipo de carga aplicada, con la aplicación de los esfuerzos in situ, esfuerzo horizontal máximo y esfuerzo horizontal mínimo con diferentes distribuciones en la superficie del cemento. Además establecer el comportamiento de los esfuerzos cuando se varia una propiedad fundamental de los materiales como es el modulo de elasticidad o modulo de Young.

Los resultados demuestran que los valores máximos de esfuerzos se encuentran en el casing y que en líneas generales, si el cemento posee un modulo de Young mayor, el cemento tiene la propiedad de soportar mayores esfuerzos y los esfuerzos presentes en el casing se hacen menores. En cuanto a los valores de desplazamiento no son significativos como para generar una deformación apreciable en la estructura.

INDICE GENERAL

DEDICATORIAiii
AGRADECIMIENTOSv
RESUMENvii
INDICE GENERAL viii
INDICE DE FIGURAS xii
INDICE DE TABLAS xvi
LISTA DE NOMENCLATURAS ABREVIATURAS Y SIMBOLOS xviii
INTRODUCCION1
CAPITULO I: PLANTEAMIENTO GENERAL
Motivación 4
Antecedentes5
Planteamiento del Problema8
Objetivos9
Objetivo General9
Objetivos Específicos9
CAPITULO II: POZOS PETROLEROS Y CEMENTACION11
2.1 Características y Componentes del Petróleo12
2.2 Definición de Pozos Petroleros14
2.3 Características de los Yacimientos y Pozos Petroleros16
2.4 Partes de un Pozo17
2.5 Proceso de Construcción de Pozos
2.6 Procedimiento de Cementación de Pozos
2.6.1 Funciones de la Cementación Primaria24

2.6.2 Cementación Forzada	26
2.6.3 Clasificación de la Cementación de Pozos Petroleros	
2.6.4 Equipo de Cementación	31
2.6.5 Técnicas Primarias de la Cementación	
2.7 Tipos de Cementos y Características Mecánicas	40
2.8 Mantenimiento de Pozos	46

CAPITULO III: PROPIEDADES MECANICAS
3.1 Esfuerzo
3.2 Ley de Hooke
3.2.1 Módulo de Young o Módulo de Elasticidad52
3.2.2 Observaciones adicionales acerca de las relaciones
esfuerzo-deformación unitaria53
3.2.3 Relación de Poisson54
3.3 Métodos Empleados Para El Análisis De Esfuerzos55
3.3.1 Cilindros de Pared Gruesa. Cargas de Colapso en el Casing
Cementado55
3.3.2 Método de Elementos Finitos (MEF) y Método de Diferencias
Finitas (MDF)
3.3.3 Método de Elementos de Contorno (MEC)
CAPITULO IV:ORIGEN DE LOS ESFUERZOS. GEOMECANICA60
4.1 Presión de la Formación60
4.1.1 Compactación de Sedimentos
4.1.2 Los Sistemas Artesianos
4.1.3 Levantamiento
4.1.4 Camas de Sal
<i>4.1.5 Bóvedas de Sal</i> 67
4.1.6 Diferencia de Densidades68

4.2 Determinación Teórica
4.2.1 Hubbert y Willis
4.2.2 Matthews y Kelly72
<i>4.2.3 Eaton</i>
4.2.4 Christman
4.3 Análisis de Fractura Hidráulica para determinar los valores de los
esfuerzos
4.3.1 Fractura Hidráulica
4.4 Teoría para Rupturas en Agujeros y Fractura por Tensión en las Paredes81
4.4.1 Ruptura en Agujeros
4.4.2 Fractura por Tensión en las Paredes
CAPITULO V. METODO DE ELEMENTOS FINITOS 85
CALIFOLD V. METODO DE ELEMENTOS FINITOS
5.1 Desarrollo Histórico. 86
5.1 Desarrollo Histórico
 5.1 Desarrollo Histórico
 5.1 Desarrollo Histórico
 5.1 Desarrollo Histórico
5.1 Desarrollo Histórico. .86 5.2 Procedimiento para la implementación del Método de Elementos Finitos
5.1 Desarrollo Histórico. .86 5.2 Procedimiento para la implementación del Método de Elementos Finitos
5.1 Desarrollo Histórico. .86 5.2 Procedimiento para la implementación del Método de Elementos Finitos
5.1 Desarrollo Histórico. 86 5.2 Procedimiento para la implementación del Método de Elementos Finitos87 87 5.2.1 Funciones de forma o de interpolación. 88 5.2.2 Pasos a seguir en el cálculo por MEF. Funcionamiento de un programa de elementos finitos. 89 5.3 Matriz de Deformaciones. 90 5.4 Matriz de Elasticidad. 92 5.5 Análisis de Elasticidad Lineal. 93 5.6 Matrices de Rigidez, Tensiones y Cargas. 95
5.1 Desarrollo Histórico. 86 5.2 Procedimiento para la implementación del Método de Elementos Finitos87 87 5.2.1 Funciones de forma o de interpolación. 88 5.2.2 Pasos a seguir en el cálculo por MEF. Funcionamiento de un programa de elementos finitos. 89 5.3 Matriz de Deformaciones. 90 5.4 Matriz de Elasticidad. 92 5.5 Análisis de Elasticidad Lineal. 93 5.6 Matrices de Rigidez, Tensiones y Cargas. 95 5.7 Análisis para el dominio completo. 95
5.1 Desarrollo Histórico. 86 5.2 Procedimiento para la implementación del Método de Elementos Finitos87 87 5.2.1 Funciones de forma o de interpolación. 88 5.2.2 Pasos a seguir en el cálculo por MEF. Funcionamiento de un programa de elementos finitos. 89 5.3 Matriz de Deformaciones. 90 5.4 Matriz de Elasticidad. 92 5.5 Análisis de Elasticidad Lineal. 93 5.6 Matrices de Rigidez, Tensiones y Cargas. 95 5.7 Análisis para el dominio completo. 95 5.8 Convergencia del Método. 99
5.1 Desarrollo Histórico. 86 5.2 Procedimiento para la implementación del Método de Elementos Finitos87 5.2.1 Funciones de forma o de interpolación. 88 5.2.2 Pasos a seguir en el cálculo por MEF. Funcionamiento de un 89 5.3 Matriz de Deformaciones. 90 5.4 Matriz de Elasticidad. 92 5.5 Análisis de Elasticidad Lineal. 93 5.6 Matrices de Rigidez, Tensiones y Cargas. 95 5.7 Análisis para el dominio completo. 95 5.8 Convergencia del Método. 99 5.9 Elementos Hexaédricos H8 (Lineal) Y H20 (Parabólico). 101

CAPITULO VI: CONSTRUCCION DEL MODELO	102
6.1 Características del Pozo	102
6.1.1 Estratigrafía Local Pozo JM-200	

6.2 Bases del Modelo	
6.3 Softwares Utilizados	109
6.4 Desarrollo del Modelo	110
6.4.1 Geometría del Pozo	111
6.4.2 Aplicación de las Cargas	113
6.4.3 Limitaciones de Movimiento	
6.4.4 Generación de la Malla	

CAPITULO VII: ANALISIS DE RESULTADOS	
7.1 Presentación y Análisis de Resultados	
7.1.1 Modelo 1	
7.1.2 Modelo 2	144
7.1.3 Modelo 3	151

CONCLUSIONES	
RECOMENDACIONES	
GLOSARIO DE TÉRMINOS	
BIBLIOGRAFIA	
APENDICES	

INDICE DE FIGURAS

]	Página
Figura 2.1:	Partes de un Pozo Petrolero	19
Figura 2.2:	Esquema Generalizado de un Pozo Petrolero	20
Figura 2.3:	Zonas problemáticas detrás del casing en formaciones que son	l
	perforada a grandes profundidades	27
Figura 2.4:	Zonas de altas presiones de la formación bajo el casing	28
Figura 2.5:	Zonas productoras aisladas de la presencia de agua y arenas	28
Figura 2.6:	Ejemplo de cementación multietapa debido a zonas de pérdida	
	de circulación	29
Figura 2.7:	Utilización de la cementación de apriete para controlar	
	relaciones de gas-petróleo	30
Figura 2.8:	Zapata Guía	32
Figura 2.9:	Collar del Flotador	33
Figura 2.10:	Centralizadores: (a) Los resortes del arco están soldados con	
	los anillos terminales, (b) centralizador de paleta reflectora y	
	(c) centralizador de agujero delgado	34
Figura 2.11:	Raspadores (a) Rotativo (b) Intercambio de raspadores de la	
	pared	35
Figura 2.12:	Cestas del cemento: (a) en lugar dentro cubierta y (b) con los	
	anillos del límite	36
Figura 2.13:	Conectores de cementación: (a) tapa y (b) Conectores	
	inferiores	36
Figura 2.14:	Diagrama del trabajo de cementación del casing	37
Figura 2.15:	Cementación	38
Figura 3.1:	Cuerpo seccionado: (a) Cuerpo libre con algunas fuerzas	5
	internas (b) vista amplificada con componentes de ΔP	49

Figura 3.2:	Diagrama esfuerzo-deformación unitaria para un acero dúctil	51
Figura 3.3:	Diagrama esfuerzo-deformación para varios materiales	51
Figura 3.4:	Diagramas esfuerzo-deformación unitaria: (a) material elástico	
	lineal, (b) material elástico, (c) material inelástico o plástico	53
Figura 3.5:	(a) Contracción lateral (b) Expansión lateral de cuerpos sólidos	
	sometidos a fuerzas axiales (efecto Poisson)	54
Figura 3.6:	Análisis para Cilindros de Pared Gruesa	56
Figura 4.1	Las presiones de poro anormales son generadas en la región	
	bajo compactación, porque la disposición de la roca matriz no	
	puede soportar el esfuerzo de sobrecarga	63
Figura 4.2:	Efectos del esfuerzo de sobrecarga en la porosidad de la	
	formación durante una compactación normal	64
Figura 4.3:	Vista simplificada de presiones anormales generadas por	
	sistemas Artesianos de agua	65
Figura 4.4:	Las presiones anormales se pueden crear en un ambiente	
	levantado y erosionado	66
Figura 4.5:	Las camas de la sal pueden transferir la tensión de la	
	sobrecarga a las formaciones bajo secciones de la sal	67
Figura 4.6:	La acción intrusa de la bóveda de la sal crea presiones	
	anormales en las secciones de la pizarra que previenen la	
	migración y la normalización fluidas de la presión	68
Figura 4.7:	Las presiones anormales en la tapa de la arena en 9.000 ft	
	ocurren debido al gas de la baja densidad que procura	
	contrapesar los 11.000 ft de líquidos de formación normales	69
Figura 4.8:	Determinación gráfica de los gradientes de la fractura según lo	
	propuesto por Hubbert y Willis	71
Figura 4.9:	Coeficientes de la tensión de la matriz de Matthews y Kelly	72

xiii

Figura 4.10:	Determinación gráfica de los gradientes de la fractura usando	
	el acercamiento de Matthews y Kelly	75
Figura 4.11:	Cocientes de Poisson variable con la profundidad según lo	
	propuesto por Eaton	76
Figura 4.12:	Tensión variable de la sobrecarga de Eaton	77
Figura 4.13:	Curva presión vs tiempo de un experimento típico de fractura	
	hidráulica mostrando tres ciclos de presurización	79
Figura 4.14:	Ruptura en el agujero en las paredes de un pozo vertical, sujeto	
	a un esfuerzo máximo $S_{\rm H}$ y a un esfuerzo mínimo $S_{\rm h}$	82
Figura 6.1:	Dimensiones del Pozo	104
Figura 6.2:	Campo de Esfuerzos	109
Figura 6.3:	Dimensiones del Cilindro de Cemento	112
Figura 6.4:	Dimensiones del Casing	112
Figura 6.5:	Distribución de los Esfuerzos de acuerdo al Borehole Breakout	114
Figura 6.6:	Distribución de las cargas para el modelo 1	115
Figura 6.7:	Distribución de las cargas para el modelo 2	116
Figura 6.8:	Variación de la magnitud desde SH a Sh	116
Figura 6.9:	Variación del vector V en el Primer Cuadrante	117
Figura 6.10:	Variación del vector V en el Segundo Cuadrante	118
Figura 6.11:	Variación del vector V en el Tercer Cuadrante	119
Figura 6.12:	Variación del vector V en el Cuarto Cuadrante	120
Figura 6.13:	Visualización de las cargas en el modelo 2	122
Figura 6.14:	Distribución lineal de las cargas en la longitud del cilindro	123
Figura 6.15:	Distribución de las cargas para el modelo 3	125
Figura 6.16:	Restricciones de Movimiento	126
Figura 6.17:	Malla de Elementos Hexaédricos	127
Figura 7.1:	Esfuerzos Máximos y Mínimos vs. Número de Elementos	122
	Modelo 1 (elementos H8)	155

Figura 7.2:	Desplazamientos Máximos y Mínimos en el eje Z vs. Número	
	de Elementos Modelo 1 (elementos H8)	134
Figura 7.3:	Esfuerzos Máximos y Mínimos vs. Número de Elementos	
	Modelo 1 (elementos H20)	136
Figura 7.4:	Desplazamientos Máximos y Mínimos en el eje Z vs. Número	
	de Elementos Modelo 1 (elementos H20)	137
Figura 7.5:	Valores de Esfuerzos para diferentes Módulos de Young	140
Figura 7.6:	Desplazamientos para diferentes Módulos de Young	141
Figura 7.7:	Criteria Von-Mises modelo 1	142
Figura 7.8:	Criteria desplazamiento en Z modelo 1	143
Figura 7.9:	Esfuerzos Máximos y Mínimos vs. Número de Elementos	
	Modelo 2	145
Figura 7.10:	Desplazamientos Máximos y Mínimos en el eje Z vs. Número	
	de Elementos Modelo 2	146
Figura 7.11:	Valores de Esfuerzos para diferentes Módulos de Young	148
Figura 7.12:	Desplazamientos para diferentes Módulos de Young	149
Figura 7.13:	Criteria Von-Mises modelo 2	150
Figura 7.14:	Criteria desplazamiento en Z modelo 2	151
Figura 7.15:	Esfuerzos Máximos y Mínimos vs. Número de Elementos	
	Modelo 3 (elementos H8)	152
Figura 7.16:	Desplazamientos Máximos y Mínimos en el eje Z vs. Número	
	de Elementos Modelo 3 (elementos H8)	153
Figura 7.17:	Valores de Esfuerzos para diferentes Módulos de Young	155
Figura 7.18:	Desplazamientos para diferentes Módulos de Young	156
Figura 7.19:	Criteria Von-Mises modelo 3	157
Figura 7.20:	Criteria desplazamiento en Z modelo 3	157

INDICE DE TABLAS

Página

Tabla 2.1:	Componentes del Petróleo	12
Tabla 2.2:	Cemento Clase A, Guayana	41
Tabla 2.3:	Cemento Clase A, Mara	41
Tabla 2.4:	Cemento Clase B, Guayana	42
Tabla 2.5:	Cemento Clase G, Guayana	43
Tabla 2.6:	Cemento Clase H, Guayana	44
Tabla 2.7:	Cemento Clase H, Mara	45
Tabla 2.8:	Aplicaciones de los Cementos API	45
Tabla 6.1:	Propiedades Mecánicas del Casing	113
Tabla 6.2:	Propiedades Mecánicas del Cemento	113
Tabla 6.3:	Calculo de θ utilizando Excel para 30 divisiones en la sección	
	transversal	121
Tabla 6.4:	Valores de esfuerzos Horizontales Máximos	123
Tabla 6.5:	Valores de esfuerzos Horizontales Mínimos	124
Tabla 7.1	Valores Obtenidos para Elementos H8 modelo 1	132
Tabla 7.2	Errores para los Esfuerzos en Elementos H8 modelo 1	134
Tabla 7.3:	Errores para los desplazamientos en Elementos H8 modelo 1	135
Tabla 7.4:	Valores Obtenidos para Elementos H20 modelo 1	135
Tabla 7.5:	Errores para los Esfuerzos en Elementos H20 modelo 1	137
Tabla 7.6:	Errores para los desplazamientos en Elementos H20 modelo 1	138
Tabla 7.7:	Valores de Obtenidos para diferentes módulos de Young modelo 1	139
Tabla 7.8:	Valores obtenidos variando el número de elementos modelo 2	144
Tabla 7.9:	Errores para los Esfuerzos modelo 2	147

Tabla 7.10:	Errores para los Desplazamientos modelo 2	147
Tabla 7.11:	Valores de Obtenidos para diferentes módulos de Young modelo 2	148
Tabla 7.12:	Valores Obtenidos para elementos H8 modelo 3	
Tabla 7.13:	Errores para los Esfuerzos en Elementos H8 modelo 3	152
Tabla 7.14:	Errores para los Desplazamientos en Elementos H8 modelo 3	153
Tabla 7.15:	Valores Obtenidos para elementos H20 modelo 3	154
Tabla 7.16:	Valores de Obtenidos para diferentes Módulos de Young	
	modelo 3	155

LISTA DE NOMENCLATURAS, SIMBOLOS Y ABREVIATURAS

- B = Matriz de deformación
- D = Profundidad de Interés
- D ' = Profundidad debajo de la línea del lodo
- dA = Diferencial de área
- D_B = Profundidad de la barrera, zona de baja permeabilidad
- D_I = Profundidad de interés debajo de la barrera

 $D_e = Matriz de Elasticidad$

 D_w = Profundidad del agua

E = Módulo de Young

F_{frac} = Gradiente de fractura en el punto de interés

f = Fuerzas

 f_n^p = Fuerzas nodales producto de las cargas distribuidas que actúan sobre los lados del elemento

 f_v^h = Fuerzas nodales debidas a cargas volumétricas

 $f_{\varepsilon o}^{n}$ = Fuerzas nodales necesarias para equilibrar las deformaciones iniciales

G_{ob} = Gradiente de Sobrecarga del total

K = Modulo volumétrico de los constituyentes de la roca

- K_I = Coeficiente de tensión de la matriz para la profundidad en la cual él valora de σ sería tensión normal de la matriz
- Kⁿ = Fuerzas inducidas por los desplazamientos de cada uno de los nodos o matriz de rigidez del elemento

 $K_S =$ Volumen de la roca

P = Presión

- $P_o = Presión de Poro$
- P_c = Presión de Fractura
- pi = Presión Interna

pe = Presión Externa

 q_n = Forma matricial de las fuerzas que actúan sobre los nodos de un elemento

 $r = Radio entre r_i y r_e$

- r_b = Radio de la ruptura del agujero
- $r_e = Radio Exterior$
- $r_i = Radio interior$
- S = Operador Lineal
- S^n = Matriz de Tensiones del elemento
- $S_c = Sobrecarga$
- S_h=Esfuerzo Horizontal Mínimo
- S_H = Esfuerzo Horizontal Máximo
- Sz = Sobrecarga en profundidad Z
- T = Límite de resistencia a la tensión
- u = Desplazamiento
- V = Volumen del Tetraedro
- Z = Profundidad

Símbolos Griegos

- $\Delta P = Diferencia de presión$
- ΔT = Diferencia de Temperatura
- α = Coeficiente de dilatación térmica
- $\alpha_{\rm B}$ = Coeficiente de Biot
- $\epsilon = Deformationes$
- ε_{rr} = Error relativo
- η = Coeficiente poro elástico
- $\rho b = Densidad$
- θ_b = Orientación en el agujero
- θ^e = Incremento medio de la temperatura en el elemento

 ϕ_{h} = Angulo de apertura en el agujero

 $\sigma = Esfuerzos$

 σ_a = Esfuerzo Axial

 σ_r = Esfuerzo Radial

 σ_t = Esfuerzo Tangencial

 σ_{θ} = Concentración de esfuerzos circunferenciales

 $\sigma_p^n, \sigma_{\varepsilon o}^n$ = Tensiones originadas por las cargas distribuidas que actúan sobre el elemento o por las tensiones iniciales al restringir los desplazamientos de los nodos

v = Relación de Poisson

Subíndices

form: Formación frac: Fractura

Unidades:

bc: Consistencia en unidades Beardon
cm²: Centímetro cuadrado
ft: pies
°F: Grados Faranheit
gr: Gramo
gal: Galón
lb: Libra
min: Minutos
psi: libras por pulgada cuadrada

Abreviaturas:

API: American Petroleum Institute

CAD: Diseño Asistido por Computadoras

HSR: Alta Resistencia a los Sulfatos

HTPF: Prueba hidráulica en fracturas pre - existentes

HTHP: Altas Temperaturas y Altas Presiones

MEF: Método de Elementos Finitos

MSR: Moderada Resistencia a los Sulfatos

SPE: Society of Petroleum Engineering

INTRODUCCIÓN

Las actividades de exploración y perforación en la industria petrolera son de vital importancia para mantener la competitividad dentro del mercado internacional. A través de éstas se establecen las reservas con las cuales se cuenta, la ubicación de los yacimientos y seguidamente la extracción de los hidrocarburos.

Para que el proceso de producción se lleve a cabo de manera satisfactoria se debe contar con una infraestructura adecuada y acorde con las exigencias de la actividad realizada la cual sea capaz de cubrir todos los parámetros y factores críticos que eviten inconvenientes y retrasos.

Por esta razón, el proceso de cementación es uno de los que requiere mayor y mejor planificación. De él depende el soporte de la estructura del pozo y por ende mientras mejor se realice, cubriendo detalladamente cada aspecto (materiales utilizados, etapas de construcción, condiciones de operación, etc.), se logrará evitar colapsos y se evitarán posibles pérdidas económicas ya sea por mantenimiento del pozo ó por pérdida total del mismo.

Son diversos los valores y la naturaleza de los esfuerzos que se presentan y que pueden afectar la resistencia del cemento. Entre ellos se puede mencionar la presión de poro, temperatura de la formación, cambios de temperatura debido a los fluidos empleados para la perforación, presión del lodo en el casing, temperatura y presión al momento de inyección de gas o vapor para la recuperación del crudo, etc.

A partir de los análisis de esfuerzos se pueden establecer referencias que permitan fabricar cementos con mejores propiedades mecánicas capaces de soportar condiciones variables. Al ser la presión y temperatura pueden llegar hasta valores extremos de altas temperaturas y altas presiones (HighTemperature / High Pressure), que afectarían las propiedades del cemento como se demuestra en estudios realizados.

La realización de este trabajo tiene por finalidad modelar, mediante el Método de Elementos Finitos, el campo de los esfuerzos a los cuales se encuentra sometido el cemento en un pozo petrolero, para establecer los valores y zonas de fallas que puedan afectar su funcionabilidad.

Este Trabajo Especial de Grado está conformado por 7 capítulos. En el capítulo 1 se establecen los planteamientos generales que dan origen a ésta investigación, la motivación, el planteamiento del problema, los antecedentes sobre los cuales se basa el desarrollo de este trabajo y los objetivos que los sustentan, tanto el general como los específicos.

En el capítulo 2 se presenta el desarrollo del marco teórico, en el cual se hace referencia a los pozos petroleros, a sus características, partes que lo conforman, proceso de perforación y mantenimiento de los mismos. Seguidamente se explica el proceso de cementación, su importancia, equipos empleados, tipos de cementos.

El capítulo 3 refiere lo concerniente a las propiedades mecánicas y a las leyes que determinan el comportamiento de ciertos materiales. Para ello se hace referencia a la ley de Hook de esfuerzos y deformaciones, relación de Poisson, etc.

En el capítulo 4 se establecen las propiedades geomecánicas de la formación, gradientes de fractura, procedimientos para determinar la presión de sobrecarga, además de algunas teorías de permiten visualizar los esfuerzos presentes y la distribución de los mismos, así como la manera de realizar los cálculos necesarios.

El capítulo 5 se basa en los fundamentos del Método de Elementos Finitos, la secuencia en la cual se desarrolla, las variables involucradas y los sistemas de ecuaciones que se generan.

El capítulo 6 es el desarrollo del modelo de una sección de un pozo real ubicado en Anaco - Edo. Anzoátegui, en el cual se aplica el método de elementos finitos, mediante la implementación del software Nastran, aplicando todas las condiciones de borde, tanto las cargas como las restricciones de movimiento.

En el capítulo 7 se presentan los resultados obtenidos: Esfuerzos, desplazamientos, para determinar las fallas, interpretar los efectos que estos valores pueden producir y comparar los resultados con otros métodos.

Las conclusiones están desarrolladas una vez analizados los resultados obtenidos en el capítulo 7 y en las cuales se establecen la variación de los esfuerzos de acuerdo al tipo de carga aplicada y a las propiedades mecánicas del cemento.

Para cerrar el desarrollo de éste trabajo, se mencionan algunas recomendaciones con miras a desarrollar una línea de investigación que tome en cuenta todos los parámetros que puedan afectar la estructura de un pozo petrolero.

CAPÍTULO I PLANTEAMIENTO GENERAL

1.1 MOTIVACION

La industria petrolera constituye hoy en día un factor muy importante para la economía mundial, debido a que, en la actualidad, los hidrocarburos son la fuente primaria de energía.

En el contexto venezolano, la actividad petrolera representa el pilar fundamental sobre el cual se sustenta nuestra economía y ha cobrado mayor importancia en los últimos tiempos debido a la creciente demanda energética.

Este aumento en los requerimientos conlleva a que los países productores, como es el caso de Venezuela, aumenten su cuota diaria de producción y, para lograr este objetivo, es necesario que las empresas petroleras, particularmente PDVSA, realicen mayores actividades de exploración, perforación y construcción de pozos.

El desarrollo de una línea de investigación que establezca los posibles factores que pueden afectar la durabilidad del cemento en el pozo es de vital importancia a fin de prolongar su tiempo funcional y disminuir los costos de operación y mantenimiento.

Es necesario evitar fallas por fracturas, las cuales pueden hacer que la estructura del pozo se vea comprometida o que pueda generarse una pérdida total del mismo, lo cual ocasionaría pérdidas cuantiosas a la industria petrolera y, por consiguiente, al estado venezolano. Es por ésta razón que un grupo de profesores y estudiantes de la Escuela de Ingeniería Mecánica de la Universidad Central de Venezuela (UCV), hemos decidido abordar esta problemática con el objeto de establecer una línea de cooperación entre nuestra universidad y PDVSA, a fin de encontrar soluciones para evitar las fallas que se generen en los pozos petroleros, debidas a los esfuerzos generados en los mismos y a características no adecuadas del cemento empleado.

1.2. ANTECEDENTES

Muchas son las investigaciones que se han realizado en el área petrolera por ser esta actividad una de las más importantes a nivel mundial y de la que depende la economía de muchos países, como es el caso de Venezuela.

PDVSA posee varias dependencias para el desarrollo de investigaciones, siendo la principal Intevep. Estas investigaciones tienen por objeto innovar, mejorar y optimizar la gran mayoría de los procesos relacionados con la obtención, manejo y procesamiento de hidrocarburos.

Particularmente es de interés el proceso de perforación y construcción de pozos, tomando en cuenta los diferentes factores y procesos que se requieren para que pueda llevarse a cabo.

Uno de los factores que resulta de vital importancia, son los esfuerzos que se generan en la estructura del pozo, siendo de interés particular, los generados en el cemento que se encuentra entre la formación y el revestidor (casing), ya que de ello depende que la vida del pozo pueda prolongarse. A partir del proceso de cementación y de los esfuerzos que de este puedan derivarse, además de los presentes por las condiciones de la formación y del hidrocarburo (temperatura, presión, etc.), se deben realizar análisis de esfuerzos y para ello se cuenta con el Método de Elementos Finitos (MEF), el cual es uno de los más empleados debido a que cubre una amplia gama de aplicaciones.

Entre los trabajos realizados que relacionan el proceso de cementación de pozos con el análisis de esfuerzos empleando el MEF, podemos citar:

[23] Rodríguez, W. J (SPE, PDVSA Intevep), W.W Fleckenstein (SPE, Colorado School of Mines) & W. Eustes (SPE, Colorado School of Mines) (2003). *Simulation of Collapse Load on Cemented Casing Using Finite Element Analysis*. Publicado por Society of Petroleum Engineering (No. 84566)

Este estudio describe los efectos de la condición bajo cargas de colapso, tanto del cemento como de la roca de la formación que están alrededor de la cadena de casing o revestidores como elementos fundamentales en el diseño del casing, utilizando el Método de Elementos Finitos, debido a que las ecuaciones publicadas por American Petroleum Institute (API) ignoran los efectos del cemento en la resistencia al colapso y asumen cargas de colapso uniformes en el casing.

[25] *Seminario de Cementación de Pozos* (1992). III seminario de cementación de pozos. Caracas. Es una publicación que recopila diversos trabajos realizados en el área de cementación de pozos petroleros.

[12] Heathman, J. (Halliburton) & F.E. Beck (Gastar Exploration) (2006). *Finite Element Analysis Couples and Cement designs for HT/HP wells in East Texas.* Publicado por Internacional Association of Drilling Contractors (IADC) y Society of Petroleum Engineers (SPE) (No. 98869). Miami, USA Esta publicación se basa en el estudio de las cargas de colapso del casing en los pozos del este de Texas, los cuales se encuentran sometidos a condiciones de altas presiones y elevadas temperaturas. Debido a estas condiciones, los casing o revestidores están propensos a fallar durante la operación de completación o a las pocas semanas de puesta en operación. El estudio se basa en la implementación del MEF tomando en cuenta, tanto las propiedades mecánicas de cemento, como del casing.

[28] Stiles, D (ExxonMobil Development Co) (2006). *Effects of Long-Term Exposure to Ultrahigh Temperature on the Mechanicals Parameters of Cement*. Publicado por Internacional Association of Drilling Contractors (IADC) y Society of Petroleum Engineers (SPE) (No.98896). Miami, USA

Establecen que las propiedades mecánicas del cemento deben ser las adecuadas para resistir las diferentes condiciones de operación de los pozos y así poder mantener la vida útil del mismo. La habilidad de la cubierta de cemento para resistir los cambios en los estados de esfuerzos que se presenten, dependerá de parámetros como el módulo de Young, la relación de Poisson, la resistencia a la tracción, tanto del cemento como de la roca que lo rodea. Las condiciones para que se produzca una falla en el cemento pueden resultar de cambios en la temperatura, presión en el casing, presión de la formación, entre otros.

[22] Reddy, B.R (SPE), A. Santra (SPE), D. McMechan (SPE), D. Gray (SPE), C.
Brenneis & R. Dunn (Halliburton) (2005). *Cement Mechanical Property Measurements Under Wellbore Conditions*. Publicado por Society of Petroleum Engineers (No.95921). Dallas, USA.

Realizan ensayos utilizando ondas ultrasónicas cortantes y ondas compresivas para combinar mediciones: propiedades mecánicas dinámicas, módulo elástico, módulo volumétrico y relación de Poisson, determinadas bajo condiciones de presión y temperatura.

Esas medidas son comparadas con las propiedades obtenidas a través de los resultados del análisis de carga vs. desplazamiento bajo condiciones estáticas, compresión acústica y ondas cortantes bajo presión y temperatura atmosférica.

1.3. PLANTEAMIENTO DEL PROBLEMA

Durante el proceso de construcción de pozos petroleros existen muchos factores críticos que, si no son considerados durante este período, pueden desfavorecer la vida útil del pozo y, en el peor de los casos, éste puede colapsar, ocasionando pérdidas económicas considerables a la industria petrolera.

El proceso de cementación es de suma importancia en el momento de la construcción de un pozo. Durante su ejecución, se vacía un cemento especial (lechada) entre el casing y la formación para que este actúe como aislante y como superficie de soporte de la tubería principal, por lo cual se ve sometido a diferentes tipos de cargas, ya sean estáticas o dinámicas, de acuerdo a las características del pozo: presión, temperatura, efectos viscosos, condiciones del terreno, condiciones sísmicas, entre otros, las cuales serán las que determinaran los esfuerzos presentes y la distribución que presentarán los mismos.

Una realización inapropiada del procedimiento de cementación o una mala selección del material, puede traer como consecuencia variaciones en las propiedades mecánicas del cemento, ya sea alterando su resistencia, tanto a la tracción como a la compresión, así como también su tenacidad, por lo cual podría verse comprometida la

estructura del pozo si las solicitaciones de esfuerzos son muy elevadas y el material no puede soportarlos.

Por esta razón es necesario evitar, o por lo menos reducir lo más posible, la aparición de grietas en el material una vez fraguado y la presencia de factores concentradores de esfuerzos que puedan ser factores determinantes al momento de producirse fallas que degeneren en aumento de los costos de mantenimiento o en su defecto, en la pérdida total del pozo.

El poder establecer, modelar y calcular los distintos parámetros involucrados en este procedimiento, siguiendo una metodología adecuada y mediante el análisis de las posibles situaciones que puedan presentarse, permitirá obtener mejores soluciones al momento de la construcción del pozo, con un material que sea capaz de soportar los esfuerzos generados y por consiguiente un aumento de su vida útil.

1.4. OBJETIVOS

1.4.1. Objetivo General

 Modelar mediante el uso del método de elementos finitos el análisis de esfuerzos presentes en sistema formación – cemento – tuberías en pozos petroleros.

1.4.2. Objetivos Específicos

- Determinar las características, componentes y operación de un pozo petrolero.
- Investigar sobre los diferentes tipos de cementos empleados para la construcción de pozos petroleros, estableciendo las características mecánicas y los niveles de resistencia que ofrecen.

- Investigar sobre el proceso de construcción de pozos petroleros, especialmente lo referente al fraguado o vaciado del cemento.
- Determinar el origen de los esfuerzos que se generan en la cementación de pozos petroleros y los efectos que estos producen sobre la estructura del mismo.
- Establecer la distribución de esfuerzos en una sección particular del pozo, de acuerdo a la naturaleza de los mismos, tomando en consideración cargas estáticas.
- Determinar las diferentes fallas que puedan presentarse en la estructura, de acuerdo al tipo de carga presente.
- Investigar sobre los procedimientos que se realizan en la industria petrolera para el mantenimiento de los pozos.
- Establecer y analizar los diferentes métodos empleados para el análisis de esfuerzos.
- Desarrollar un modelo para el análisis de esfuerzos por MEF, empleando el programa comercial NASTRAN.
- Determinar los puntos donde se producen los esfuerzos máximos en el revestimiento de cemento.
- Recopilar información relacionada con la implementación del Método de Elementos Finitos.
- Aplicación del Método de Elementos Finitos para el análisis de esfuerzos en una sección particular del pozo.
- Analizar el nivel de precisión que resulte de la aplicación del Método de Elementos Finitos en el análisis de esfuerzos y fallas que puedan generarse en la sección del pozo petrolero, objeto de la investigación.
- Comparar los resultados que se obtienen aplicando otros métodos numéricos con los que se encuentran en la data de un pozo real.

CAPÍTULO II POZOS PETROLEROS Y CEMENTACIÓN

El petróleo ha sido hasta la actualidad, uno de los recursos energéticos más importantes en la historia de la humanidad, es un recurso natural no renovable que aporta el mayor porcentaje del total de la energía que se consume en el mundo. Su existencia y utilización se remonta desde épocas milenarias, aunque su desarrollo y verdadero aprovechamiento tanto industrial como comercial es relativamente reciente. Se da por establecida la producción en pozos petroleros a partir del 28 de agosto de 1859, con el pozo construido por el coronel Edwin L. Drake, en el estado de Pennsylvania, Estados Unidos. Barberi (2001) [2]

El petróleo provocó una alta dependencia en el mundo, generando un gran control en los mercados internacionales. Esto ha llevado a la investigación de energías alternativas, sin que hasta el momento se haya logrado una opción que realmente lo sustituya, aunque se han dado importantes pasos en ese sentido.

El petróleo contiene tal diversidad de componentes que difícilmente se encuentran dos tipos idénticos. Además existen parámetros internacionales, como los del Instituto Americano de Petróleo (API: American Petroleum Institute) que diferencian sus calidades y, por tanto, su valor (mientras mayor sea el grado API, mejor es su calidad). Los petróleos de mejor calidad son aquellos que se clasifican como "livianos" y/o "suaves" y "dulces". Los llamados "livianos" son aquellos que tienen más de 26° API. Los "intermedios" se sitúan entre 20° y 26° API, y los "pesados" por debajo de 20° API.

2.1 CARACTERÍSTICAS Y COMPONENTES DEL PETRÓLEO

El petróleo es una sustancia aceitosa de color oscuro a la que por sus compuestos de hidrógeno y carbono se le denomina hidrocarburo, el cual puede estar en estado líquido como un aceite o crudo, o en estado gaseoso, en cuyo caso se le conoce como gas natural, según Barberi (2001) [2]. En el primer caso, la composición elemental esta normalmente comprendida dentro de los intervalos mostrados en la tabla 2.1:

Elemento [%]	Peso
Carbón	84 - 87
Hidrógeno	11 - 14
Azufre	0 - 2
Nitrógeno	0.2

Tabla 2.1 Componentes del Petróleo

Según la teoría más aceptada, el origen del petróleo es orgánico y sedimentario. Esa teoría enseña que el petróleo es el resultado de un complejo proceso físicoquímico en el interior de la tierra; en el que, debido a la presión y las altas temperaturas, se produce la descomposición de enormes cantidades de materia orgánica que se convierten en aceite y gas. Esa materia está compuesta fundamentalmente por el fitoplancton y el zooplancton marinos, al igual que por materia vegetal y animal, todo lo cual se depositó en el pasado en el fondo de los grandes lagos y en el lecho de los mares. Junto a esa materia orgánica se depositaron mantos sucesivos de arenas, arcillas, limo y otros sedimentos que arrastran los ríos y el viento, para conformar lo que se conoce geológicamente como formaciones hechas de sedimentos.

Ese proceso de sedimentación y transformación es algo que ocurrió a lo largo de millones de años. Entre los geólogos hay quienes ubican el inicio de todo ese proceso por la época de los dinosaurios y los cataclismos. Otros opinan que hoy se está formando de una manera similar el petróleo del mañana. En un comienzo los mantos sedimentarios se depositaron en sentido horizontal. Pero los movimientos y cambios violentos que han sacudido a la corteza terrestre variaron su conformación y, por consiguiente, los sitios donde se encuentra el petróleo. Es por esto que la geología identifica varios tipos de estructuras subterráneas donde se pueden encontrar yacimientos de petróleo: anticlinales, fallas, domos salinos, etc.

En todo caso, el petróleo se encuentra ocupando los espacios de las rocas porosas, principalmente de rocas como areniscas y calizas. Por consiguiente, no es cierto que cuando se extrae el petróleo quedan enormes espacios vacíos en el interior de la tierra. En el caso del petróleo, los poros que se van desocupando son llenados de inmediato por el mismo petróleo que no alcanza a extraerse y por agua subterránea. Los orígenes del gas natural son los mismos del petróleo, pues, como se dijo antes, el gas es petróleo en estado gaseoso.

Cuando se encuentra un yacimiento que produce petróleo y gas, a ese gas se le llama "gas asociado". Pero también hay yacimientos que sólo tienen gas, caso en el cual se le llama "gas libre". Otros yacimientos sólo contienen petróleo líquido en condiciones variables de presión y transferencia, aunque generalmente el petróleo líquido se encuentra acompañado de gas y agua.

2.2 DEFINICIÓN DE POZOS PETROLEROS

De acuerdo a lo expuesto por Barberi (2001) [2], se puede definir a un pozo petrolero como una perforación que se realiza desde la superficie de la tierra con el objeto de obtener petróleo y gas de las profundidades del mismo. Estos pueden ser construidos tanto en tierra firme como costa afuera.

Dependiendo de las características geológicas del lugar donde se ha establecido la presencia de un yacimiento de hidrocarburos, la dirección en la cual se realiza la perforación permite la existencia de pozos verticales, horizontales y direccionales.

Los pozos verticales son los que, por lo general, se ha buscado construir desde el comienzo de la industria petrolera. Pero, por diferentes razones ya sea por las características geológicas de la formación que requiere ser perforada o por factores de índole mecánicos, se hace difícil realizar un pozo totalmente vertical debido a que siempre se genera una desviación, la cual para ser evitada o por lo menos para evitar que sea significativa necesita de controles estrictos de todos los parámetros involucrados en el proceso de perforación del pozo.

En cuanto a los factores mecánicos a los cuales se les debe prestar suma atención al momento de realizar la perforación del pozo se tiene:

- Las características, diámetros y peso por unidad de longitud de los tubos que componen la sarta de perforación.
- El tipo de barrena
- La velocidad de rotación de la sarta.

- El peso de la sarta que se deja actuar sobre la barrena, para que ésta muerda, penetre y despedace la roca.
- El tipo y las características del fluido de perforación, utilizando su peso por unidad de volumen para contrarrestar las presiones de las formaciones perforadas, la velocidad y caudal suficientes de salida del fluido por las boquillas de la barrena para garantizar la limpieza del fondo del hoyo y el arrastre del ripio hasta la superficie.

En cuanto a los factores de tipo geológico que pueden afectar la total verticalidad del pozo, los más significativos son la constitución y el tipo de material de la roca. La dureza de la misma puede ser causante de inconvenientes al momento del avance de la perforación. Así mismo, la presencia de diferentes estratos con diferentes tipos de roca, obliga a mantener un control constante de la perforación, debido a que los requerimientos para el despedazamiento de las rocas y para el avance de la barrena varían, ya sea por la velocidad de rotación, el caudal del fluido de perforación, entre otros. Otro factor significativo es la inclinación que puedan presentar los estratos con respecto a la superficie, que es la que se toma con punto de referencia.

Al ser muy difícil lograr un pozo totalmente vertical y, debido a que fortuitamente no siempre se lograban éstos, sino pozos con una inclinación considerable, a partir de 1930 se comenzaron a construir pozos direccionales, que son aquellos que poseen cierta inclinación con respecto a la perforación vertical y, seguidamente, se procedió a la construcción de pozos horizontales.

Los pozos direccionales comenzaron a llamar la atención al demostrar su utilidad. Estos facilitaban la construcción de pozos en casos en los cuales no se puede llegar directamente, al existir obstáculos, ya sean naturales o construcciones en la superficie que imposibiliten la colocación del taladro directamente sobre el objetivo. Cuando se produce un reventón en un pozo, se realizan perforaciones direccionales para llegar al lugar donde se produce la falla a fin de controlarla mediante el bombeo de fluidos de perforación para contener el flujo desbordado. Cuando una sección del pozo queda inactiva, pero la extracción puede continuar en el resto del mismo, la utilización de la perforación direccional permite ahorrar costos, al utilizar una infraestructura existente, evitando generar una nueva. Al darse el caso de que el yacimiento no fuese alcanzado en primera instancia, este tipo de perforación permite generar varias desviaciones, lo cual permite alcanzar un área mayor de explotación.

2.3 CARACTERISTICAS DE LOS YACIMIENTOS Y POZOS PETROLEROS

Los pozos petroleros dependiendo de la clasificación que se le asigne pueden ser de exploración, de avanzada y de explotación.

Los yacimientos petrolíferos se caracterizan por estar conformados por estratos de rocas porosas, las cuales pueden poseer diferentes características ya sea de dureza, de cantidad de hidrocarburos que pueden almacenar entre sus intersticios o por la disposición de los estratos en los que se encuentran. Las rocas que por lo general conforman los yacimientos petroleros son la arenisca y la caliza.

En los pozos petroleros los valores de presión y temperatura son considerables, existiendo en la mayoría de los casos condiciones HP/HT (High Pressure / High Temperatura). Para tener una idea de estas condiciones, las temperaturas de los yacimientos pueden estar entre 239 - 450 °F (115 °C – 232,22 °C) (Fuente: PDVSA, Schlumberger). La temperatura de lodo puede estar entre 90 °C – 150 °F. De acuerdo a Stiles (2006) [28], cuando se realiza una estimulación cíclica con vapor las temperaturas del pozo pueden fluctuar entre 77 °F y 645 °F.

2.4 PARTES DE UN POZO

De manera generalizada, la estructura de un pozo consta de:

a) Casing

Para empezar a definir la estructura final del pozo, una vez realizada la perforación en el terreno, se coloca a lo largo del hoyo una tubería de acero a la cual se conoce con el nombre de casing. Una vez que esta es colocada, se bombea cemento alrededor de casing, entre este y las paredes del terreno perforado.

El casing tiene tres funciones principales, la primera es darle estabilidad al pozo, además de prevenir la formación de cavidades en el mismo; la segunda es que proporciona protección para los acuíferos (acuíferos de agua dulce) que con frecuencia están localizadas cerca de la superficie. De esta manera, se evita la contaminación del agua o que esta se mezcle con el petróleo. El casing evita el contacto con estos reservorios y, de esta manera, la posible contaminación de los mismos ya sea por la perforación, por los lodos de perforación o durante la producción de petróleo.

El casing puede tener diferentes diámetros. Por ejemplo, puede tener 244,5 mm de diámetro exterior. Los diámetros más pequeños están típicamente entre 178 mm o 139,7 mm en el área de petróleo pesado. La longitud total de un determinado tipo de casing es llamado cadena. El diámetro mayor se emplea cuando se perfora una porción cerca de la superficie, a medida que la cadena se desplaza por dentro del pozo, un diámetro más pequeño es empleado en la siguiente etapa del pozo.

Si el fondo del pozo esta fuera de la zona de producción, se puede usar una completación de hoyo abierto. El pozo es encajonado debajo de la formación que está

produciendo y se deja abierto bajo él. Si el reservorio es de arena blanda, se puede colocar una pantalla, un paquete de grava o un trazador de líneas en el fondo del pozo, para prevenir que el fondo se convierta en un atascadero. Esos tipos de acabados son usualmente empleados en pozos horizontales.

b) <u>Tubing</u>

El tubing es una tubería de diámetro menor que es colocada dentro del pozo y la cual conduce el petróleo o el gas a la superficie. Para ser más específicos, el tubing se encuentra dentro de lo que denominamos casing y los valores de diámetro pueden variar entre 30 mm y 110 mm.

Este se encuentra suspendido desde la superficie hasta las zonas de producción. Las altas presiones a las cuales se encuentra el petróleo son suficientes para que el fluido se introduzca en el pozo, pero en la mayoría de los casos no es suficiente para llevar el fluido a la superficie; cuando esto no se puede hacer, se coloca una bomba en el tope del tubing para que el fluido sea bombeado hasta la superficie.

c) <u>Revestimiento de Cemento</u>

El revestimiento de cemento es aquél que se obtiene del proceso de cementación. En este proceso se bombea cemento líquido con propiedades especiales, alrededor del casing. El cemento fraguado cumple la función de soporte del casing y lo aísla de las filtraciones presentes en la formación, a fin de evitar la corrosión en el acero.

d) <u>Formación</u>
Se conoce como formación al área donde se realiza la perforación del pozo petrolero. Esta área posee ciertas características geológicas y en ella se encuentra almacenado el petróleo. Las rocas porosas que lo contienen pueden cambiar sus características de acuerdo a la zona donde se encuentre el yacimiento o de acuerdo a los estratos, los cuales pueden ir cambiando a medida que se perfora el pozo.

Figura 2.1 Partes de un Pozo Petrolero.

Figura 2.2 Esquema Generalizado de un Pozo Petrolero

2.5 PROCESO DE CONTRUCCIÓN DE POZOS

De manera general, se puede establecer que un pozo petrolero se construye realizando una perforación en la superficie de la tierra en cuyo interior, previamente de acuerdo a estudios geológicos realizados, se ha establecido la existencia de un yacimiento. Por lo general, los yacimientos se presentan como rocas porosas en cuyos intersticios se encuentran los hidrocarburos. Una vez realizada la perforación, que de acuerdo a las características del yacimiento varía en profundidad, se introduce en éste un tubo metálico, por lo general de acero con propiedades especiales, al cual se denomina casing y luego se procede a realizar la cementación, que conlleva el vaciado alrededor del casing un cemento con características especificas el cual servirá de soporte del mismo, para aislarlo de la formación y para evitar la corrosión.

El proceso de cementación se realiza con la finalidad de prolongar la vida útil del pozo y obtener mayores niveles en la producción, ya que con éste se busca aislar el casing de la formación para evitar que se generen filtraciones de agua, que traen como consecuencia disminución en la producción.

Una vez que se tiene lo que podría llamarse la estructura principal del pozo constituida por el sistema Formación – Cemento – Tubería, se procede a la realización del cañoneo, que no es más que la aplicación de cargas explosivas para perforar tanto el casing como el cemento hasta llegar a la formación y permitir la comunicación de los fluidos del yacimiento hacia el pozo.

Según Barberi [2], el método empleado hoy en día para la perforación de pozos es el rotativo, utilizado desde 1901. Este sustituyó al método de percusión e introdujo como nuevos elementos el sistema de izaje, el sistema de circulación del fluido de perforación y los elementos componentes de la sarta de perforación.

Los componentes principales del taladro de perforación son los que se presentan a continuación:

- Planta de Fuerza Motriz
- Sistema de Izaje
- Sistema Rotatorio
- Sarta de Perforación
- Sistema de Circulación de Fluidos de Perforación

La planta de fuerza motriz, ya sea de tipo mecánico, eléctrico o electromecánico, debe producir una potencia para cubrir las necesidades tanto del sistema de izaje, del sistema rotatorio y del sistema de circulación del fluido. La potencia máxima teórica requerida debe calcularse en función de la mayor profundidad que pueda obtenerse con el taladro y de la carga más pesada que represente la sarta de tubos necesarios para revestir el agujero a la mayor profundidad. Además se debe tener en consideración un estimado por encima de la potencia teórica, que representa un factor de seguridad en caso de un requerimiento adicional de potencia.

El sistema de izaje es fundamental, porque a través de su utilización es posible introducir, sostener y extraer del agujero la pesada carga que representa la sarta de tubos que se emplean para el revestimiento del mismo, a las velocidades adecuadas, con la potencia necesaria, con suficiente estabilidad, con un sistema de frenos y mando seguros, tanto para lo operarios como para los equipos, garantizando la realización de las operaciones.

El sistema rotatorio es el que realiza la operación de apertura del hoyo hasta la profundidad donde se encuentra el yacimiento petrolífero.

Las sartas de perforación son columnas de tubos de aceros que en su extremo tiene enroscado la lastrabarrena, y en el extremo de ésta la barrena que es la que se encarga de fragmentar los estratos geológicos para obtener el pozo hasta la profundidad donde se encuentra el yacimiento.

El sistema de circulación de fluido de perforación esta constituido por los equipos que se encargan de hacer circular el fluido y por el fluido propiamente dicho.

El procedimiento de perforación se realiza una vez especificado el lugar donde pueda hallarse el potencial yacimiento.

2.6 PROCEDIMIENTO DE CEMENTACIÓN DE POZOS

El proceso de cementación es uno de los más importantes en la construcción de pozos para la industria petrolera. De éste depende, en muchos casos, que la vida productiva del pozo se alargue y, por consiguiente, un aumento en los beneficios económicos.

Este procedimiento se realiza una vez perforada la formación e introducido en el agujero el casing, para darle estabilidad al mismo

La cementación es un aspecto integral, ya que el cemento se utiliza para asegurar el casing y para aislar las zonas para los propósitos de producción, así como para solucionar varios problemas del agujero. Un programa correctamente previsto del cemento es fundamental para que se realice una perforación con éxito. La planeación de la cementación toma en cuenta varias características, las cuales incluyen:

- Las condiciones del agujero, por ejemplo: temperatura, tamaño, etc.
- La evaluación de las propiedades y características del lodo.
- La selección del equipo como centralizadores, de raspadores, y cuando existe carencia del equipo flotador.
- De las técnicas de colocación.

2.6.1 Funciones de la Cementación Primaria

La cementación primaria se realiza a presiones suficientes, para que la mezcla de cemento bombeada por el interior de la sarta revestidora sea desplazada a través de la zapata que lleva el extremo inferior de la sarta. La zapata siempre se deja a cierta distancia del fondo del hoyo. La mezcla que se desplaza por la zapata asciende por el espacio anular hasta cubrir la distancia calculada que debe quedar rellena de cemento. En el caso de la sarta primaria, el relleno se hace hasta la superficie. Si, como sucede circunstancialmente, las formaciones absorben cemento y la mezcla no llega a la superficie, entonces el relleno del espacio anular se completa bombeando cemento desde arriba. Las funciones de la cementación son las siguientes:

- Sirve para afianzar la sarta y para protegerla contra el deterioro durante subsiguientes trabajos de reacondicionamiento en el pozo.
- Protege la sarta y las formaciones: gasíferas, petroleras y/o acuíferas.
- Efectúa el aislamiento de las formaciones productivas y el confinamiento de estratos acuíferos. Evita la migración de fluidos entre las formaciones. También protege las formaciones contra derrumbes.
- Refuerza la sarta revestidora contra el aplastamiento que pueden imponerle presiones externas.
- Refuerza la resistencia de la sarta a presiones de estallido.
- Protege la sarta contra la corrosión.

• Protege la sarta durante los trabajos de cañoneo.

Cuando se trata de sartas muy largas, como pudiesen ser los casos de sartas intermedias o de la final, la cementación primaria puede hacerse por etapas. Este método permite cubrir el tramo deseado y evitar inconvenientes debido a que, mientras más tiempo se esté bombeando cemento, la mezcla se torna más consistente y difícil de mover. El cemento y el agua empiezan a reaccionar en el mismo momento en que se mezclan y las características físicas y químicas que adquiere la mezcla están en función del tiempo, por lo que la cementación debe hacerse dentro de ciertos límites de tiempo, antes de que el fraguado inicial empiece a manifestarse. Además, debe tenerse en cuenta la relación profundidad-temperatura, ya que la temperatura del hoyo influye sobre el tiempo de fraguado de la mezcla.

La fluidez, el peso y el fraguado inicial y final de la mezcla dependen de la relación cemento-agua. La relación por peso puede ser de 40 hasta 70 %. En la práctica, la experiencia en cada campo petrolero es guía para seleccionar la relación adecuada. Es muy importante que el peso de la mezcla más la presión de bombeo de la mezcla no causen pérdida de cemento hacia las formaciones. Los tipos de cementos utilizados en la perforación y reacondicionamientos de pozos son fabricados para responder a la variedad de condiciones impuestas por las operaciones. Algunos cementos pueden ser de fraguado lento o rápido; de desarrollo rápido o lento de sus resistencias iniciales; pero en general, tienen que ser resistentes a la contaminación y a las reacciones químicas que puedan ocasionarse debido a las aguas de la formación.

En muchos casos, para proteger las formaciones productivas contra la filtración de agua de la mezcla, se exige que la filtración sea mínima. Cuando se teme que pueda haber pérdida de circulación, se le añade a la mezcla un cierto aditivo que pueda contrarrestar tal inconveniencia.

En el caso de cementaciones especiales, se le puede añadir mezclas radiactivas para seguir su rastro. Para terminaciones de pozos sujetos a inyección de vapor se seleccionan cementos resistentes a muy altas temperaturas. En áreas donde la corrosión de tuberías es problema muy serio, se añaden mezclas anticorrosivas especiales. Además de su uso en la cementación de sartas y de la cementación forzada, el cemento se emplea en una variedad de casos durante la perforación, terminación, reacondicionamiento y abandono de pozos.

2.6.2 Cementación Forzada

Durante la perforación o en las tareas de terminación de los pozos, y posteriormente durante el transcurso de la vida productiva de los mismos, en trabajos de reparaciones y/o reacondicionamiento, se emplea con mucha frecuencia la cementación forzada. Este método de cementación consiste en forzar la mezcla de cemento a alta presión hacia la(s) formación(es) para corregir ciertas anomalías en puntos determinados a través de orificios que por cañoneo (perforación a bala o a chorro) son abiertos en los revestidores. El cemento se inyecta en casos como: la falta de cemento en cierto tramo de la tubería; el aislamiento de un intervalo gasífero y/o acuífero de una zona productiva, con miras a eliminar la producción de gas y/o agua; corrección de fugas de fluidos a través del revestidor, debido a desperfectos; abandono de zonas productivas agotadas.

2.6.3 Clasificación de la Cementación de Pozos Petroleros

La cementación de pozos petroleros puede clasificarse en tres categorías:

- 1. Trabajo de cementación primaria en una cadena de casing
- 2. Cementación de apriete
- 3. Conectores

Los diferentes aspectos de cada tipo de trabajo de cementación pueden ser distintos, creando la necesidad de un amplio conocimiento sobre las prioridades de la cementación, para así desarrollar un pronóstico para el pozo.

2.6.3.1 Trabajo de cementación primaria en una cadena de casing

Los diferentes tipos de casing son usualmente cementadas en el agujero para:

• Aislar zonas problemáticas detrás del casing en formaciones que son perforadas a grandes profundidades. (ver figura 2.3)

Figura. 2.3 Zonas problemáticas detrás del casing en formaciones que son perforada a grandes profundidades *Fuente: Oil Well Cement Manual* [3]

• Aislar las altas presiones de la formación bajo el casing de las zonas débiles y poco profundas del mismo. (ver figura 2.4)

Figura. 2.4 Zonas de altas presiones de la formación bajo el casing Fuente: Oil Well Cement Manual [3]

Aislar las zonas productoras de la presencia de agua y arenas. (ver figura 2.5)

Figura. 2.5 Zonas productoras aisladas de la presencia de agua y arenas Fuente: Oil Well Cement Manual [3]

El cemento es colocado normalmente detrás del casing mediante técnicas que pueden ser de etapa simple o multietapas. La técnica de etapa simple bombea el

cemento bajo el casing y sobre el anillo. El desvío de cemento en el anillo puede ser evitado desde la tubería U por válvulas de retorno de presión en la parte inferior de la cadena de casings.

Diferentes condiciones de perforado pueden garantizar que varias secciones del anillo sean cementados, sin cementar el anillo completo. Una causa común es la presencia de una zona de pérdida de circulación que niega la posibilidad de la circulación de cemento sobre la altura deseada. Otras causas pueden hacer que otras secciones del agujero requieran el uso de diferentes tipos de vaciado de cemento (ver figura 2.6).

Figura. 2.6 Ejemplo de cementación multietapa debido a zonas de pérdida de circulación *Fuente: Oil Well Cement Manual* [3]

2.6.3.2 Cementación de Apriete

Un método común para reparar fallas primarias en el casing o realizar operaciones rectificadoras en el agujero es la cementación de apriete. Los usos más importantes para la cementación de apriete son:

- Como suplemento para reparar fallas en los trabajos de cementación primaria del casing.
- Reducir la relación petróleo-agua, agua-gas o gas-petróleo.
- Para clausurar una zona productiva.
- Aislar una zona, antes de la perforación, para la producción (apretones por bloques) o antes de fracturar.
- Reparar escapes en el casing.
- Detener la pérdida de circulación en un agujero abierto mientras es perforado.

2.6.3.3 Conectores

La colocación de conectores en el pozo es usado comúnmente por las siguientes razones:

- Plugback
- Whipstock
- Abandono

Una operación de plugback consiste en colocar un conector a través o por encima de una zona ya utilizada, cuando se requiere realizar una recompletación debida a la reducción de la zona productora.

Un whipstock es frecuentemente usado cuando es necesario incrementar o reducir la desviación de un agujero o cambiar la dirección, mientras es perforado.

Para una correcta operación del pozo, cuando este requiere ser abandonado, es necesario para mantener la relación de los fluidos realizar un apropiada protección y sellado del mismo. Comúnmente, se utilizan conectores de cemento para este fin.

2.6.4 Equipo de Cementación

La planificación de la cementación implica la evaluación y la selección del equipo a ser utilizado en el proceso de la cementación. El equipo que se encuentra abajo en el pozo incluye las zapatas y collares, que funcionan como secciones integrales de la secuencia del casing. Además, muchos asistentes de cementación unidos al exterior de la tubería pueden ser utilizados; es decir, los centralizadores, los raspadores, y las cestas de cemento.

• Zapata del casing: Es un empalme corto, que es colocado como una tubería de pared fuerte en el fondo de la cadena de casing (ver Fig. 2.8). Posee una nariz redondeada para guiar el casing en el agujero y a través de secciones torcidas. La zapata se atornilla en el casing y generalmente es pegado con una rosca de fijación compuesta.

Figura. 2.8 Zapata Guía Fuente: Oil Well Cement Manual [3]

• **Collares**: Un collar de cementación funciona como una parte integral de la cadena y es colocado en el tope del primer o segundo empalme del casing (ver figura 2.9). El collar sirve para detener el cemento, para que este no sea inadvertidamente bombeado completamente fuera del casing y dentro del anillo.

Figura. 2.9 Collar del Flotador Fuente: Oil Well Cement Manual [3]

• Collares de etapas: La cementación de etapas múltiples requiere collares especiales con mangas y puertos resbalantes. Las mangas son usualmente cerradas durante la primera etapa de la cementación. Las mangas son activadas con cada caída libre o método de desplazamiento.

• **Centralizadores**: Los centralizadores se colocan en el exterior del casing para proporcionar la distancia de aislamiento entre el pozo y la tubería, en un esfuerzo por lograr el envolvimiento de la tubería por el cemento (ver figura 2.10).

Figura. 2.10 Centralizadores: (a) Los resortes del arco están soldados con los anillos terminales, (b) centralizador de paleta reflectora y (c) centralizador de agujero delgado. *Fuente: Oil Well Cement Manual* [3]

• **Raspadores**: Para alcanzar un trabajo eficaz del cemento, la mezcla debe enlazar a la formación; para eso se utilizan los raspadores que, valgan la redundancia, raspan y rasguñan a través del lodo la formación, para lograr el soporte entre el cemento y la formación.

Figura. 2.11 Raspadores (a) Rotativo (b) Intercambio de raspadores de la pared *Fuente: Oil Well Cement Manual* [3]

• Cestas de Cemento: Las cestas de cemento son las que dan soporte a la columna de cemento, mientras este se endurece. Las cestas son colocadas sobre las zonas de pérdida de circulación que no pueden soportar la columna completa de cemento.

Figura. 2.12 Cestas del cemento: (a) en lugar dentro cubierta y (b) con los anillos del límite *Fuente: Oil Well Cement Manual* [3]

• Conectores: La mezcla del cemento es separada normalmente de la columna de lodo por conectores que reducen al mínimo la contaminación de la interfaz.

Figura. 2.13 Conectores de cementación: (a) tapa y (b) Conectores inferiores *Fuente: Oil Well Cement Manual* [3]

Figura.2.14 Diagrama del trabajo de cementación del casing Fuente: Oil Well Cement Manual [3]

2.6.5 Técnicas Primarias de Cementación.

Las operaciones primarias de la cementación se conducen generalmente con etapas simples o múltiples. El cemento se bombea abajo del casing y sube la pieza anular. Algunas técnicas utilizan sartas de perforación para transportar el cemento al fondo del casing. El método de etapa simple se ha utilizado tradicionalmente para el casing conductor, de superficie, intermedio, y las cadenas de casing de producción. La fig. 2.15 ilustran las características básicas de la cementación para el casing

Figura. 2.15 Cementación *Fuente: Oil Well Cement Manual* [3]

- 1. Perforación del agujero hasta la profundidad deseada.
- 2. Tiraje de la cadena de perforación y colocación del casing.
- 3. Circulación en el agujero con la bomba del aparejo.
- 4. Sujeción de la cabeza de la cementación con conectores al casing.
- 5. Conexión de las líneas con la bomba y la cabeza de cementación.
- 6. Inicio de la circulación con la bomba.
- 7. Lanzamiento del conector inferior (si el trabajo es de una etapa o trabajo de etapas continuas).
- 8. Remoción del lodo mediante bombeo.
- **9.** Mezclar el cemento y desplazarlo hasta que todo el cemento se mezcle en el casing.
- 10. Colocar los conectores de lanzamiento:
- Colocación del conector superior para un trabajo de paso simple.
- Colocación del conector inferior del cierre para el trabajo de segunda etapa.
- Bombear hasta que un aumento agudo de la presión es notado en los equipos medidores indicando que el conector superior ha sido sobrepasado.

(Los pasos 12-16 se aplican a la cementación por etapas)

- **12.** Bombeo de gota (tiempo de espera calculado mientras es asentado); abrir los puertos.
- hacer circular fuera, cualquier exceso de cemento alrededor de la herramienta de la etapa.
- 14. Espere por lo menos 6 horas para que el cemento pueda ganar fuerza inicial.
- **15.** Mezclado del cemento de la segunda etapa y desplazamiento hasta que todo el cemento se mezcla en el casing.
- 16. Lanzamiento del conector de cierre superior y desplazarlo hasta que un claro aumento de la presión es observado en el instrumento medidor, indicando que el conector ha sido bombeado.

17. Liberación de la presión para determinar si los flotadores (etapa simple) o las herramientas de las etapas están siendo contenidas.

2.7 TIPOS DE CEMENTOS Y CARACTERÍSTICAS MECÁNICAS

2.7.1 Tipos de Cementos (esta basada según clasificación API: American Petroleum Institute)

CLASE A

El cemento CLASE A que ofrece Cemex es exclusivo para la cementación de pozos petroleros y de gas y cumple con los requerimientos establecidos por la American Petroleum Institute (API), en sus apartados 10A y Q1

Este cemento se produce por la molienda de Clinker de cemento Pórtland, al cual se le adiciona Sulfato de Calcio (yeso) y agua, además de tener una presentación del tipo Granel.

Entre las aplicaciones del cemento clase A están la de recubrir las paredes y proteger de las filtraciones (agua y gas) que se originan durante la perforación. Cuando no se requieren de propiedades especiales se puede emplear el cemento Clase A. Además posee un rango de aplicación de profundidades que van desde la superficie hasta los 6000 ft.

Si se emplean aditivos a la lechada con cemento Clase A se pueden alcanzar requerimientos especiales que mejoran sus características con respecto a su comportamiento básico.

Algunas de las características físicas de este cemento fabricado en Venezuela son:

• Cemento Clase A. Guayana

Tiempo de Espesamiento [min]	130	
Consistencia a los 15 min [bc]	15	
Consistencia a los 30 min [bc]	c] 15	
Resistencia a la Compresión [psi] A las 8 horas y 100 °F	750	
Resistencia a la Compresión [psi]2700A las 24 horas y 100 °F2700		
Fineza Blaine (cm ² /gr)	3800	

Tabla 2.2 Cemento Clase A, Guayana Fuente: *CEMEX Venezuela* [6]

• Cemento Clase A. Mara

Tiempo de Espesamiento [min]12	
Consistencia a los 15 min [bc]	15
Consistencia a los 30 min [bc]	20
Resistencia a la Compresión [psi] A las 8 horas y 100 °F	980
Resistencia a la Compresión [psi] A las 24 horas y 100 °F	2600
Fineza Blaine (cm ² /gr)	3560

Tabla 2.3 Cemento Clase A, Mara Fuente: Fuente: *CEMEX Venezuela* [6]

CLASE B

El cemento Clase B también empleado para la construcción de pozos para la industria petrolera se fabrica de dos tipos: MSR y HSR. Al igual que el cemento Clase A, cumple con las especificaciones del American Petroleum Institute. Es producido por la molienda de Clinker de cemento Pórtland.

Para obtener el cemento tipo MSR de moderada resistencia a los sulfatos, éste debe tener un contenido de C3A menor de 8 %. Si el contenido de C3A es menor de 3 % se obtiene cemento Clase B tipo HSR con alta resistencia a los sulfatos. Sus usos y aplicaciones son similares a las que posee el cemento Clase A, pero incorporan el hecho de que se utilizan para dar estabilidad a la lechada, además de una resistencia alta o moderada a los sulfatos.

Su presentación es del tipo granel y posee las características físicas:

	MSR	HSR
Tiempo de Espesamiento [min]	130	170
Consistencia a los 15 min [bc]	15	12
Consistencia a los 30 min [bc]	15	12
Resistencia a la Compresión [psi] A las 8 horas y 100 °F	900	520
Resistencia a la Compresión [psi] A las 24 horas y 100 °F	3200	2400
Fineza Blaine (cm ² /gr)	3200	3300

• Cemento Clase B. Guayana

Tabla 2.4 Cemento Clase B, GuayanaFuente: CEMEX Venezuela[6]

CLASE G

El cemento Clase G al igual que el resto de los cementos petroleros cumple con las especificaciones del American Petroleum Institute. Su fabricación procede de la molienda de Clinker de cemento Pórtland con adición de sulfato de calcio (yeso) y agua. Su composición físico-química lo hace altamente resistente a los sulfatos (HSR), ya que su contenido de C3A es menor a 3 %.

Cuando se requieren altas resistencias a los sulfatos, condiciones especiales y mayor estabilidad en la lechada, se debe emplear el cemento Clase G. Con este tipo de cemento se puede ampliar el rango de profundidad hasta los 8000 ft, además de que pueden emplearse aditivos como aceleradores o retardadores para cubrir un mayor rango de profundidades y temperaturas en los pozos. Su presentación es en granel.

Tiempo de Espesamiento [min]	110
Consistencia a los 15 min [bc]	15
Consistencia a los 30 min [bc]	15
Fluido libre [%]	2,0
Resistencia a la Compresión [psi] A las 8 horas y 100 °F	800
Resistencia a la Compresión [psi] A las 24 horas y 140 °F	2100
Fineza Blaine (cm²/gr)	3300

• Cemento Clase G. Guayana

Tabla 2.5 Cemento Clase G, Guayana Fuente: *CEMEX Venezuela* [6]

CLASE H

El cemento Clase H posee resistencia media y alta a los sulfatos, por eso se presenta de dos tipos MSR y HSR. Este cemento debe emplearse cuando existan condiciones extremas de temperatura y presión, para revestir y para evitar filtraciones durante el proceso perforación y reparación de pozos.

Su rango de profundidades va hasta los 12000 ft, pero pueden utilizarse aceleradores y retardadores para cubrir una mayor profundidad y altas temperaturas. Al igual que los tres anteriores, la presentación del cemento Clase H es del tipo granel.

Las características físicas del cemento Clase H tanto tipo MSR y HSR son:

Tiempo de Espesamiento [min]	105	
Consistencia a los 15 min [bc]	18	
Consistencia a los 30 min [bc]	20	
Fluido libre [%]	3.1	
Resistencia a la Compresión [psi]	650	
A las 8 horas y 100 °F	020	
Resistencia a la Compresión [psi]		
A las 24 horas y 140 °F	1,00	
Fineza Blaine (cm²/gr)	2800	

• Cemento Clase H. Guayana

Tabla 2.6 Cemento Clase H, Guayana Fuente: *CEMEX Venezuela* [6]

• Cemento Clase H. Mara

Tiempo de Espesamiento [min]	115	
Consistencia a los 15 min [bc]	16	
Consistencia a los 30 min [bc]	18	
Fluido libre [%]	4.0	
Resistencia a la Compresión [psi]	500	
A las 8 horas y 100 °F	200	
Resistencia a la Compresión [psi]		
A las 24 horas y 140 °F	1,00	
Fineza Blaine (cm ² /gr)	2800	

Tabla 2.7 Cemento Clase H, Mara Fuente: Fuente: *CEMEX Venezuela* [6]

Clase API	Aplicación
Α	• Usado en un rango de profundidad de 0 -6000 ft.
	• Temperaturas superiores a 170 °F.
	• Previsto para ser usado cuando no se requieren propiedades
	especiales, cuando las condiciones del pozo lo permiten.
	• Es económico en comparación con los cementos de primera.
В	• Usado en un rango de profundidad de 0 - 6000 ft.
	• Temperaturas superiores a 170 °F.
	• Previsto para ser utilizado cuando una resistencia moderada
	a los sulfatos es requerida.
	• Es económico en comparación con los cementos de primera.
G,H	• Usado en un rango de profundidad de 0 - 8000 ft.
	• Usado en un rango de temperatura superior a 200 °F.
Tabla 2.8 Aplicaciones de los cementos API Fuente: Well Cementing [10]	

2.8 MANTENIMIENTO DE POZOS PETROLEROS

De acuerdo a Barberi [2] "Durante su vida productiva, todos los pozos requieren de mantenimiento, estimulación y reacondicionamiento. Generalmente, el mantenimiento de los pozos de flujo natural redunda en hacer inspecciones programadas para verificar que el cabezal y sus aditamentos: manómetros, válvulas, flujoductos y estranguladores están en buen estado, para evitar fugas y desperfectos indeseables.

Frecuentemente se toman muestras de petróleo en el cabezal para verificar la gravedad del crudo, porcentaje de agua y sedimentos producidos. Se observa la presión de flujo y presión en el espacio anular para determinar anomalías. A fechas determinadas se les hacen estudios de presión de fondo (estática y fluyente) y el pozo se pone en prueba especial de producción, a través de la estación de flujo, para determinar su comportamiento.

Atención igual se presta a aquellos pozos que producen por levantamiento artificial por gas. Es muy importante verificar el estado y funcionamiento de todos los componentes del cabezal. Es esencial cerciorarse de que la presión y el volumen de gas, continúo o intermitente, se ajustan a las magnitudes deseadas, y que la producción del pozo y su relación gas-petróleo concuerdan con las estimaciones estipuladas. De todas estas observaciones puede deducirse si las válvulas de inyección de gas en la sarta de educción están funcionando adecuadamente, si la descarga de petróleo del yacimiento al pozo no ha sufrido deterioro debido a reducción de permeabilidad en la periferia de la pared del pozo, avenamiento y/o influjo de agua.

En pozos que producen por bombeo hidráulico, se hacen inspecciones rutinarias

para verificar que las instalaciones en la superficie, como son tanques, tuberías, medidores, válvulas, bombas y otros dispositivos funcionan mecánicamente bien. Por otra parte, es importante cerciorarse sobre el estado, la calidad, el volumen y la presión del fluido motriz que hace funcionar el sistema.

Los pozos que producen por bombeo mecánico, tipo balancín, presentan una gran variedad de desperfectos mecánicos que surgen de las características mismas del sistema, tanto en la superficie como en el mismo pozo, desde el cabezal hasta el fondo. Fallas en la fuerza eléctrica o fuerza mecánica (motor de combustión interna) que impulsa el balancín para el bombeo, hacen que el tiempo perdido se transforme en merma de la cuota de producción del pozo. Cualquier desperfecto en algunos de los elementos del propio balancín (engranajes, bielas, colgadores, etc.), ocasiona pérdida de bombeo de petróleo.

En el cabezal del pozo, desperfectos en el vástago pulido y el prensa-estopa pueden ocasionar derrames leves o severos de petróleo. Generalmente, las varillas de succión se sueltan o se parten. En ocasiones, la sarta de varillas se desenrosca de la bomba. En otros casos, debido a la fatiga, esfuerzos y vibración, la carrera ascendente y descendente de la sarta de varillas de succión no es sincrónica y por estiramiento causa golpeteo que puede destruir la bomba o partir las varillas. La válvula fija y la válvula viajera pueden perder su esfericidad debido a la corrosión de los fluidos o el cacarañeo por la arena que se produce con los fluidos del yacimiento, y esto merma la eficiencia del bombeo debido al escurrimiento de los fluidos.

Los pozos inyectores de gas, agua o vapor, utilizados para vigorizar la continuidad de producción de hidrocarburos del yacimiento, son también objeto de adecuado mantenimiento. Los elementos de sus respectivos cabezales (válvulas, conexiones, medidores de presión y de temperatura, registros de volúmenes

inyectados, etc.), deben funcionar bien para facilitar el seguimiento de las operaciones y detectar fallas que puedan presentarse."

El mantenimiento en los pozos petroleros se basa en la atención de los equipos dinámicos. Cuando se trata de presentarse fracturas en la estructura del mismo, ya sea en el casing o en el cemento se realiza lo que se denomina mantenimientos correctivos.

Un programa de mantenimiento predictivo por fallas en el cemento, no existe como tal, como se explicó anteriormente solo cuando ocurre un colapso en la estructura se toman las medidas pertinentes, ya sea clausurar la sección del pozo donde se generó la falla o en última instancia se considera la pérdida del mismo.

De aquí la importancia de realizar una minuciosa planificación del proceso de cementación de pozos. Este debe realizarse de manera que los materiales a utilizar sean los más adecuados de acuerdo a sus propiedades y de acuerdo a las condiciones a las que van a estar expuestos, para evitar fallas tempranas que ocasionen pérdidas económicas.

CAPÍTULO III PROPIEDADES MECÁNICAS

3.1 ESFUERZO

En general, las fuerzas internas que actual sobre áreas infinitesimales de un corte, son de magnitudes y direcciones variables, como se muestra en la figura 3.1.

Figura 3.1 Cuerpo seccionado: (a) Cuerpo libre con algunas fuerzas internas (b) vista amplificada con componentes de ΔP . *Fuente: Popov, Egor* [20]

Esas fuerzas son de naturaleza vectorial y mantienen en equilibrio las fuerzas aplicadas externamente. En la mecánica de sólidos es particularmente importante determinar la intensidad de esas fuerzas sobre las diversas porciones de una sección ya que la resistencia a la deformación y a las fuerzas depende de esa intensidad. En general, tales fuerzas varían de punto a punto y están inclinadas con respecto al plano de la sección.

El esfuerzo en un punto se define como el valor límite de la fuerza por unidad de área, cuando esta tiende a cero:

$$\sigma = \lim_{\Delta A \to 0} = \frac{\Delta P}{\Delta A} = \frac{dP}{dA}$$
(Ec. 3.1)

Los esfuerzos normales resultan de componentes de fuerzas perpendiculares al plano de corte y los esfuerzos cortantes resultan de las componentes tangenciales al plano de corte.

Debe hacerse énfasis en que los esfuerzos multiplicados por las respectivas áreas sobre las que ellos actúan dan fuerzas. En una sección imaginaria, una suma vectorial de esas fuerzas, llamada resultante de esfuerzos, mantiene un cuerpo en equilibrio. En la mecánica de sólidos las resultantes de esfuerzos en una sección dada por lo general se determinan primero, y luego, aplicando las fórmulas ya establecidas, se determinan les esfuerzos.

3.2 LEY DE HOOKE

La ley de Hook es aquella que representa una idealización para la cual se considera un comportamiento lineal entre el esfuerzo y la deformación unitaria para todos los materiales. En la figura 3.2 se muestra este comportamiento para el acero hasta cierto punto el cual se conoce como límite de resistencia a la fluencia. Este es el material que mejor se aproxima a este comportamiento. "Por otra parte, la parte recta de la curva no existe prácticamente para el concreto, suelos, cobre recocido, aluminio o hierro fundido" (Popov, 1998) [20]. No obstante, para todo fin práctico, se considera que para estos materiales también existe la delimitación del punto de fluencia que separa la zona de comportamiento lineal con la de comportamiento plástico, como puede apreciarse en la figura 3.3

Figura 3.2 Diagrama esfuerzo-deformación unitaria para un acero dúctil

Fuente: Popov, Egor [20]

Figura 3.3 Diagrama esfuerzo-deformación para varios materiales *Fuente: Popov, Egor* [20]

Esta ley puede expresarse por la ecuación:

$$\sigma = E\varepsilon \tag{Ec. 3.2}$$

Donde:

 $\sigma = \text{Esfuerzo} [\text{F/L}^2]$

 ϵ = Deformación Unitaria [sin unidades]

 $E = M \acute{o} du lo de Young (Constante de Proporcionalidad) [F/L²]$

3.2.1 Módulo de Young o Módulo de Elasticidad

"Gráficamente, E se interpreta como la pendiente de una línea recta que va del origen al punto algo vago A sobre un diagrama de esfuerzo-deformación unitaria uniaxial. El esfuerzo correspondiente al último punto se denomina límite proporcional o límite elástico del material. Físicamente, el módulo elástico representa la rigidez del material bajo una carga impuesta. El valor del módulo elástico es una propiedad específica de un material." (Popov, 1998) [20]

Se infiere del análisis anterior que la ley de Hooke se aplica sólo hasta el límite proporcional del material. Esto es muy significativo porque en la mayor parte de los tratamientos subsecuentes, las fórmulas obtenidas se basan en esta ley. Es evidente entonces que tales fórmulas están limitadas al comportamiento del material en el rango inferior de esfuerzos.

Se habla de materiales anisótropos cuando estos poseen módulos elásticos y otras propiedades físicas diferentes en direcciones diferentes. Afortunadamente la gran mayoría de los materiales empleados en ingeniería poseen propiedades iguales en cualquier dirección. A estos materiales se les conoce con el nombre de materiales isotrópicos.

3.2.2 Observaciones adicionales acerca de las relaciones esfuerzo-deformación unitaria

Con la ayuda de las gráficas de esfuerzo – deformación, es posible establecer varios puntos de esfuerzos entre los cuales los más importantes son: Resistencia última de un material, el cual corresponde al punto más alejado del origen en el cual se produce la fractura. La resistencia a la fluencia es el punto en el cual se pasa de la zona elástica de comportamiento lineal a la zona de deformación plástica.

"Un estudio de los diagramas esfuerzo-deformación unitaria muestra que la resistencia (esfuerzo) de fluencia está tan cercana al límite proporcional que, para la mayor parte de los fines, los dos pueden considerarse uno solo." (Popov, 1998) [20]

Figura 3.4 Diagramas esfuerzo-deformación unitaria: (a) material elástico lineal,
(b) material elástico, (c) material inelástico o plástico. *Fuente: Popov, Egor* [20]

Con los materiales dúctiles, los diagramas esfuerzo-deformación unitarios que se obtienen con miembros cortos a compresión, son razonablemente iguales a los que se obtienen a tensión. Los materiales frágiles, como el hierro colado y el concreto, son muy débiles en tensión pero no en compresión. Para esos materiales, los diagramas difieren considerablemente, de del sentido de la fuerza aplicada.

3.2.3 Relación de Poisson

Los materiales al estar sometidos a una fuerza en una determinada dirección, además de experimentar una deformación en esa dirección, presenta otra propiedad que es la de expandirse o contraerse lateralmente en ángulos rectos con la fuerza uniaxial aplicada. Este fenómeno se ilustra en la figura 3.5, donde las deformaciones están sumamente exageradas. "Por claridad, este hecho físico puede reanunciarse de la siguiente manera: Si un cuerpo sólido se somete a una tensión axial, se contrae lateralmente; por otra parte, si el cuerpo es comprimido, el material se "hincha" sobre sus lados. De acuerdo con esto, las direcciones de las deformaciones laterales se determinan fácilmente, dependiendo del sentido de la fuerza aplicada." (Popov, 1998) [20]

Figura 3.5 (a) Contracción lateral (b) Expansión lateral de cuerpos sólidos sometidos a fuerzas axiales (efecto Poisson) *Fuente: Popov, Egor* [20]
Para una teoría general, es preferible referirse a esas deformaciones laterales en términos de deformaciones por unidad de longitud de la dimensión transversal. Así entonces, las deformaciones laterales relativas pueden expresarse en in/in o m/m. Estas deformaciones laterales unitarias relativas se conocen como deformaciones unitarias laterales. Por experimentos se sabe que las deformaciones unitarias laterales mantienen una relación constante con las deformaciones unitarias axiales o longitudinales causadas por una fuerza axial, siempre que el material permanezca elástico y que sea homogéneo e isótropo. Esta constante es una propiedad bien definida de un material, como lo es el módulo de elasticidad E y se llama relación de Poisson. Se denotará con la letra griega v y se define como:

$$\upsilon = \frac{\text{deformación unitaria lateral}}{\text{deformación unitaria axial}} = -\frac{\text{deformación unitaria lateral}}{\text{deformación unitaria axial}}$$
(Ec. 3.3)

donde las deformaciones unitarias axiales son causadas sólo por esfuerzos uniaxial (es decir, por tensión o compresión simple).

3.3 MÉTODOS EMPLEADOS PARA EL ANÁLISIS DE ESFUERZOS.

3.3.1 Cilindros de Pared Gruesa. Cargas de Colapso en el Casing Cementado

En este caso se puede aplicar el estudio en dos dimensiones, para cualquier radio entre un radio interior y un radio exterior. Estas son las ecuaciones establecidas por Timoshenko:

Figura 3.6 Análisis para Cilindros de Pared Gruesa *Fuente: Rodríguez, W. J y otros* [23]

$$\sigma_{r} = \frac{-p_{i}r_{e}^{2}(r_{i}^{2}-r^{2})-p_{e}r_{i}^{2}(r^{2}-r_{e}^{2})}{r^{2}(r_{i}^{2}-r_{e}^{2})}$$
(Ec. 3.6)
$$\sigma_{r} = \frac{p_{i}r_{e}^{2}(r_{i}^{2}+r^{2})-p_{e}r_{i}^{2}(r^{2}+r_{e}^{2})}{r^{2}(r_{i}^{2}-r_{e}^{2})}$$

La falla que ocurre de acuerdo a estas ecuaciones es denominada, falla por sobrepaso del límite de resistencia elástica, también es conocida como la ecuación de Lamé.

De acuerdo a Rodríguez y Fleckenstein (2003) [23], "aunque estas ecuaciones son aplicadas a las fallas en el casing, el cemento se encuentra sometido de igual manera a estas cargas y por consiguiente también deben ser sometidas a consideración en el estudio de análisis de esfuerzos del cemento.

Otro criterio empleado es la consideración de esfuerzos triaxiales. De acuerdo a Johnson, Jellison y Klementich (1987), los esfuerzos generados en el casing son resultados de aplicación de cargas en tres direcciones, en lugar de ser biaxiales o uniaxiales y así se ve reflejado en la ecuación de capacidad de carga del American Petroleum Institute (API). Estos tres esfuerzos son axiales, radiales y tangenciales.

Un criterio ampliamente aceptado para un material isotrópico y con cierta flexibilidad se encuentra basado en el concepto de energía. En esta aproximación, la energía elástica total es dividida en dos partes: una asociada a los cambios volumétricos del material y otra asociada a distorsiones producto, de los esfuerzos cortantes. Mediante la ecuación de la energía cortante de distorsión en el punto de fluencia en tensión simple, se establece un criterio de fluencia bajo condiciones de esfuerzos combinados. La simplificación matemática establecida para esta teoría, en la cual no se toman en cuenta los esfuerzos cortantes generados por torsión, se refiere frecuentemente a la condición de fluencia de Hencky – Von Mises. Para un cilindro esta dada por":

$$\sigma_{VME} = \sqrt{\frac{1}{2} \left[\left(\sigma_a - \sigma_t \right)^2 + \left(\sigma_t - \sigma_r \right)^2 + \left(\sigma_r - \sigma_a \right)^2 \right]}$$
(Ec. 3.7)

Donde los esfuerzos principales de esta ecuación son calculados de la siguiente manera:

Esfuerzo Axial:

$$\sigma_a = \frac{F_a}{A_P}$$

(Ec. 3.8)

Esfuerzos radiales:

$$\sigma_{re} = -p_{e}$$
(Ec. 3.9)
$$\sigma_{ri} = -p_{i}$$
Esfuerzos Tangenciales:
$$\sigma_{te} = \frac{2p_{i}r_{i}^{2} - p_{e}\left(r_{e}^{2} + r_{i}^{2}\right)}{r^{2} - r^{2}}$$

$$\sigma_{ii} = \frac{p_i (r_e^2 + r_i^2) - 2p_e r_e^2}{r_e^2 - r_i^2}$$
(Ec. 3.10)

3.3.2 Método de Elementos Finitos (MEF) y Método de Diferencias Finitas (MDF)

Son métodos numéricos los cuales pueden clasificarse como del tipo de "dominio", debido a que el dominio del cálculo es dividido en subdominios, celdas o elementos. Luego, la aproximación numérica a la solución del problema de campo se construye a partir de funciones que satisfacen, por su definición, las condiciones de contorno del problema de modo parcial o total.

3.3.3 Método de Elementos de Contorno (MEC)

Otra posibilidad para construir la aproximación numérica es utilizar funciones que satisfagan las ecuaciones del problema en el dominio, aunque no cumplan de entrada las condiciones de contorno. Este tipo de técnicas se conocen, por contraposición a las anteriores, como métodos de "contorno".

El MEC es un método de contorno. El termino "elementos de contorno" fue acuñado para indicar que el contorno del dominio de calculo se divide en una serie de elementos sobre los cuales las funciones de aproximación pueden variar de determinada manera, del mismo modo que sucede en el MEF dentro de los elementos en que se divide el dominio.

Los métodos de contorno tienen algunas ventajas importantes sobre los métodos de dominio:

- Trabajan solo sobre el contorno S del dominio de cálculo.
- Es mucho más sencillo definir el contorno que definir el dominio completo.
 En particular, el MEC requiere únicamente la discretización del contorno, lo cual trae consigo una reducción de la dimensionalidad del problema con respecto al MEF o al MDF.
- Pueden tratar mucho más fácilmente problemas que involucren dominios infinitos.
- Se obtiene el mismo grado de precisión en las dos variables duales del problema (por ejemplo: desplazamientos y tensiones, potenciales y flujos, etc.).

Por otro lado, hay que decir que los métodos de contorno trabajan con los valores de las funciones incógnitas en el contorno. Entonces, si se desean calcular valores en puntos internos del dominio, es preciso establecer un algoritmo complementario.

CAPÍTULO IV

ORIGEN DE LOS ESFUERZOS. GEOMECÁNICA

En los pozos petroleros existen diferentes factores que pueden ser considerados como fuentes generadoras de esfuerzos y que pueden afectar la estructura del pozo. Entre las más importantes se pueden establecer la presión y temperatura en la formación, movimientos sísmicos, presión y temperatura dentro del pozo.

Uno de los factores mayormente considerados al momento de realizar un análisis de esfuerzos son las condiciones de la formación. El estudio geomecánico de estas condiciones es importante porque de ellas depende que no colapse la estructura del pozo. Las fuerzas y presiones actuantes en la formación inciden directamente en la interfase con el cemento y, por consiguiente, son fundamentales, y las más relevantes, a ser tomadas en cuenta para el análisis de esfuerzos en el cemento de los pozos petroleros.

4.1 PRESIÓN DE LA FORMACIÓN

Existen varios métodos de predicción de la presión en las formaciones que permiten una mejor evaluación de los parámetros involucrados en una perforación. Estos métodos pueden ser agrupados de la siguiente manera:

- 1. Análisis de un área determinada, utilizando datos de un evento sísmico.
- 2. Una correlación de la formación utilizando aproximación:
 - Análisis logarítmico

- Evaluación de parámetros de perforación
- Generación de datos de prueba
- Evaluación a tiempo real, la cual implica un monitoreo de la perforación y de los parámetros logarítmicos mientras se realiza la misma:
 - Cualitativo
 - Cuantitativo.

La presión en la formación es la presencia de los líquidos en los espacios de poro de la matriz de la roca. Estos líquidos son típicamente petróleo, aceite, gas, agua salada o dulce. La tensión de sobrecarga es creada por el peso de la roca matriz sobrepuesta y de los poros llenos de fluido. La tensión de la matriz de la roca es la tensión de sobrecarga menos la presión de la formación. Para los cálculos generales, el gradiente de la tensión de la sobrecarga se asume a menudo como 1,0 psi/ft con una densidad de 19,23 lb/gal, un peso medio de la roca plástica llena de fluido.

La presión de la formación es igual a la presión hidrostática de los líquidos de formación presentes. En la mayoría de los casos, los líquidos varían del agua dulce con una densidad de 8,33 lb/gal (0,433 psi/ft) al agua salada con una densidad de 9,0 lb/gal (0,465 psi/ft). Sin embargo, se dan algunos casos en los que la densidad normal del líquido de formación es mayor de 9,0 lb/gal. Sin importar la densidad del fluido, la presión normal de la formación se puede considerar como un sistema hidráulico abierto donde la presión se puede comunicar fácilmente en todas partes. Las formaciones anormales no tienen esta libertad de comunicación; si esto no fuera así, la presión generada se dispersaría muy rápidamente, convirtiéndose en presión normal. Es por ello que debe existir un mecanismo tipo trampa para que un sistema de presiones anormales pueda ser generado y mantenido. Fertl y Tírnko (Charrier,

1985) [9] enumeraron varias de las trampas más comunes que actúan como sellos en los yacimientos.

4.1.1 Compactación de Sedimentos

El proceso normal de sedimentación implica la deposición de varias capas de diferentes partículas de rocas. A medida que se va formando el sistema de capas de sedimentos, en las zonas que se encuentran a mayores profundidades se produce un aumento en la presión de sobrecarga (es decir, en la totalidad de la roca). Los sedimentos subyacentes son forzados hacia abajo por el peso de la deposición superficial. Bajo condiciones normales de perforación, la presión del líquido de la formación es la preocupación principal, debido a su capacidad de causar el flujo del fluido hacia el pozo bajo ciertas condiciones geológicas y la inhabilidad general de la matriz de la roca de moverse en el pozo debido a su estructura semi-rígida. La manera con la cual la matriz de la roca acepta la carga de aumento de la sobrecarga explica las presiones anormales generadas en este ambiente. Como la deposición superficial y la sobrecarga total resultantes aumentan, la roca subyacente debe aceptar la carga.

La fuerza de la roca puede aumentar con un incremento en el contacto grano a grano de las partículas individuales de la roca. Esto implica que la porosidad resultante debe disminuir con la profundidad bajo condiciones sedimentarias normales. El proceso normal de la compactación de la porosidad se ve limitado, no dejando que los líquidos se escapen de los espacios de poro, la roca no puede aumentar su contacto del grano-a-grano o sus capacidades de ayuda a la sobrecarga. Puesto que la carga total de la sobrecarga continúa aumentando con la sedimentación y la roca no puede llevar más allá su carga, los líquidos en los poros de la roca deben comenzar a apoyar parte de la sobrecarga, dando como resultado presiones del líquido mucho más grandes que las normales.

Figura 4.1 Las presiones de poro anormales son generadas en la región bajo compactación, porque la disposición de la roca matriz no puede soportar el esfuerzo de sobrecarga.

Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

La profundidad en la cual se encuentran las porosidades altas se asume generalmente como la profundidad inicial en la cual se encuentran las presiones anormales. La pizarra reduce el escape del fluido normal, causando una baja compactación y presiones anormales de líquido. Las presiones de la formación que resultan de la baja compactación a menudo pueden ser aproximadas con algunos cálculos simples.

Figura 4.2 Efectos del esfuerzo de sobrecarga en la porosidad de la formación durante una compactación normal Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

La presión se puede calcular con la ecuación:

$$P_{form} = \frac{0.465\,psi}{ft \times D_B} + \frac{1.0\,psi}{ft \times (D_I - D_B)} \tag{Ec 4.1}$$

Donde:

 D_I = Profundidad de interés debajo de la barrera [ft] D_B = Profundidad de la barrera, zona de baja permeabilidad [ft] P_{form} = Presión de la formación en D_I, [psi]

En la ecuación anterior el gradiente de presión de sobrecarga se asume en 1,0 psi/ft y el gradiente del fluido de la formación normal es 0,465 psi/ft.

Esta ecuación se puede utilizar para aproximar presiones en la formación. Sin embargo, las formaciones normalmente tienen cierto grado de compactación debajo de barrera. Consecuentemente, la ecuación no proporciona resultados exactos en la mayoría de los casos. En caso de ser necesario, una serie más compleja de cálculos basados en la ecuación, pueden ser usados para aumentar la exactitud del método.

4.1.2 Los Sistemas Artesianos

Es un sistema del agua que crea la presión anormal si se dan las condiciones estructurales apropiadas. Según lo demostrado en Fig. 4.3, la arena acuífera continua transmitirá presiones hidrostáticas del agua de la formación al fondo de la estructura. La presión en la tapa de la estructura será normal para la profundidad en la cual se encuentra. La presión en el fondo de la estructura será equivalente al peso del lodo de 13,5 lb/gal. Estas presiones no se pueden detectar con técnicas convencionales.

Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

4.1.3 Levantamiento

Una presión normal se define respecto a la profundidad en la cual se encuentra el punto de evaluación. Una presión que es normal para una profundidad específica sería anormalmente alta para una profundidad más baja. Las acciones de las capas tectónicas que elevaron secciones de formaciones pueden causar presiones anormales en la sección levantada si las formaciones específicas dentro de la sección levantada se sellan; así que las presiones anormales no se pueden invertir a normal durante el curso de tiempo geológico. No es poco frecuente perforar a través de una falla e incorporar un ambiente de diversas presiones. Se debe tener precaución con respecto al planeamiento del pozo, porque las presiones a través de una falla pueden ser menores o mayores, que las presiones en el lado opuesto de la falla. La fig. 4.4 ilustra el concepto de las presiones anormales que generan un levantamiento. Para perforar el intervalo en 6.000 ft se requiere de un lodo a 12,0 lb/gal.

Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

4.1.4 Camas de Sal

Las camas de sal son quizás la causa dominante para que las presiones de la formación se acerquen mucho más a la tensión de sobrecarga. La cama de sal es única cuando la comparamos con la pizarra; es impermeable, mientras que la pizarra

es semipermeable. Además, se comporta plásticamente, transmitiendo la tensión de sobrecarga por completo a formaciones subyacentes. Según lo demostrado en la figura, la formación debajo de las camas de sal requiere pesos de lodo en exceso de 19,0 lb/gal.

Figura 4.5 Las camas de la sal pueden transferir la tensión de la sobrecarga a las formaciones bajo secciones de la sal Fuente: *Drilling Engineering: A Complete Well Planning Approach* [9]

4.1.5 Bóvedas de Sal

Las bóvedas de la sal resultan de una inversión de la densidad con un material de fuerza de corte baja. La naturaleza plástica de la sal nos permite un "flujo bajo" hacia arriba. El movimiento de las formaciones permite una sobre compactación de la sección que se encuentra debajo, según lo demostrado en la fig. 4.6.

Figura 4.6 La acción intrusa de la bóveda de la sal crea presiones anormales en las secciones de la pizarra que previenen la migración y la normalización fluidas de la presión Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

4.1.6 Diferencia de Densidades

Las diferencias de la densidad entre las zonas con presiones anormales causan permeabilidades según el principio del tubo en U y constituyen la base subyacente para esto. Según lo demostrado en la fig. 4.7, una zona no horizontal que contiene un líquido de baja densidad requiere mayores pesos normales del lodo para perforar las secciones superiores de la zona. Los requisitos típicos para esta ocurrencia son las zonas que tienen mecanismos del lacre en el extremo superior y ningunas restricciones de la permeabilidad en el extremo inferior.

Figura 4.7 Las presiones anormales en la tapa de la arena en 9.000 ft ocurren debido al gas de la baja densidad que procura contrapesar los 11.000 ft de líquidos de formación normales. Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

La planificación de pozos exige un conocimiento de las presiones requeridas para poder determinar una fractura en una formación. El gradiente de fractura es esencial en la reducción al mínimo de las pérdidas y problemas que puedan suscitarse en la fase de producción.

4.2 DETERMINACIÓN TEÓRICA

La determinación de ecuaciones teóricas ha sido usada para obtener un aproximado del gradiente de fractura de las formaciones. Esto es muy importante para sustentar información de un área dada. Una base para la mayoría de los principios de la determinación del gradiente de fractura es la suposición de que el sistema geológico esta en calma. Para los distintos cálculos se toma en cuenta la historia del terreno o estructura geológica, o el determinado por distintos métodos como el análisis logarítmico, entre otros.

4.2.1 Hubbert y Willis

Exploraron las variables implicadas en la iniciación de una fractura en la formación. Descubrieron que el gradiente es una función de la sobrecarga, de la presión de la formación y la manera cómo esté dispuesta la tensión aplicada. Esta relación de la tensión parece estar en la gama del 1/3 y 1/2 de la sobrecarga total. Sabiendo esto, se determinó una ecuación que calcula el gradiente de fractura, esta es la ecuación de Hubbert y Willis:

$$\frac{P_{frac}}{Z}(\max) = \frac{1}{3} \left(\frac{S_Z}{Z} + \frac{2P_o}{Z} \right) \quad y \qquad \frac{P_{frac}}{Z}(\max) = \frac{1}{2} \left(1 + \frac{P_{frac}}{2} \right)$$
(Ec. 4.2)

Donde:

 P_{frac} = Presión de fractura [psi] Z = profundidad [ft] Sz = sobrecarga en profundidad Z [psi] P_o = Presión del poro [psi]

 $Pero \ si \ se \ asume \ el \ gradiente \ de \ la \ tensión \ de \ la \ sobrecarga \ (S_z) \ como \ 1 \ psi/ft,$ la ecuación se reduce a:

$$\frac{P_{frac}}{Z} = \frac{1}{3} \left(1 + \frac{2P_{frac}}{Z} \right)$$
 (Ec. 4.3)

Estos procedimientos se pueden utilizar en forma gráfica para una solución rápida. En la fig. 4.8, se incorpora la ordenada con el peso del lodo requerido para

balancear la formación. Con una línea horizontal, se intercepta la línea del gradiente de la presión de formación y se construye una línea vertical de este punto a los gradientes de la fractura del mínimo y del máximo. Se lee el peso del lodo de la fractura en la ordenada. En estas ecuaciones, se asumió que las relaciones de la tensión y los gradientes de la sobrecarga eran constantes para todas las profundidades. Puesto que éste supuesto no se cumple en la mayoría de los casos, los métodos subsecuentes han procurado explicar las variables más probables.

Figura 4.8 Determinación gráfica de los gradientes de la fractura según lo propuesto por Hubbert y Willis Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

4.2.2 Matthews y Kelly

Desarrollaron una ecuación que calcula los gradientes de fractura en formaciones sedimentarias:

$$F_{frac} = \frac{P_{form}}{D} + \frac{K_I \sigma}{D}$$
(Ec. 4.4)

Donde:

P = Presión de la formación en el punto de interés [psi]

D = Profundidad del interés [ft]

 σ = Matriz de esfuerzos en el punto de interés [psi]

 K_I = Coeficiente de tensión de la matriz para la profundidad en la cual él valora de σ sería tensión normal de la matriz, sin dimensiones

 F_{frac} = Gradiente de fractura en el punto de interés [psi/ft]

Figura 4.9 Coeficientes de la tensión de la matriz de Matthews y Kelly Fuente: *Drilling Engineering: A Complete Well Planning Approach* [9]

El coeficiente de la tensión de la matriz se relaciona con la matriz condición de tensión de la formación a las condiciones de la matriz de tensión si la formación compactada es normal. Se cree que las condiciones necesarias para fracturar la formación serán similares a ésas para la formación normal. El coeficiente de tensión vs profundidad se representa en la figura 4.9. Matthews y Kelly creyeron que el coeficiente podría variar con diversas condiciones geológicas. Los valores demostrados eran sustituidos por datos reales de las presiones de fractura en la

ecuación
$$F_{frac} = \frac{P_{form}}{D} + \frac{K_I \sigma}{D}$$
.

El procedimiento para calcular gradientes de la fractura usando las técnicas de Matthews y Kelly es:

- Se obtiene la presión del líquido de formación P_{form}, este puede ser medido por una prueba de perforación, los datos del retroceso, los registros, u otros métodos satisfactorios.
- 2. Se obtiene la tensión de la matriz usando la ecuación $F_{frac} = \frac{P_{form}}{D} + \frac{K_I \sigma}{D}$ y si se asume que un gradiente para la sobrecarga es 1,0 psi/ft:

$$\sigma = S_c - P_{form} \qquad (Ec. 4.5)$$

3. Se determina la profundidad, el Di, para el cual la tensión de la matriz, σ , sería el valor normal. Asuma que la presión de la sobrecarga es 1,0 psi/ft.

$$0.535 \text{ Di} = \sigma$$
 (Ec. 4.6)

4. Se utiliza el valor de *Di* y se aplica a la grafica anterior; así se obtiene el valor correspondiente de K_I.

5. Usando los valores de Di, σ , P_{form} , $y K_I$, se calcula el valor del gradiente de la fractura, F_{frac} .

4.2.3 Eaton

Extendió lo presentado por Matthews y Kelly para introducir el cociente de Poisson en la expresión para gradiente de presión de fractura:

$$F_{frac} = \frac{S_c - P_{form}}{D} \left(\frac{\nu}{1 - \nu}\right) + \frac{P_{form}}{D}$$
(Ec. 4.7)

Donde:

 P_{form} = Presión del pozo [psi] D = Profundidad [ft] S_c = Tensión de Sobrecarga [psi] v = Relación de Poisson

 F_{frac} = Gradiente de la fractura [psi/ft]

Figura 4.10 Determinación gráfica de los gradientes de la fractura usando el acercamiento de Matthews y Kelly Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

Eaton asumió que la tensión de sobrecarga y el coeficiente de Poisson eran variable con la profundidad. Usando datos de la fractura del campo y los valores del registro derivado del logaritmo, Eaton preparó los gráficos que ilustraban estas variables. Usando una opción conveniente para cada una de las variables, el ábaco que preparó Eaton puede ser utilizado para calcular un gradiente de la fractura. La presentación gráfica para el acercamiento de Eaton proporciona una solución rápida, la carta se utiliza de manera semejante como la de Matthews y Kelly. Aunque la carta de Eaton utiliza ciertas curvas, una carta similar se puede establecer para un área distinta si la diferencia de tensión de la sobrecarga o los valores del cociente de Poisson varían enormemente.

El método de Eaton o sus modificaciones, es quizás el procedimiento más extensamente usado en la industria. Fertl (Charrier, 1985) [9] ha demostrado que las predicciones de Eaton están dentro de una gama aceptable.

Figura 4.11 Cocientes de Poisson variable con la profundidad según lo propuesto por Eaton Fuente: Drilling Engineering: A Complete Well Planning Approach [9]

Figura 4.12 Tensión variable de la sobrecarga de Eaton Fuente: *Drilling Engineering: A Complete Well Planning Approach* [9]

4.2.4 Christman

Los procedimientos previamente discutidos para la determinación del gradiente de la fractura asumen que la tensión de la sobrecarga consiste en la tensión de la matriz de la roca y la tensión del líquido de formación. Costa afuera, el agua (sobre una distancia de la línea del flujo del aparejo a la línea del lodo) no tiene ninguna matriz de la roca. Los gradientes de la fractura son más bajos cuando se compara el terreno a profundidades equivalentes. En agua baja, la reducción en gradiente de la fractura es insignificante; cuando aumenta la profundidad del agua, se producen declinaciones del gradiente de fractura. Christman ha considerado el efecto de la profundidad del agua en su ecuación total del gradiente de la sobrecarga:

$$Gob = \frac{1}{D} (0.44 * Dw + \rho b * D')$$
 (Ec. 4.8)

Donde:

 G_{ob} = Gradiente de Sobrecarga del total [psi/ft]

D = Profundidad debajo del dato [ft]

 D_w = Profundidad del agua [ft]

 ρb = Densidad [g/cc]

D '= Profundidad debajo de la línea del lodo [ft]

4.3 ANÁLISIS DE FRACTURA HIDRÁULICA PARA DETERMINAR LOS VALORES DE ESFUERZO

Es un tratamiento de estimulación que se ejecuta rutinariamente en pozos de petróleo y gas en reservorios de baja permeabilidad. Líquidos con propiedades controladas son bombeados a altas presiones en ciertas proporciones dentro del reservorio y de manera periódica, causando la apertura de una fractura vertical. La fractura se extiende fuera del pozo en direcciones opuestas acorde con los esfuerzos naturales dentro de la formación.

En cuanto a la prueba como tal, el proceso consta del bombeo dentro de un pozo cerrado con una bomba hidráulica muy potente para crear la suficiente presión a fin de agrietar o fracturar la formación.

4.3.1 Fractura Hidráulica

La determinación del estado de esfuerzos en agujeros usando el método de fractura hidráulica es muy común hoy en día y puede ser utilizado para profundidades considerables y en casi cualquier tipo de roca que esté presente en la formación. El

método de fractura hidráulica asume que el agujero es perforado paralelo a la dirección de los esfuerzos principales, los cuales son usualmente considerados válidos para agujeros verticales. También es importante tener un intervalo de pruebas, libre de fracturas naturales, ya que a partir de estas podrían obtenerse resultados inválidos. Cornet & Valette (1984) introdujeron una prueba hidráulica con presencia de fracturas pre – existentes, el método HTPF. En un ensayo de fractura hidráulica, una sección del agujero es sellado con empacaduras, para prevenir que el fluido del agujero escape por arriba o por debajo del mismo. El fluido es bombeado en la sección sellada; con un incremento de la presión del fluido, aparece la tensión del aro, que en algunos puntos de la pared del agujero se convertirá en tensión y cuando el límite de tracción de la roca sea excedido, la fractura se formará en la pared del agujero. La fractura se propagará perpendicular al esfuerzo *in situ* mínimo principal. La figura 4.13 muestra una curva típica de presión versus tiempo.

Figura 4.13 Curva presión vs tiempo de un experimento típico de fractura hidráulica mostrando tres ciclos de presurización. Fuente: *Lund, Björn* [14]

El intervalo de inyección es presurizado muy rápidamente cuando comienza el primer ciclo, causando un incremento lineal de la presión con el tiempo. De esta manera, se puede alcanzar la presión de fractura P_c , tan rápidamente como sea

posible, evitando que el fluido del agujero invada la formación. Filtraciones del fluido del agujero podrían causar un incremento en la presión de poro de la formación y, por consiguiente, un decremento del esfuerzo efectivo, lo cual provocaría una falla prematura en la formación. En la presión de fractura, la grieta o falla se inicia en la pared del agujero donde la tensión del aro presenta la mayor tensión, es decir, donde excede el límite de resistencia a la tracción de la formación. A pesar de que este método se encuentra establecido y es frecuentemente usado, todavía existen algunas discusiones entre las cuales se encuentra la formulación que podría ser utilizada para calcular el esfuerzo horizontal máximo usando la presión de fractura. Para un agujero hecho a través de rocas porosas en las cuales no hay penetración del fluido del agujero, la presión de fractura establecida por Hubbert & Willis (1957) es:

$$P_c = 3S_h - S_H - P_o + T$$
 (Ec. 4.9)

Donde:

 P_o = Presión de Poro en la formación T = Límite de resistencia a la tensión

Si el fluido del agujero penetra en la formación, la ecuación de la presión de fractura es modificada y tiene la forma siguiente:

$$P_{c} = \frac{3S_{h} - S_{H} - 2\eta P_{o} + T}{2(1 - \eta)}$$
(Ec. 4.10)

$$\eta = \frac{\alpha_B \left(1 - 2\nu \right)}{2 \left(1 - \nu \right)} \tag{Ec. 4.11}$$

$$\alpha_B = 1 - \frac{K}{K_S}$$
 (Ec. 4.12)

Siendo:

 η = Coeficiente poro elástico

v = Relación de Poisson de la formación

 α_B = Coeficiente de Biot

K = Modulo volumétrico de los constituyentes de la roca (granos)

 K_S = Volumen de la roca

Esta ecuación de presión de fractura es parte del análisis de fractura hidráulica presentado por Haimson & Fairhurts (1967,1970).

4.4 TEORÍA PARA RUPTURA EN AGUJEROS Y FRACTURA POR TENSIÓN EN LAS PAREDES

4.4.1 Ruptura en Agujeros (Borehole Breakouts)

Las rupturas son zonas de fallas de las paredes del agujero las cuales se forman simétricamente en la zona del esfuerzo mínimo horizontal principal (Lund, Björn) [14], ver la figura 4.14 .Las rupturas se elongan frecuentemente en la dirección de los ejes del agujero y pueden ser descritos por tres parámetros:

- Orientación en el agujero [θ_b]
- Ángulo de apertura [$2\phi_b$]
- Profundidad radial [*r*_b]

Figura 4.14 Ruptura en el agujero en las paredes de un pozo vertical, sujeto a un esfuerzo máximo S_H y a un esfuerzo mínimo S_h Fuente: *Lund, Björn* [14]

Características anisotrópicas en las tensiones tectónicas, diferencias de temperaturas, propiedades de la formación y la utilización de los fluidos de perforación producen concentración de esfuerzos alrededor del agujero. Si esta concentración de esfuerzos sobrepasa la resistencia de las rocas que constituyen la formación, se formará una ruptura en el agujero, según la teoría de Bell and Gough (1979). De manera general, las rupturas aparecen diametralmente opuestas en las paredes del agujero, en la zona donde se encuentra el esfuerzo horizontal mínimo y se puede apreciar que la pared está generalmente áspera dentro de la ruptura y lisa en la parte de afuera de la misma.

El largo de la ruptura varía generalmente de un poco más de un metro a varias decenas de metros. Bell y Gough (1979) presentaron una interpretación para las rupturas que es valida para agujeros casi verticales donde: los esfuerzos principales se asumen verticales (S_v) y horizontales (S_H y S_h) y las magnitudes de los esfuerzos horizontales son anisotrópicos. Su análisis esta basado en la ecuación de Kirsch

(1898) y Zoback (1985) expandiendo esta ecuación por el uso efectivo de los esfuerzos principales (esfuerzo total menos la presión de poro S'_{H} , S'_{h}) y también tomaron en cuenta para el calculo los efectos de la diferencia de presión entre el fluido de perforación y la roca de la formación. La concentración de esfuerzos circunferenciales en la pared del agujero es entonces:

$$\sigma_{\theta} = S_H + S_h - 2(S_H - S_h)\cos(2\theta_b) - \Delta P \qquad (Ec. 4.13)$$

La relación entre el ángulo de comienzo de la ruptura a partir de la dirección del esfuerzo máximo horizontal (θ_b) y el ángulo de apertura de la misma (ϕ_b) es:

$$\theta_b = \frac{\pi}{2} - \phi_b \tag{Ec. 4.14}$$

4.4.2 Fractura por Tensión en las Paredes

El proceso de perforación puede inducir no solamente desgloses de la perforación, sino también fracturas extensibles en reducida escala en la pared de la perforación.

La iniciación de fracturas extensibles se puede describir por las ecuaciones de Kirsch (1898). En una perforación vertical, donde es vertical es una de los esfuerzos principales, se induce la forma extensible de las fracturas de manera vertical a lo largo del eje de la perforación en la dirección del esfuerzo horizontal máximo, y la formación de las fracturas sigue las mismas ecuaciones que describen la fractura hidráulica, en la pared de la perforación.

$$\boldsymbol{\sigma}_{\mathrm{o}\phi} = 3\boldsymbol{S}_{h} - \boldsymbol{S}_{H} - 2\boldsymbol{P}_{0} - \Delta \boldsymbol{P} \leq T$$
(Ec. 4.15)

Donde Po es la presión del poro en la formación y ΔP es la diferencia entre la presión del líquido de la perforación P θ y Po. Además de las tensiones tectónicas hay varios factores inducidos por el proceso de perforación que afecta la tensión alrededor del pozo. La presión del líquido del taladro varía con la composición del líquido, con la presión de bombeo mantenida para circular el líquido del taladro y se aumenta algo al funcionar en la pipa de taladro. El enfriamiento termal del pozo por el líquido del taladro es otro contribuidor a las tensiones. Cuando el frío (temperatura superficial) el líquido del taladro se bombea abajo de la perforación que se calienta pero que no alcanza lentamente la temperatura imperturbada de la formación y, por lo tanto, induce un campo de la tensión de la perforación. Para la iniciación de la fractura, solamente se considera la tensión en la pared de la perforación y la tensión termal se puede entonces calcular por la expresión simple.

$$\sigma therm = \frac{\alpha E \Delta T}{1 - \nu}$$
 (Ec. 4.16)

Donde:

 ΔT = Diferencia de Temperatura entre la formación y la temperatura del fluido de perforación

E = Modulo de Young

v = Relación de Poisson

CAPÍTULO V MÉTODO DE ELEMENTOS FINITOS

De acuerdo a Zienkiewicz (1980) "El Método de Elementos Finitos es una técnica general para la construcción de una solución aproximada a problemas de valores de contorno. El método se basa en dividir el dominio de la solución en un número finito de sub-dominios simples, lo que serían los elementos finitos y usando conceptos variantes para la construcción de una aproximación de la solución sobre los diferentes elementos" [32]. Este método es empleado satisfactoriamente en diversas áreas de la ingeniería, matemática y física, debido a que es un método que proporciona un amplio rango de soluciones a problemas en estas especialidades.

Es de gran utilidad en el análisis de esfuerzos y deformaciones en áreas tales como la automotriz, aeronáutica, construcción, además de constituir una alternativa para el análisis de transferencia de calor, comportamientos de flujos de fluidos, flujos magnéticos, infiltraciones y otros problemas que involucren la presencia de fluidos. Otra ventaja de éste método ha sido puesta de manifiesto con los avances de la tecnología en computadoras y con el desarrollo de herramientas CAD, mucho más completas y con un mayor número de aplicaciones. Varias configuraciones del modelo pueden ser puestas a pruebas en un computador, antes de la construcción de cualquier prototipo.

Todo esto sugiere que el método de elementos finitos se encuentra estrechamente relacionado con las herramientas computacionales, por ello es fundamental el entendimiento de la teoría básica, las técnicas para la construcción de los distintos modelos y los aspectos computacionales relacionados con el mismo.

En este método de análisis, una región compleja definida como un continuo es dividida en formas geométricas simples llamadas elementos finitos. Las propiedades

del material y las relaciones que las gobiernan, son consideradas sobre estos elementos y expresadas en términos de valores desconocidos en los nodos. Un proceso de acople, que considere debidamente las cargas y las restricciones, resulta en un sistema de ecuaciones. La solución de esas ecuaciones nos da la aproximación del comportamiento del continuo.

5.1 DESARROLLO HISTÓRICO

Las ideas básicas del método de elementos finitos se originan de los avances en los análisis de estructuras aeronáuticas. En 1941, Hrenikoff presentó una solución para problemas de elasticidad usando el "Frame Work Method". Turner estableció las matrices rígidas para armaduras, vigas y otros elementos y presentó sus fundamentos en 1956. El término *elemento finito* fue conocido por primera vez y usado por Clough en 1960.

A principios de 1960, los ingenieros utilizaron el método para aproximar soluciones a problemas de análisis de esfuerzos, flujo de fluido, transferencia de calor y otras áreas. En 1955 Argyris publica un libro relacionado con teorema de energía y método de matrices, el cual constituye una base para futuros desarrollos de estudios en elementos finitos. El primer libro en elementos finitos fue publicado en 1967 por Zienkiewicz y Cheng. A finales de los 60 y principio de los 70, el análisis de elementos finitos fue aplicado para problemas no lineales y amplias deformaciones. El libro de Oden en continuos no lineales aparece en 1972.

Los fundamentos matemáticos son establecidos en la década de los 70. Nuevos desarrollos de elementos, estudios de convergencia y otras áreas relacionadas caen en esta categoría.

5.2 PROCEDIMIENTO PARA LA IMPLEMENTACIÓN DEL MÉTODO DE ELEMENTOS FINITOS (MEF)

El MEF es un método numérico que requiere que ciertas condiciones sean cumplidas para garantizar el funcionamiento del mismo. Una manera general de expresar la forma de funcionamiento de este método puede resumirse en una entrada de datos en la cual se especifica la geometría de la pieza, el material del cual está compuesta, las condiciones de contorno, todo esto aplicado a un caso lineal. En la segunda etapa que es la de procesamiento, es donde se procede a la división del dominio en los elementos a ser empleados, lo que sería la construcción de la malla y en donde se construyen las matrices de rigidez de cada elemento y luego de obtenidas todas las matrices, se procede a la ensamblarlas en una matriz global. En la etapa siguiente, se procede a resolver el sistema de ecuaciones representadas en forma matricial empleando métodos ya conocidos que pueden ser Gauss, Gauss- Seidel, descomposición LU, entre otros. Una vez resuelta se llega a la etapa de presentación de resultados, en donde se muestran los valores obtenidos al resolver el sistema.

El MEF es un problema de aproximación de problemas de tal forma que:

- El continuo se divide en un número finitos de partes (elementos), cuyo comportamiento se especifica mediante un número finito de parámetros asociados a ciertos puntos característicos denominados nodos. Los nodos son los puntos de unión de cada elemento con su adyacente.
- La solución del sistema completo sigue las reglas de los problemas discretos. El sistema completo se forma por ensamblaje de los elementos.
- Las incógnitas del problema dejan de ser funciones matemáticas y pasan a ser el valor de estas funciones en los nodos.

• El comportamiento en el interior de cada elemento queda definido a partir del comportamiento de los nodos mediante las adecuadas **funciones de interpolación o funciones de forma.**

El MEF se basa en transformar un cuerpo de naturaleza continua en un modelo discreto aproximado, esta aproximación se denomina discretización del modelo. El conocimiento de lo que sucede en el interior de este modelo del cuerpo aproximado, se obtiene mediante la interpolación de los valores conocidos en los nodos. Es por tanto una aproximación de los valores de una función a partir del conocimiento de un número determinado y finito de puntos.

5.2.1 Funciones de Forma o de Interpolación

La interpolación es un elemento clave del MEF, puesto que es a través de las funciones de forma o de interpolación que se consigue reducir el problema a la determinación de los desplazamientos de unos nodos. Estas funciones deben dar valores suficientemente aproximados de los desplazamientos de cualquier punto del elemento, en función de los desplazamientos de los nodos.

5.2.1.1 Propiedades de las Funciones de Formas

Entre las propiedades de las funciones de forma podemos mencionar las siguientes (Frías, 2004) [11]:

- **Derivabilidad:** Si el operador *S* es de orden *m* la función de forma deberá soportar la m-ésima derivada
- <u>Integrabilidad:</u> Para que exista coherencia en la solución por MEF, una vez calculada la m-ésima derivada, la función de forma debe ser integrable.

- <u>Semejanzas con las leves de distribución de corrimientos</u>: Las leyes de distribución de desplazamientos son continuas, por lo que también lo deben ser las funciones, una vez aplicado el operador *S*.
- <u>Condición de polinomio completo:</u> Si la función de forma escogida es polinómica, lo que suele ser lo más habitual, para que la función se aproxime hasta el término m-ésimo a la solución real, el polinomio debe ser completo.

5.2.2 Pasos a seguir en el cálculo por MEF. Funcionamiento de un programa de elementos finitos

Los programas para cálculos por elementos finitos disponen de tres módulos de trabajo:

- <u>Pre-Procesador</u>: Es en esta etapa que se prepara el modelo para el cálculo y se realizan las siguientes operaciones:
 - 1. Dibujo del modelo o importación si se ha generado por medio de un sistema CAD que genere ficheros compatibles.
 - Selección del tipo de elemento o elementos a utilizar. En función del tipo de cálculos a realizar estos programas suelen disponer de diferentes tipos de elementos que son especiales para cada aplicación.
 - 3. Selección de los materiales a emplear.
 - 4. Asignación de elemento y propiedades de materiales a los diferentes componentes del modelo
 - 5. Aplicación de la malla a los componentes del modelo
 - 6. Aplicación de las cargas exteriores (puntuales, lineales, superficiales)
 - 7. Aplicación de las condiciones de contorno

- <u>Calculador</u>: En esta etapa se realizan los cálculos por MEF y se generan las soluciones.
 - 1. Selección del tipo de cálculo a realizar, por ejemplo si es un análisis transitorio, estático, etc.
 - 2. Configuración de los parámetros de cálculo: intervalos de tiempo, norma del error, número de iteraciones.
 - Inicio del cálculo: El programa transfiere las cargas al modelo, genera las matrices de rigidez, realiza la triangulación de la matriz, resuelve el sistema de ecuaciones y genera la solución
- <u>Post procesador</u>: Es la herramienta que permite la representación gráfica de los resultados, así como obtener resultados indirectos operando las soluciones del modelo.

5.3 MATRIZ DE DEFORMACIONES

Conocidos los desplazamientos de todos los puntos del elemento, se pueden determinar las deformaciones ε en cualquier punto, que vendrá dada por la siguiente relación:

$$\varepsilon = Su$$
 (Ec. 5.1)

Siendo S un operador lineal adecuado.

Para un análisis tridimensional, el vector deformación en cualquier punto posee seis componentes. De acuerdo al texto de elasticidad de Timoshenko, la matriz de deformación se puede definir como:
$$\varepsilon = \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{cases} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial w}{\partial z} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\ \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \end{cases} = Su$$
(Ec. 5.2)

De la ecuación (5.5) y la (5.8) se comprueba:

$$\varepsilon = Ba^{e} = \left[B_{i}, B_{j}, B_{m}, B_{p}\right]a^{e}$$
(Ec. 5.3)

$$B_{i} = \begin{bmatrix} \frac{\partial N_{i}^{'}}{\partial x} & 0 & 0\\ 0 & \frac{\partial N_{i}^{'}}{\partial y} & 0\\ 0 & 0 & \frac{\partial N_{i}^{'}}{\partial z} \\ \frac{\partial N_{i}^{'}}{\partial y} & \frac{\partial N_{i}^{'}}{\partial x} & 0\\ 0 & \frac{\partial N_{i}^{'}}{\partial z} & \frac{\partial N_{i}^{'}}{\partial y} \\ \frac{\partial N_{i}^{'}}{\partial z} & 0 & \frac{\partial N_{i}^{'}}{\partial x} \end{bmatrix}$$
(Ec. 5.4)

El resto de las submatrices (B_j, B_m, B_p) se obtienen de igual manera, simplemente deben ser cambiados los subíndices.

Deformaciones iniciales, como aquellas debidas a cambios de temperatura, también pueden ser expresadas como vectores de seis componentes, si la dilatación térmica es isotrópica el vector se expresa como sigue:

$$\varepsilon_{o} = \begin{cases} \alpha \theta^{e} \\ \alpha \theta^{e} \\ \alpha \theta^{e} \\ \theta \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$
(Ec. 5.5)

Donde:

 α = Coeficiente de dilatación térmica

 θ^e = Incremento medio de la temperatura en el elemento

5.4 MATRIZ EDENTIDAD

Para materiales isótropos se tiene una matriz D que puede ser escrita en función de las constantes elásticas usuales, es decir, el módulo de Young (E) y el coeficiente de Poisson (v).

$$D_{e} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \times \begin{bmatrix} 1 & \frac{\nu}{(1-\nu)} & \frac{\nu}{(1-\nu)} & 0 & 0 & 0 \\ 0 & 1 & \frac{\nu}{(1-\nu)} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(1-2\nu)}{2(1-\nu)} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(1-2\nu)}{2(1-\nu)} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(1-2\nu)}{2(1-\nu)} \end{bmatrix}$$
(Ec. 5.6)

En general:

$$\sigma = \begin{cases} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yx} \\ \tau_{zx} \end{cases} = D_e \left(\varepsilon - \varepsilon_o \right) + \sigma_o$$
(Ec. 5.7)

5.5 ANÁLISIS DE ELASTICIDAD LINEAL

Cuando el caso es de elasticidad lineal, la relación característica que se emplea es:

$$k^n a^n = f_p^n + f_{\varepsilon o}^n + f_v^h + q_n$$
 (Ec. 5.8)

Donde:

 f_p^n = Fuerzas nodales producto de las cargas distribuidas que actúan sobre los lados del elemento

 f_{v}^{h} = Fuerzas nodales debidas a cargas volumétricas

 $f_{\varepsilon o}^{n}$ = Fuerzas nodales necesarias para equilibrar las deformaciones iniciales q_{n} = Forma matricial de las fuerzas que actúan sobre los nodos de un elemento a^{n} = Vector de desplazamiento nodal

En el caso plano:

$$K^{n} = \iint B^{t} D_{e} B(dA)$$
 (Ec. 5.9)

En donde:

 K^n = Fuerzas inducidas por los desplazamientos de cada uno de los nodos o matriz de rigidez del elemento

B = Matriz de Deformación del elemento

 B^t = Matriz transpuesta de B

 D_e = Matriz de Elasticidad

dA = Diferencial de área

La matriz K^n es una matriz cuadrada de la forma:

$$K^{n} = \begin{bmatrix} k_{ii}^{n} & k_{ij}^{n} \cdots & k_{im}^{n} \\ \vdots & \vdots & \vdots \\ k_{mi}^{n} & \cdots & k_{mm}^{n} \end{bmatrix}$$
(Ec. 5.10)

Una vez definidos estos valores, se hace posible determinar las fuerzas o reacciones internas en cualquier punto, en función de los desplazamientos que sufren los nodos, a través de la matriz:

$$\sigma^{n} = S^{n}a^{n} + \sigma_{p}^{n} + \sigma_{\varepsilon o}^{n}$$
 (Ec. 5.11)

Siendo:

$$\sigma_p^n, \sigma_{\varepsilon o}^n$$
 = Tensiones originadas por las cargas distribuidas que actúan sobre el elemento o por las tensiones iniciales al restringir los desplazamientos de los nodos

 S^n = Matriz de Tensiones del elemento

5.6 MATRICES DE RIGIDEZ, TENSIONES Y CARGAS

Al ser constantes los componentes de la deformación y la tensión dentro de cada elemento, se puede establecer la matriz de rigidez de los mismos.

La submatriz *ij* general de la matriz de rigidez será una matriz 3 x 3 definida así:

$$K_{ij}^e = B_i^T D_e B_j V^e$$
 (Ec. 5.12)

Donde:

 V^e = Volumen del tetraedro elemental

Las fuerzas en los nodos debido a las deformaciones iniciales se convierten en:

$$f_i^e = -B_i^T D\varepsilon_o V^e$$
 (Ec. 5.13)

la cual tiene una expresión similar a las fuerzas debidas a las tensiones iniciales.

5.7 ANALISIS PARA EL DOMINIO COMPLETO

Cuando se aplican métodos como el de elementos finitos lo que se pretende es obtener resultados enfocados al continuo completo, partiendo del análisis realizado a cada elemento que conforma la malla con la cual se discretiza el mismo.

La expresión de desplazamiento empleada para cada elemento puede considerarse como válida para la estructura completa:

$$u = \overline{Na}$$
 (Ec. 5.14)

en donde "*a*" representa todos los nodos y

$$\overline{N_i} = N_{ui}^e \tag{Ec. 5.15}$$

siendo el punto considerado, un punto dentro del elemento en particular e i un punto asociado a ese elemento.

$$\overline{N}_{i=0} \tag{Ec. 5.16}$$

La matriz \overline{B} se puede definir de la misma forma, suponiendo que las funciones de forma están definidas en todo el volumen.

De esta manera se puede escribir para cualquier desplazamiento virtual δ a que la suma del trabajo interno y externo para todo el dominio es de la forma:

$$\delta a^{t} = -\int_{V} \delta u^{t} b dV - \int_{A} \delta u^{t} t dA + \int_{V} \delta \varepsilon^{T} \sigma dV$$
 (Ec. 5.17)

Sustituyendo por las ecuaciones anteriores de desplazamiento y de deformación correspondientes, se obtiene:

$$Ka + f = r$$
 (Ec. 5.18)

Para que una estructura tenga una solución completa y se pueda llegar a esta expresión se deben satisfacer las siguientes condiciones:

- Compatibilidad de los desplazamientos
- Equilibrio

Sea el siguiente sistema de desplazamiento nodal:

$$a = \begin{cases} a_1 \\ a_2 \\ \vdots \\ \vdots \\ \vdots \\ a_n \end{cases}$$
(Ec. 5.19)

Considerando esta expresión para toda la estructura, incluidos todos los elementos de ésta, se satisface de manera automática la primera condición.

Una vez obtenida la primera condición, se deben establecer las condiciones de equilibrio de los nodos de la estructura. Para esto, consideramos la estructura sometida a un sistema de fuerzas externas r aplicadas en los nodos:

además de las cargas distribuidas que estén aplicadas a cada elemento.

Al establecer el equilibrio en un nodo *i* cualquiera, cada elemento de r_i tiene que ser igual a la suma de las fuerzas que aportan los elementos que se unen en ese nodo. De esta manera:

$$r_i = \sum_{e=1}^m q_i^e = q_i^1 + q_1^2 + \dots,$$
 (Ec. 5.21)

Siendo:

 q_i^1 = fuerza que el elemento 1 aporta al nodo i q_i^2 = fuerza que el elemento 2 aporta al nodo i.

De igual manera es para todos los elementos que se unan en el nodo i

Conocido que para cada nodo:

$$q_{i1} = \left[\sum_{e=1}^{m} K_{i1}^{e}\right] a_{1}$$
 (Ec. 5.22)

y para la expresión general se tiene:

$$r_{i} = \left(\sum_{e=1}^{m} K_{i1}^{e}\right) a_{1} + \left(\sum_{e=1}^{m} K_{i2}^{e}\right) a_{2} + \dots + \sum_{e=1}^{m} f_{i}^{e}$$
(Ec. 5.23)

Donde:

$$f^e = f^e_p + f^e_{\varepsilon 0}$$
 (Ec. 5.24)

La sumatoria solamente afecta a los elementos que contengan al nodo i, reuniendo las ecuaciones se obtiene:

$$Ka + r = f$$
 (Ec. 5.25)

Y las submatrices son:

$$K_{y} = \sum K_{ij}^{e} \qquad \qquad f_{i} = \sum f_{i}^{i} \qquad (Ec. 5.26)$$

Como ya se obtuvo la expresión de la ecuación 5.20, se conoce que el sistema de ecuaciones dado esta compuesto por:

$$K = \int_{V} B^{T} DB dV$$
 (Ec. 5.27)

$$f = -\int_{V} N^{t} b dV - \int_{A} N^{t} \bar{t} dA + \int_{V} B^{T} D\varepsilon_{o} dV + \int_{V} B^{T} \sigma_{o} dV$$
 (Ec. 5.28)

La integración se extiende en todo el volumen V y a la superficie A donde se encuentran las fuerzas. De acuerdo a las propiedades de las integrales definidas, se la integral total puede escribirse como la suma de las integrales de las partes; se ve, de esta manera, para que la aproximación tenga las propiedades del sistema discreto, simplemente se tiene que escribir la aproximación en forma integral.

5.8 CONVERGENCIA DEL METODO

La convergencia del MEF depende de varios factores, como la función de forma, la selección del elemento, el tamaño del mismo y, por consiguiente, de la cantidad de elementos que constituyen la malla, además de las condiciones de borde aplicadas.

La convergencia del MEF implica la manera cómo varía el error en el momento de pasar de un modelo discreto a uno continuo y posiblemente al asumir una función de forma o interpolación que no resulta la más adecuada para el análisis realizado.

En cuanto a las funciones de forma y su papel en la convergencia del método, es necesario que estas cumplan ciertas condiciones tales como:

- <u>Compatibilidad:</u> Esto implica la continuidad de los desplazamientos dentro de los elemento y en sus fronteras.
- <u>Completitud</u>: La continuidad, igualmente, debe presentarse dentro del propio elemento. La completitud implica que las funciones de desplazamiento en el elemento deben representar desplazamientos de cuerpos rígidos y estados de deformaciones constantes.

En cuanto a los desplazamientos de cuerpos rígidos, éstos son los que se producen sin que se generen esfuerzos en su interior. La condición de deformación constante es necesaria, ya que puede presentarse el caso de un número creciente de elementos. A medida que el número de elementos aumenta, el tamaño del mismo debe ser menor, por lo que a medida que el tamaño del elemento disminuye el valor de deformación tiende a alcanzar un valor constante y con esto se puede representar cualquier variación compleja del estado de deformación de un cuerpo.

Adicionalmente, existen criterios de convergencia relacionados con las funciones de desplazamiento:

- <u>Primer Criterio</u>: Las funciones de desplazamiento de los elementos deben ser tales que no permitan deformaciones de los elementos cuando se esté en presencia de un desplazamiento de conjunto, como cuerpo rígido.
- <u>Segundo Criterio</u>: Las funciones de desplazamiento deben garantizar que, al existir desplazamientos nodales con un estado de deformación, se obtenga ese estado de deformación constante
- <u>Tercer Criterio</u>: La selección de las funciones de desplazamiento debe hacerse de tal forma que las deformaciones que se producen en los límites de las separaciones entre los elementos, sean finitas.

En cuanto a la malla, si el número de elementos es mayor, el error debería disminuir. Pero también hay que considerar que un número mayor de elementos implica que se realicen mayor cantidad de iteraciones.

Las pruebas matemáticas de la convergencia asumen que el proceso de afinamiento de la malla está definido por tres condiciones:

- La reducción del tamaño de los elementos debe realizarse de tal manera que cada punto del dominio de solución quede siempre dentro de cada malla nueva.
- Cada nueva malla debe estar contenida dentro de la anterior.
- Cuando se afina la malla las funciones de forma deben permanecer invariables.

5.9 ELEMENTOS HEXAEDRICOS H8 (LINEAL) Y H20 (PARABOLICO)

Los elementos hexaédricos son el correspondiente tridimensional de los cuadriláteros y sus funciones de interpolación son obtenidas a través del producto de polinomios unidimensionales de Langrange en las tres direcciones. De esta manera se pueden obtener las funciones de interpolación para los elementos H8 que son los que cuentan con nodos en cada uno de los vértices y para los elementos H20 que son aquellos donde se encuentran nodos tanto en los vértices como en los puntos medios de las aristas.

Los elementos H8 son del tipo lineal porque la función de interpolación es construida a partir de dos puntos, al encontrarse los nodos solo en los vértices. En cuanto los elementos H20 estos son del tipo cuadrático en cuanto a su función de interpolación por contar para su construcción con tres puntos en cada una de las aristas.

CAPÍTULO VI CONSTRUCCIÓN DEL MODELO

6.1 CARACTERÍSTICAS DEL POZO

Para la construcción del modelo se necesitan los datos de un pozo real, para poder determinar los valores de esfuerzos necesarios para realizar el análisis que determinará los efectos de los mismos sobre la estructura del cemento del pozo. Para ello, se cuenta con las especificaciones de datos de un pozo venezolano ubicado al sur del estado Anzoátegui, a partir de los cuales se basará la construcción del modelo.

Nombre del Pozo: JM – 200

Ubicación: Campo San Joaquín, Distrito Anaco

Tipo de Cemento Empleado: Cemento Tipo H

La temperatura de la formación para el pozo JM-200 es de 239 °F a 8303 ft de profundidad. (Fuente: PDVSA Perforación y Exploración)

6.1.1 Estratigrafía Local Pozo: JM-200 Fuente: GERENCIA DE PERFORACION PDVSA

6.1.1.1 Miembro: Azul/Moreno

El intervalo en su parte superior corresponde al Miembro Azul, y en su parte media e inferior al Miembro Moreno, ambos pertenecientes a la Formación Oficina. La parte superior del intervalo está constituida por una secuencia monótona de arcillas de color gris claro, en parte gris verdoso, blanda, plástica, hidratable, soluble, amorfa, pastosa y ocasionalmente arenácea, hasta la profundidad de 1.950 ft, tope del miembro Moreno; en la parte inferior del intervalo continúa la secuencia arcillosa, pero con intercalaciones de arena de pequeño espesor y, con menor frecuencia, carbón y limolitas. Debido a la profundidad la arcilla, se hace cada vez más compacta hacia la base del intervalo y se transforma en Lutitas de pobre compactación (blanda), hidratable, soluble que, ocasionalmente, se presenta limosa, terrosa, pirítica, micácea, microcarbonosa, ligeramente calcárea. La arenisca es cuarzo cristalino, suelta, de grano fino a medio, subangular a subredondeado de, regular escogimiento. El carbón de color negro mate, e/p marrón oscuro, blando, laminar, opaco, micáceo, microcarbonoso. La limolitas es de color gris claro, blanda, sub -bloques, no calcárea, en la sección se observan trazas de conchas marinas, fósiles, pirita en bloque.

6.1.1.2 Miembro: Naranja/Verde/Amarillo/Colorado

La parte media e inferior de la formación Oficina esta representada por los miembros: Naranja, Verde, Amarillo y Colorado. La sección está constituida por una secuencia Lutítica, intercalada con capas de arena, de variado espesor, las cuales se encuentra más desarrollada hacia la parte media e inferior del intervalo y, ocasionalmente se presentan pequeños lentes de limolita. La lutita es de color gris claro a gris medio, en bloques, ocasionalmente sublaminar, moderadamente dura a blanda, hidratable, no calcárea, limosa, fósil. La arenisca se presenta como cuarzo cristalino, de grano fino a medio, subangular a subredondeado, regular selección, moderadamente consolidada, matriz arcillosa, cemento silicio, e/p calcáreo, con inclusiones glauconíiticas y microcarbonosas, la limolitas es de gris claro, beige, marrón claro, en bloque, moderadamente dura a dura, no calcárea, gradando a una arenisca de grano muy fino.

RESUMEN DEL POZO

GERENCIA DE PERFORACION

Figura 6.1 Dimensiones del Pozo Fuente: PDVSA Intevep

6.1.1.3 Miembro: Merecure/Vidoño/San Juan/Temblador

La parte superior y media del intervalo se caracteriza por las intercalaciones continuas entre Arena y Lutita, acompañadas en la parte media por intercalaciones de lentes de limolitas de pequeño espesor y representadas por la Formación Merecure, ya que esta abarca, casi en su totalidad, la parte superior y media del intervalo, complementándola con la Formación Vidoño que es relativamente de poco espesor y con la parte superior de la Formación San Juan "A". La parte inferior del intervalo está representada por las formaciones San Juan y Temblador, con profundidad final en Temblador "B", caracterizado mayormente por una secuencia arenosa intercalada con capas de Lutitas de variado espesor. A continuación, se describen las partes del intervalo del hoyo objetivo de este pozo.

Parte superior del intervalo (Merecure en su parte superior): la Lutitas es gris oscuro a negro, marrón claro, en bloque, sublaminar, moderadamente dura a dura, blanda, astillosa, limosa, terrosa, microcarbonosa, micropirítica, no calcárea a ligeramente calcárea. La arenisca se presenta como cuarzo cristalino, blanquecina, de grano fino a muy fino, grano medio, subangular a subredondeados, de regular a buena selección, matriz arcillosa, cemento silicio, de buena porosidad visual, con fluorescencia natural amarillo ocre, corte moderadamente rápido a lento, aureolar, amarillo claro.

Parte media del intervalo, hacia el tope (Merecure en su parte media e inferior): la Lutita en la parte superior es gris oscuro, en bloque, moderadamente dura, en parte astillosa, ocasionalmente con inclusiones micropiríticas, no calcárea. La arenisca es gris medio, grano medio a fino, subangular, bien consolidada, regular porosidad y selección, matriz arcillosa, sin fluorescencia. En la parte media la Lutita es gris claro, gris medio, gris oscuro, en bloque, compactada, ocasionalmente astillosa, limosa, ligeramente calcárea, presencia de Limolita gris claro, marrón claro, en bloque, microcarbonosa, moderadamente dura, grada a arenisca de grano muy fino. Arenisca gris claro, marrón claro, moderada consolidación, pobre selección, de grano fino a muy fino, pobre porosidad visual, fluorescencia natural amarillo opaco. Además, se presentan pequeños lentes de carbón negro brillante en bloque, astilloso, ocasionalmente laminar, inclusiones de pirita diseminada. Hacia la parte inferior de la sección, se encuentra en mayor proporción, arenisca gris claro, friable, de grano fino, subangular a subredondeado, regular selección, moderada a buena porosidad visual, se observa fluorescencia amarillo ocre, con corte moderado a rápido, amarillo pálido; con intercalaciones de Lutitas gris oliva a oscuro, en bloque, firme blanda, inclusiones carbonosas, hidrosoluble, no calcárea; Limolitas gris oscuro a oliva oscuro en bloque de firme a blanda, inclusiones de lignito, gradando a arenisca de grano muy fino.

Parte media del intervalo, hacia la base (Vidoño y parte superior de San Juan "A"). En la parte superior la Lutita es gris oscuro, marrón clara, moderadamente compactado, en bloque, en parte astilloso, no calcáreo, hidrosoluble, inclusiones microcarbonosa. La arenisca es gris claro, grano muy fino e/p fino, friable e/p consolidada, regular selección, regular porosidad y selección, matriz arcillosa, fluorescencia natural, corte rápido amarillo pálido. En la parte inferior la Lutita es gris claro a oscuro en bloque, moderada a buena compactación, microcarbonosa, no calcárea. Limolitas gris oscuro, en parte marrón claro, en bloque, moderadamente compacta a blanda con inclusiones micácea y carbonosa, en parte grada a arenisca de grano muy fino. Arenisca gris claro, cuarzo cristalino, grano fino a medio grueso, moderada consolidación, pobre selección, buena a regular porosidad visual, matriz arcillosa silícea, inclusiones carbonosas, fluorescencia natural amarillo pálido, corte lento.

Parte inferior del intervalo, hacia el tope y parte media (San Juan "A", "B" y "C"); En la parte superior la Lutita es gris oscuro, gris claro, en bloque, moderadamente compactada, no calcárea, hidrosoluble, inclusiones microcarbonosa, limosa. La arenisca cuarzo cristalino, blanquecina gris claro, grano fino a medio grueso, friable moderadamente consolidada, subangular a subredondeado, regular porosidad visual, regular selección, matriz arcillosa silícea, cemento silicio,

fluorescencia natural, corte rápido amarillo pálido. Limolitas gris crema, en bloque, moderadamente dura, grada a una arenisca de grano muy fino. En la parte inferior la Lutita es gris oscuro, en bloque, moderadamente compacta a compacta, microcarbonosa, micromicácea, no calcárea limosa. La arenisca cuarzo cristalino, blanquecina gris claro, grano fino a medio, grueso, friable moderadamente consolidada, subredondeado, regular porosidad visual, regular selección, matriz y cemento silicio fluorescencia natural, corte rápido. Arenisca cuarzo cristalino, grano fino a medio, moderada consolidación, regular a buena selección, regular porosidad visual, matriz arcillosa silícea, inclusiones carbonosas, fluorescencia natural amarillo claro, corte lento blanco lechoso.

Parte inferior del intervalo, hacia la base (Temblador "A"); En la parte superior la Lutita es gris oscuro gris claro, en bloque, moderadamente compacta, no calcárea, hidrosoluble, inclusiones microcarbonosa limosa, la arenisca cuarzo cristalina, blanquecina gris claro, grano fino a medio, friable moderadamente consolidada, subangular a subredondeado, regular selección y porosidad visual, matriz arcillosa e/p silícea, cemento silicio fluorescencia natural amarillo claro, corte lento amarillo pálido, blanco lechoso. Limolitas gris crema, en bloque, moderadamente dura a blanda grada a una arenisca de grano muy fino. En la parte inferior la Lutitas es gris oscuro a negra gris claro, laminar, corrugada, moderadamente compacta a blanda, limosa, microcarbonosa, micromicácea, no calcárea. La arenisca cuarzo cristalino, blanquecino, beige gris claro, grano fino a medio, muy fino, friable moderadamente consolidada, subredondeados, regular a mala porosidad visual, regular selección, matriz arcillosa, cemento silicio fluorescencia natural amarillo claro, corte moderado

6.2 BASES DEL MODELO

El modelo que se plantea se basa en el análisis de esfuerzos empleando la fractura hidráulica como principal generador de esfuerzos, o lo que podrían decirse, los más considerables. Estos ensayos son realizados por la empresa petrolera para determinar los esfuerzos presentes en cada punto del pozo en función de la profundidad y con esto establecer las zonas de posible falla de la estructura del mismo.

Actualmente la empresa petrolera nacional (PDVSA), específicamente a través de Intevep, se encarga de determinar los valores numéricos de los esfuerzos a través del ensayo de microfractura o fractura hidráulica y, mediante la utilización de un simulador, obtienen las curvas de los esfuerzos, presiones de poro y otros valores según la variación de la altura.

La metodología que se propone se basa en la implementación del Método de Elementos Finitos para obtener la simulación del análisis de esfuerzos a partir de un modelo tridimensional del pozo, en el cual se consideran cargas de carácter estático como consideración de la fractura hidráulica.

De acuerdo a esto se pueden establecer como consideraciones para la construcción del modelo a desarrollar:

- Aplicación de cargas estáticas
- Desarrollo bajo la teoría de Elasticidad Lineal
- Simulación en la zona colorada, debido a que en esta zona encontramos magnitudes significativas de los esfuerzos, ya sea el esfuerzo máximo horizontal (*SH*), el esfuerzo mínimo horizontal (*Sh*) y el esfuerzo vertical (*Sv*).
- Se considera un pozo vertical donde los esfuerzos generados ocurran en la dirección de los esfuerzos principales.
- Material Isotrópico
- Las superficies son concéntricas y el espesor permanece constante tanto para el casing como para el cemento.

• No existen discontinuidades en el material.

Figura 6.2 Campo de Esfuerzos Fuente: Schlumberger

Con el modelo desarrollado se busca establecer los posibles valores de esfuerzos bajo los cuales la estructura del cemento puedo colapsar y la ubicación de los puntos en donde se encuentran aplicadas dichas cargas.

6.3 SOFTWARES UTILIZADOS

Esencialmente se requieren dos tipos de softwares para realizar la evaluación y análisis del modelo a desarrollar. El primero o el que se emplea inicialmente, es del tipo CAD, en el cual se construye la sección del pozo en 3-D, y que constituye la base sobre la cual se realizará el análisis por MEF. Con la finalidad de obtener el casing y el cemento con todas sus dimensiones, se recurrió a la implementación del Solid Edge y de Autodesk Inventor 9. Ambos programas presenta múltiples aplicaciones y poseen una interfaz que facilita la interacción con el usuario.

Con estas aplicaciones, es posible construir el casing, el revestimiento de cemento y realizar la unión entre ambas piezas, para poder establecer su comportamiento cuando ambos se encuentren sometidos simultáneamente a los esfuerzos, tal cual como se encuentran en los pozos reales.

El segundo tipo de programa es mediante el cual se realizara el análisis de esfuerzos mediante el método de elementos finitos. MSC Nastran for Windows 4.5, es el paquete empleado para tal fin, debido a que se adapta a los requerimientos, al poseer opciones que permiten mallar el modelo con diferentes geometrías en cuanto a los elementos. Estos pueden ser hexaedros y tetraedros, al igual que permite modificar el tamaño de los elementos y la distribución de estos en las curvas del sólido.

El sólido en 3-D puede ser importado desde Nastran, una vez construido en Solid Edge lo cual agiliza el proceso de construcción.

Los resultados del post – procesamiento permiten visualizar esfuerzos, deformaciones, desplazamientos, entre otras opciones.

6.4 DESARROLLO DEL MODELO

Para empezar el desarrollo se seleccionó una sección del pozo ubicada en la zona colorada; esta zona posee valores de esfuerzos aceptables para la construcción del modelo, las presiones presentes en esta sección se encuentran en el rango de altas presiones en un pozo por lo cual los resultados del análisis estarán basados en condiciones extremas y por ende se puede establecer la resistencia del material para casos desfavorables. La profundidad a la que se encuentra esta zona es de 6500 ft. La sección utilizada para el análisis en Nastran se encuentra entre 6480 ft y 6500 ft.

Una vez que se construye la geometría del pozo en el paquete CAD, y una vez importado desde Nastran se procede a aplicar las diferentes cargas presentes y las condiciones de borde, además de generar la malla variando el tamaño de los elementos. Seguidamente se procede a la realización del análisis con el programa, el cual arrojará los resultados que se desean, ya sean esfuerzos, deformaciones o desplazamientos.

Para tener una visión más generalizada del fenómeno de esfuerzos presentes en los pozos petroleros, se construye un modelo que involucra tanto el casing como el revestimiento de cemento, que es el objeto fundamental del estudio. Ambos elementos son ensamblados y se mantienen unidos en la simulación, ya que el cemento actúa como soporte de casing. Adicionalmente, cabe señalar que ambos elementos se encuentran confinados dentro de la formación, ya que un pozo es un agujero perforado a grandes profundidades y donde el cemento no solo actúa como soporte del casing, sino también como una estructura que lo aísla de la formación.

6.4.1 Geometría del Pozo

Una vez que se especifica la zona (Zona Colorada) en la cual se desarrollara el modelo, de acuerdo a los datos aportados por Intevep, se establecen las dimensiones del agujero y del casing (ver figura 6.1). El agujero tiene un diámetro de 8 ½ pulg y el casing tiene un diámetro exterior de 7 5/8 pulg y un diámetro interior de 6,625 pulg.

Para la longitud de los cilindros fue asignado el valor de 20 ft (240 pulg), el cual es un segmento que se encuentra entre 6480 ft y 6500 ft de profundidad. El análisis es realizado en el cilindro completo.

De acuerdo a lo expuesto, el revestimiento de cemento tiene un espesor de 1 pulg. El casing está elaborado en acero API grado P110, el cual de acuerdo a Montiel (2002) posee alta resistencia mecánica y capacidad para deformarse elásticamente a valores considerables.

Figura 6.3 Dimensiones del Cilindro de Cemento

Figura 6.4 Dimensiones del Casing

	CASING
Módulo de Young E [psi]	$2,9 \times 10^7$
Relación de Poisson v	0,32
Peso [lb/ft]	39
Máximo Esfuerzo de Tensión [psi]	140000
Mínimo Esfuerzo de Fluencia [psi]	110000
Máximo Esfuerzo de Fluencia [psi]	125000

Tabla 6.1 Propiedades Mecánicas del CasingFuente: PDVSA Perforación y Exploración, Montiel [16]

	CEMENTO H
Módulo de Young E [psi]	5,58 x 10 ⁵
Relación de Poisson v	0,22
Densidad [lb/pulg ³]	7,15 x 10 ⁻²
Esfuerzo de Compresión a las 24 horas a	3700
110 °F [psi]	

Tabla 6.2 Propiedades Mecánicas del CementoFuente: PDVSA Intevep, PEMEX, Drilling Engineering [9]

6.4.2 Aplicación de las Cargas

Las altas presiones y las altas temperaturas del yacimiento, son factores determinantes en la generación de esfuerzos alrededor del cemento y representan los esfuerzos sobre los cuales se basa el análisis del colapso del pozo. Los esfuerzos in situ son aquellos que están presentes de acuerdo a las características de la formación. Basados en la presión de poro y en los valores de fractura del material, es posible obtener los valores de *SH* y *Sh* siguiendo para ello la formulación establecida para la

fractura hidráulica. Estos esfuerzos son considerados fundamentales para el análisis del modelo.

6.4.3.1. Modelo 1

Para la distribución de las cargas se toma en consideración como se mencionó anteriormente que la sección pertenece a un pozo vertical y por lo tanto la sección es paralela a la dirección de uno de los esfuerzos principales, en este caso el vertical de acuerdo a Lund (2000). Aplicando los esfuerzos *in situ* de acuerdo a la teoría de la ruptura del agujero (borehole breakout) se obtiene la primera distribución de los esfuerzos presentes en la interfaz del cemento con la formación, los cuales afectaran también al casing, ya que son cargas debida a las presiones presentes en el yacimiento. Mediante la aplicación del criterio de fractura hidráulica se obtienen los valores de SH y Sh, a partir de la presión de poro de la formación.

Los esfuerzos horizontales máximos (SH) se colocarán en el eje X y los esfuerzos horizontales mínimos estarán a 90° de estos, es decir en el eje Y tal como se aprecia en la figura 6.5. El plano XY corresponde a la sección transversal del cilindro.

Figura 6.5 Distribución de los Esfuerzos de acuerdo al Borehole Breakout

El valor de la presión en la longitud del cilindro, permanecerá constante e igual a SH a 6500 ft, esto para simplificar la construcción del modelo en cuanto a la aplicación de las cargas. Esta consideración puede hacerse porque la variación de los esfuerzos horizontales entre 6480 ft y 6500 ft no es significativa. Las propiedades mecánicas de la formación no varían, es decir, que se considera la misma roca en el mismo estrato.

Figura 6.6 Distribución de las cargas para el modelo 1

6.4.3.2 Modelo 2

En este modelo, se procede a la aplicación de cargas distribuidas alrededor del cilindro, estas cargas están situadas alrededor del circulo de forma perimetral. Los valores de los esfuerzos en la longitud del modelo permanece constante, es decir, no se considera variación lineal en el eje Z, por la misma razón expuesta anteriormente, la variación no es significativa y ayuda a simplificar su construcción.

Figura 6.7 Distribución de las cargas para el modelo 2

Las presiones perimetrales varían de según un máximo (*SH*) y un mínimo (*Sh*), pero esta variación es un poco complicada de determinar porque puede variar mucho según las condiciones de la formación en las que se haga los estudios para determinar dichas presiones. En este modelo vamos a implementar el caso mas adecuado a este problema el cual se explica en el siguiente esquema.

Figura 6.8 Variación de la magnitud desde SH a Sh

Se expresa muy sencillo, las presiones mínimas (Sh) y máximas (SH) representan los ejes de coordenadas formando 90 grados entre ellos, cada uno de

estos vectores se le unen sus términos formando un triangulo, luego entra en el sistema otro vector (v) el cual varia su magnitud y dirección según un ángulo (θ).

Método Analítico De Cálculo Del Vector V

• Para el Cuadrante I (0 a 90 grados)

Figura 6.9 Variación del vector V en el Primer Cuadrante

Definimos la pendiente de la recta que esta entre las coordenadas de SH y Sh.

$$y - SH = -\frac{SH}{Sh}x$$
 (Ec. 6.1)

Sabemos que:

$$X = [v] * \cos (\theta)$$
$$Y = [v] * sen (\theta)$$

Sustituimos y despejamos y nos queda:

$$|v| = \frac{SH}{seno(\theta) + \frac{SH}{Sh}\cos(\theta)}$$
 (Ec. 6.2)

Con esta ecuación obtenemos v sustituyendo los valores de θ para toda la circunferencia, se calcula se la siguiente manera:

$$\theta = \theta' + 360^{\circ} / N$$
 (Ec. 6.3)

Donde

 θ = es el ángulo a utilizar en la ecuación

 θ' = es el ángulo que se utilizo en la secuencia anterior

N= numero de divisiones según el la cantidad de elementos del elemento.

NOTA: Este valor de θ ' es tomado en 0° como 0, para estos θ se pueden colocar directamente en la ecuación debido a que es el primer cuadrante.

• Para el cuadrante II (90 a 180 grados)

Figura 6.10 Variación del vector V en el Segundo Cuadrante

Definimos la pendiente de la recta que esta entre las coordenadas de SH y Sh.

$$|v| = \frac{SH}{\cos(\theta) + \frac{SH}{Sh} \operatorname{seno}(\theta)}$$
 (Ec. 6.4)

Para el cálculo de θ cambia a raíz de que no muchas veces dependiendo del numero de divisiones no nos va a tocar un ángulo sencillo de manejar, porque, este ultimo termino del cuadrante uno es utilizado para calcular el primero del cuadrante numero dos, para esto utilizamos la siguiente formula.

$$\theta_a = \theta_s - 90^\circ$$
 (Ec. 6.5)

Donde

 θ_a = es el termino que se utiliza en la fórmula para cuadrantes II, III y IV θ_s = termino obtenido por la sumatoria ($\theta = \theta' + 360^\circ / N$)

• Para el cuadrante III (180 a 270 grados)

Figura 6.11 Variación del vector V en el Tercer Cuadrante

Definimos la pendiente de la recta que esta entre las coordenadas de SH y Sh.

$$|v| = \frac{SH}{seno(\theta) + \frac{SH}{Sh}\cos(\theta)}$$
 (Ec. 6.6)

En este caso el ultimo termino del cuadrante dos es utilizado para calcular el primero del cuadrante numero tres, para esto utilizamos la siguiente formula.

$$\theta_a = \theta_s - 180^\circ$$
 (Ec. 6.7)

Donde

 θ_a = es el termino que se utiliza en la fórmula para cuadrantes II, III y IV θ_s = termino obtenido por la sumatoria ($\theta = \theta' + 360^\circ / N$)

• Para el cuadrante IV (270 a 360 grados)

Figura 6.12 Variación del vector V en el Cuarto Cuadrante

Definimos la pendiente de la recta que esta entre las coordenadas de SH y Sh.

$$|v| = \frac{SH}{\cos(\theta) + \frac{SH}{Sh} \operatorname{seno}(\theta)}$$
(Ec. 6.8)

En este caso el ultimo termino del cuadrante tres es utilizado para calcular el primero del cuadrante numero cuarto, para esto utilizamos la siguiente formula.

$$\theta_a = \theta_s - 270^\circ \tag{Ec. 6.9}$$

Donde

 θ_a = es el termino que se utiliza en la fórmula para cuadrantes II, III y IV

 θ s = termino obtenido por la sumatoria ($\theta = \theta' + 360^{\circ} / N$)

Angulo θ	Vector v (Psi)	Angulo θ	Vector v (Psi)
Cua	adrante I	Cua	drante III
0 °	5785.884	192 °	4924.76162
12 °	4924.76162	204 °	4456.28729
24 °	4456.28729	216 °	4238.34606
36 °	4238.34606	228 °	4216.41456
48 °	4216.41456	240 °	4385.38548
60 °	4385.38548	252 °	4786.38683
72 °	4786.38683	264 °	5534.32539
84 °	5534.32539	Cuadrante IV	
Cua	idrante II	276 °	5534.30798
96 °	5534.30798	288 °	4786.37725
108 °	4786.37725	300 °	4385.38068
120 °	4385.38068	312 °	4216.41332
132 °	4216.41332	324 °	4238.34809
144 °	4238.34809	336 °	4456.29306
156 °	4456.29306	348 °	4924.77267
168 °	4924.77267	360 °	5785.90411
180 °	5785.90411		•

Para 30 divisiones en la cara transversal

Tabla 6.3 Calculo de θ utilizando Excel para 30 divisiones en la sección transversal

Después de realizado el calculo de las presiones de posicionan los vectores según el θ calculado, hay que recordar que en la ecuación $\theta = \theta' + 360^{\circ} / N$, n es el numero de elementos y por esto la sumatoria de este θ representa la posición del elemento por lo tanto cuando hacemos el arreglo este queda de la siguiente manera.

Figura 6.13 Visualización de las Cargas en el Modelo 2

6.4.3.3 Modelo 3

Las presiones ejercidas en el cemento se consideran uniformes en la sección transversal del cilindro y son aplicadas radialmente en la superficie del mismo. En este modelo se aplicara una variación lineal en el eje Z o en dirección del eje del cilindro, siendo mayor la presión a mayor profundidad.

El valor de la presión corresponderá al valor del esfuerzo horizontal máximo, esto con la intención de determinar el efecto que éste genera en la estructura del cemento.

Figura 6.14 Distribución lineal de las cargas en la longitud del cilindro

Profundidad [ft]	SH [psi]
6480	6095,943360
6500	6115,434000

Tabla 6.4 Valores de Esfuerzos Horizontales Máximos

Las ecuaciones de las rectas se establecerán en base a una longitud de 240" (20 ft) que es la que corresponde al intervalo entre 6480 y 6500 ft.

$$y - y_o = m(x - x_o)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6095,94 \text{ psi} - 6115,43 \text{ psi}}{240 \text{ pulg} - 0 \text{ pulg}} = -0,0812 \frac{\text{psi}}{\text{pulg}}$$

$$y - 6115, 43 \, psi = -0,0812 \left(x - 0 \, pu \, \lg \right)$$
$$y = -0,0812 \left(\frac{psi}{pu \, \lg} \right) x + 6115, 43 \, psi$$
(Ec. 6.10)

A partir de los datos de la tabla 6.5 se establece la ecuación de la recta para la variación del esfuerzo horizontal mínimo *Sh*:

Profundidad [ft]	Sh [psi]
6480	5768,418240
6500	5785,884000

Tabla 6.5 Valores de Esfuerzos Horizontales Mínimos

 $y - y_{o} = m(x - x_{o})$ $m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{5768,42 \text{ psi} - 5785,88 \text{ psi}}{240 \text{ pu} \text{ lg} - 0 \text{ pu} \text{ lg}} = -0,073 \frac{\text{psi}}{\text{pu} \text{ lg}}$ y - 5785,88 psi = -0,073 (x - 0 pu lg) $y = -0,073 \left(\frac{\text{psi}}{\text{pu} \text{ lg}}\right) x + 5785,88 \text{ psi} \qquad \text{(Ec. 6.11)}$

Figura 6.15 Distribución de las cargas para el modelo 3

6.4.3 Limitación del Movimiento

Tanto el casing como el cemento permanecen fijos en la sección inferior, lo cual implica que no existe desplazamiento en esos puntos. Esta consideración tiene por finalidad poder establecer los desplazamientos en el eje longitudinal, que es el que esta propenso a presentar los mayores desplazamientos, al encontrarse el cemento y el casing confinados en la formación y sometidos a esfuerzos de compresión. Todo esto de acuerdo al efecto Poisson.

Figura 6.16 Restricciones de Movimiento

6.4.4 Generación de la Malla

La generación de la malla para el análisis por MEF se realiza empleando la opción de número de elementos por curvas, de esta manera se establece el número de elementos que se colocarán tanto en las circunferencias correspondientes a los diferentes diámetros de ambas piezas (casing y cemento) como la división que se establecerá en las líneas a lo largo del cilindro.

Los elementos empleados son del tipo hexaédricos ya que estos se adaptan mejor que los tetraedros a la geometría del modelo, como se puede apreciar en la figura 6.17. Para que el análisis posea mayor exactitud, se utiliza la opción nodos en el medio, la cual considera nodos no solo en los vértices sino también en la mitad de las aristas.
Las presiones o esfuerzos a los cuales se somete el conjunto deben afectar tanto al cemento como al casing, por existir transmisión de carga (presión en cilindros de pared gruesa). Por esta razón, cuando se generen las mallas para ambos sólidos, se requiere la comprobación de nodos coincidentes, para que la interfaz entre el cemento y el acero sea considerado como la misma superficie.

Para realizar la verificación de la convergencia, se puede variar la función de interpolación, utilizando elementos de tipo H8 y de tipo H20. Así mismo se puede variar el número de elementos y las propiedades de los materiales.

Figura 6.17 Malla de Elementos Hexaédricos

Con la opción del software para realizar las divisiones en las curvas tanto de las circunferencias, como a lo largo del cilindro se generará la malla y de ahí se establecerá el número de elementos que la conforman.

6.5 PLANIFICACIÓN DE LA SIMULACIÓN

Una vez establecidas todas las condiciones para realizar el análisis por MEF, es decir, la aplicación de las cargas, la selección de las propiedades de los materiales y las restricciones de movimiento se procede a la generación de la malla.

El análisis se realizará de la siguiente manera, para los tres modelos desarrollados:

- Se realizaran las divisiones en las curvas de la geometría del cilindro para establecer el número de nodos y elementos.
- 2. Una vez generada la malla, se procederá a la corrida del software para obtener los valores de esfuerzos, deformaciones y desplazamientos.
- Esos valores formaran parte de una base de datos en la cual se establecerán los valores de esfuerzos y desplazamientos en el eje Z para un determinado número de elementos.
- 4. Para establecer la convergencia y con esto obtener los valores que se buscan, se realizarán variaciones en las divisiones en las curvas del cilindro y por ende en el número de elementos que conforman la malla.
- 5. Los valores de cada corrida formarán parte de la base de datos para poder establecer la convergencia cuando los valores obtenidos para diferentes números de elementos no difieran significativamente entre si, es decir, cuando el margen de error sea menor al 2%.
- 6. El cálculo del error para establecer la convergencia se realizará empleando la ecuación del error relativo:

$$\varepsilon_{rr} = \frac{|X_{n-1} - X_n|}{|X_{n-1}|} \times 100 \le 2\%$$

Donde:

 $X_{n-1} = Valor para la corrida anterior$

 $X_n = Valor de la corrida actual$

Esta ecuación será empleada tanto para los esfuerzos como para los desplazamientos en Z.

- Los pasos del 1 al 5 se realizan utilizando tanto elementos H8 Y H20, para estudiar el comportamiento y la convergencia si se varía la función de interpolación.
- 8. Cuando se obtienen los valores de esfuerzos y desplazamientos buscados, se fija el número de elementos correspondiente a esos valores, para realizar otro tipo de análisis en el cual se varía una propiedad del cemento. En este caso el Módulo de Young.
- Para esta segunda parte del análisis, la cantidad de elementos permanecerá fija y se realizarán las corridas correspondientes para diferentes valores de Módulo de Young.

CAPÍTULO VII ANÁLISIS DE RESULTADOS

Los resultados obtenidos en la simulación y obtención de valores de esfuerzos mediante la implementación del método numérico de los elementos finitos para la sección de un pozo petrolero están dirigidos a visualizar las condiciones de cargas a los cuales este se encuentra sometido y los efectos que los esfuerzos generan en las estructuras. Aún cuando el modelado del problema permite asumir una distribución axisimétrica de las cargas, lo cual representa una simetría que permitiría analizar no el cilindro completo (en cuanto a la sección transversal) sino una porción del mismo como comúnmente se hace en este tipo de análisis en el cual se toma un cuarto de la circunferencia, el análisis realizado se fundamentó en una sección completa del conjunto cemento-casing sometidos a las presiones que ejerce la formación en un campo cercano a estos elementos. Esta modalidad permite visualizar los efectos en todas las superfícies tal y como sería la geometría en el pozo real.

Cabe señalar que los esfuerzos tomados en consideración son los esfuerzos *in situ*, que ejerce la formación, a causa de las presiones de yacimiento y principalmente de los efectos del proceso de perforación, ya sea por la presión del lodo o por los cambios de temperatura que con su implementación se producen.

Se consideró que los esfuerzos actúan directamente en el cemento aun cuando pudiese existir una atenuación de los mismos de acuerdo a las propiedades mecánicas de la roca. Por esta razón es que se consideró el principio de esfuerzos en campos cercanos, lo cual quiere decir, los esfuerzos cercanos entre la superficie del cemento y de la formación. En este estudio no se tomó en cuenta los efectos que ocasionan los cambios de temperatura en las propiedades del material, solo esta dirigido al efecto que ocasionan las presiones en los esfuerzos generados. Sin embargo, se realizaron pruebas variando una propiedad fundamental del material como es el módulo de Young, el cual es la relación de proporcionalidad entre el esfuerzo y la deformación según la ley de Hooke. A pesar de que el cemento no posee un comportamiento como el acero de acuerdo a la gráfica de esfuerzo vs deformación, en el cual se aprecia la linealidad de la zona de comportamiento elástico y donde el límite de fluencia se muestra claramente separándola de la zona de deformación plástica, el módulo de Young determina para este tipo de materiales tales como el cemento la variación de los esfuerzos.

La presentación de los resultados tomará en cuenta los esfuerzos presentes de acuerdo a Von-Mises, desplazamientos, fundamentalmente en la dirección longitudinal, porque como se consideró en la construcción del modelo las superficies inferiores se encuentran fijas y los elementos están sometidos a esfuerzos de compresión.

La validez de los resultados está sustentada en la convergencia de acuerdo a la variación del número de elementos y a la variación entre elementos H8 o elementos H20. Al implementarse la opción "nodos en el medio de los lados", la cantidad de nodos tanto en el cemento como en el casing se incrementan y por tanto de cierta forma se garantiza que el método esta tomando para la construcción de las diferentes matrices involucradas como la de rigidez, deformaciones, elasticidad, tensión y cargas una cantidad mayor de puntos en el elemento, por lo cual la solución al sistema de ecuaciones debería acercarse con mayor exactitud al valor que se busca.

Una vez establecidas estas premisas, los resultados serán presentados y analizados para cada modelo desarrollado.

7.1 PRESENTACIÓN Y ANALISIS DE RESULTADOS

7.1.1 MODELO 1

7.1.1.1 Elementos H8

En primera instancia, el modelo fue construido tomando en consideración propiedades mecánicas específicas, de acuerdo a datos suministrados por Intevep y otras fuentes, las cuales se encuentran señaladas en el capitulo 6, en las tablas 6.1 y 6.2. Con estos valores en los materiales se realizaron diferentes pruebas para hallar la convergencia tanto por número de elementos como por variación de elementos H8 o elementos H20.

Para los elementos H8 y variando el número de elementos se obtuvo la siguiente tabla:

No. Nodos	No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
5999	800	7078	217,2	0,01450	0,000564
7080	1200	5024	140,7	0,00971	0,000372
8996	1560	5648	162,4	0,01150	0,000233
10380	1800	4983	138,4	0,00997	0,000200
13680	2400	4923	136,2	0,01010	0,000116

Tabla 7.1 Valores Obtenidos para Elementos H8 modelo 1

Estos valores de esfuerzos y deformaciones corresponden a los máximos y mínimos que se obtienen en cada análisis y cuyo uso es para determinar la convergencia de los resultados.

Para visualizar la convergencia se construyeron gráficas de esfuerzo vs número de elementos y de desplazamientos vs número de elementos.

La figura 7.1 muestra la gráfica de esfuerzos vs número de elementos, en la cual se puede apreciar la variación de los valores con respecto a la cantidad de elementos que se colocan en la geometría.

El esfuerzo mínimo presenta una tendencia un poco más marcada que el esfuerzo máximo al comportamiento constante. No obstante la variación del esfuerzo máximo se mantiene en un rango entre 4900 y 7078 psi, razón por la cual se puede establecer la convergencia para los elementos H8.

Figura 7.1 Esfuerzos Máximos y Mínimos vs. Número de Elementos Modelo 1 (elementos H8)

No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Error Relativo ε _{rr}	ε _{rr [%]}	Esfuerzo Mínimo σ _{min} [psi]	Error Relativo _{Err}	E _{rr [%]}
800	7078	0,29019497	29,02	217,2	0,352209945	35,22
1200	5024	0,124203822	12,42	140,7	0,154228856	15,42
1560	5648	0,117740793	11,77	162,4	0,147783251	14,78
1800	4983	0,012040939	1,20	138,4	0,015895954	1,59
2400	4923	-	-	136,2	-	-

Tabla 7.2 Errores para los Esfuerzos en Elementos H8 modelo 1

De igual manera se puede apreciar para los desplazamientos. El desplazamiento máximo es el que presenta un comportamiento más variable, pero dentro de un margen de error aceptable.

Figura 7.2 Desplazamientos Máximos y Mínimos en el eje Z vs. Número de Elementos Modelo 1 (elementos H8)

No. Elementos	Desplazamiento máximo en Z u _{z max} [pulg]	Error Relativo _{Err}	ɛ_{rr [%]}	Desplazamiento mínimo en Z u _{z min} [pulg]	Error Relativo _{Err}	E _{rr} [%]
800	0,0145	0,330344828	33,03	0,000564	0,340425532	34,04
1200	0,00971	0,184346035	18,43	0,000372	0,373655914	37,37
1560	0,01150	0,133043478	13,30	0,000233	0,141630901	14,16
1800	0,00997	0,013039117	1,30	0,000200	0,42	42,00
2400	0,01010	-	-	0,000116	-	-

Tabla 7.3 Errores para los desplazamientos en Elementos H8 modelo 1

Para el cálculo de los errores, se empleo el concepto de error relativo entre una corrida y la siguiente, estableciendo que un error aceptable debería ser inferior a 2%.

Como se aprecia en las tablas 7.2 y 7.3, el error es inferior a 2% entre 1800 y 2400 elementos en la mayoría de los valores buscados, con excepción del desplazamiento mínimo, donde es de 42 %, pero si se aprecia la figura 7.2, el comportamiento del desplazamiento mínimo mantiene un comportamiento que tiende a ser constante.

7.1.1.2 Elementos H20

Para los elementos H20 se realizo exactamente el mismo procedimiento. Los valores son los presentados a continuación:

No. Nodos	No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
5999	800	10303	32,28	0,3570	0,000538
7080	1200	5024	140,70	0,0097	0,000372
8996	1560	5648	162,40	0,0115	0,000233
10380	1800	4983	138,40	0,0100	0,000200
13680	2400	4923	136,20	0,0101	0,000116

fabla 7.4 Valores Obtenidos	para Elementos H20 m	iodelo 1
-----------------------------	----------------------	----------

Las figuras 7.3 y 7.4 muestran los valores de los esfuerzos máximos y mínimos, al igual que los desplazamientos en Z, cuando se varía el número de elementos y estos son del tipo H20.

Modelo 1

Figura 7.3 Esfuerzos Máximos y Mínimos vs. Número de Elementos Modelo 1 (elementos H20)

MODELO 1

Figura 7.4 Desplazamientos Máximos y Mínimos en el eje Z vs. Número de Elementos Modelo 1 (elementos H20)

La tabla 7.5 muestra los valores de esfuerzos y los respectivos errores:

Esfuerzo	Error		Esfuerzo	Error	
Máximo	Relativo	E rr [%]	Mínimo	Relativo	E rr [%]
σ _{max} [psi]	ε _{rr}		σ _{min} [psi]	٤ _{rr}	
10303	0,512375036	51,24	32,28	3,358736059	335,87
5024	0,124203822	12,42	140,7	0,154228856	15,42
5648	0,117740793	11,77	162,4	0,147783251	14,78
4983	0,012040939	1,20	138,4	0,015895954	1,59
4923	-	-	136,2	-	-

Tabla 7.5 Errores para los Esfuerzos en Elementos H20 modelo 1

Desplazamiento máximo en Z u _{z max} [pulg]	Error Relativo _{Err}	& _{rr [%]}	Desplazamiento mínimo en Z u _{z min} [pulg]	Error Relativo _{Err}	ε _{rr [%]}
0,3570	0,972829132	97,28	0,000538	0,30855019	30,86
0,0097	0,18556701	18,56	0,000372	0,37365591	37,37
0,0115	0,130434783	13,04	0,000233	0,14163090	14,16
0,0100	0,01000000	1,00	0,000200	0,42000000	42,00
0,0101	-	_	0,000116	-	-

La tabla 7.6 presenta los errores para los desplazamientos en el eje Z o eje longitudinal.

Tabla 7.6 Errores para los desplazamientos en Elementos H20 modelo 1

A pesar de que se realizaron los análisis de esfuerzos con elementos H8 y H20, esperando obtener una mejor convergencia con los elementos parabólicos por adaptarse mejor a la forma geométrica, por ser funciones de segundo orden, se puede apreciar en las tablas comparativas que los resultados son similares, adaptándose mejor el tipo de elemento lineal según lo apreciado en las tablas 7.1 y 7.4, ya que para 800 elementos los valores de esfuerzo y desplazamiento son mas cercanos a los valores esperados.

Al variar el tipo de elemento se cambia la función de interpolación, y por lo tanto la convergencia hacia los resultados debería ser diferente. Sin embargo, la diferencia es notable cuando el número de elementos es bajo, al existir menor cantidad de nodos, la construcción de las matrices y del sistema de ecuaciones posee menos variables y por ende no se garantiza la convergencia en el cálculo al estar más distante los nodos entre sí.

7.1.1.3 Variación del Módulo de Young en el cemento

Se tomaron diferentes valores de módulos de Young que pueden estar presentes en los diferentes tipos de cementos de acuerdo a la composición química de los mismos y a las condiciones a las que se encuentren expuestos, sobre todo a cambios de temperatura. (Stiles, 2006) [28]

La relación de Poisson de mantuvo constante en 0,22 e igualmente el valor de esfuerzo de compresión en 3700 psi.

Modulo de Young E[psi]	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
2,00E+05	5100	58,3	0,01070	0,000106
4,00E+05	4998	103,2	0,01020	0,000113
8,00E+05	4816	182,7	0,00988	0,000118
1,00E+06	4733	217,6	0,00976	0,000120
2,00E+06	4387	356,8	0,00930	0,000123

Tabla 7.7 Valores de Obtenidos para diferentes módulos de Young modelo 1

Como se puede apreciar en la tabla 7.7, los valores de esfuerzos máximos y desplazamientos máximos muestran una tendencia a disminuir, es decir, a medida que se aumenta el valor del módulo de Young, dichos valores se hacen cada vez menores. Caso contrario sucede con el esfuerzo mínimo y el desplazamiento mínimo, estos tienden a aumentar con el aumento del valor del módulo de Young.

El módulo de Young (E), es la constante de proporcionalidad en la ley de Hooke. Si se tiene un mismo valor de esfuerzo y se aplica para rectas con diferentes pendientes, la deformación será menor para la recta con el E superior. Al disminuir la deformación, el desplazamiento también lo hace ya que se poseen una relación directamente proporcional.

Analizando la tabla 7.7, se observa que al aumentar E, disminuye el valor de esfuerzo máximo que pueda presentarse, lo cual indica que el material posee mejor resistencia, al dar como resultado esfuerzos menores para el mismo tipo de carga.

Modelo 1

Figura 7.5 Valores de Esfuerzos para diferentes Módulos de Young

Modelo 1

Figura 7.6 Desplazamientos para diferentes Módulos de Young

7.1.1.4 Resultados del Modelo 1

En este modelo se aplicó en 0 y 180° (dirección del eje X) el valor del esfuerzo horizontal máximo de 6115,43 psi para 6500 ft. Para 90 y 270° se aplica el esfuerzo horizontal mínimo de 5785,88 psi (dirección del eje Y). En la figura 7.7 se muestran los resultados de los esfuerzos obtenidos. La figura 7.8 muestra los valores de los desplazamientos en el eje Z.

Figura 7.7 Criteria Von-Mises elementos modelo 1

De acuerdo al análisis realizado, los esfuerzos mayores los soporta el casing y estos están precisamente en la zona en la que se encuentran aplicadas las cargas. El esfuerzo en este tipo de geometría se transmite de manera radial y tangencial, según el criterio de cilindros de pared gruesa.

Figura 7.8 Criteria desplazamiento en Z modelo 1

El cemento tiene sus mayores valores de esfuerzos en la zona de aplicación de las cargas, pero su magnitud es menor a la presente en el casing. En el cemento el esfuerzo máximo es de 4025 psi y en el casing es de 4923 psi.

En el resto del cemento los valores están en el orden de 136,2 psi y 734,6 psi, al no considerarse la aplicación de cargas en toda la superficie del cilindro, para establecer los efectos únicamente de los esfuerzos in situ en la estructura.

En cuanto a los desplazamientos, estos aumentan progresivamente en la dirección del eje longitudinal, notándose que en la sección inferior estos tienden a cero por encontrarse restringida de movimiento en cualquier dirección.

El modelo se encuentra sometido a esfuerzos de compresión y al considerarse como si estuviese empotrado en el fondo, el desplazamiento aumentará progresivamente mientras se aleja de esa sección, al tener menos peso propio debido a la columna de cemento que le restrinja el movimiento en Z.

De acuerdo al método de los desplazamientos el punto de fluencia se establece para una deformación de 0,2%, pero en este caso la deformación máxima es de 0,00421%, por lo cual los valores se encuentran en el rango de deformación elástica.

7.1.2 MODELO 2

En el modelo 2 las cargas son variable alrededor de la circunferencia del cemento tal como se explico en el capitulo anterior. Como existe esta variación, en la superficie se presentan valores de presión menores al esfuerzo horizontal máximo. La tabla 7.8 muestra los valores obtenidos variando el número de elementos.

No. Nodos	No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
3540	600	325446	2112	1,045	-0,828
10140	1800	43114	1510	0,117	0,001040
13440	2400	37940	2949	0,117	0,000871
16740	3000	37934	2949	0,118	0,000692

Tabla 7.8 Valores obtenidos variando el número de elementos modelo 2

La convergencia para elementos tipo H8 y H20 es la misma, por lo tanto no es necesario redundar en la presentación de los resultados.

Las figuras 7.9 y 7.10 muestran la variación de los esfuerzos y los desplazamientos de acuerdo a la variación del número de elementos.

Figura 7.9 Esfuerzos Máximos y Mínimos vs. Número de Elementos Modelo 2

A medida que se aumenta el número de elementos, se va logrando la convergencia al obtener valores que no difieren mucho entre si. Este comportamiento es más notable en los valores mínimos tanto de esfuerzo como en la deformación.

Para los desplazamientos, la convergencia hacia un valor exacto se puede apreciar en la figura 7.10.

El MEF es un método numérico y como tal presenta diferencias en la convergencia entre las distintas variables que se pueden obtener, ya sean esfuerzos o deformaciones. No siempre el comportamiento es igual y más aún cuando en este caso existe una geometría con diferentes materiales, es por ello que el tipo de convergencia entre los valores máximos y mínimos varía, ya que estos se presentan

en diferentes secciones del modelo, es decir, analizando tanto el modelo 1 como el modelo 2, se puede establecer que los valores máximos de esfuerzos ocurren en el casing y los mínimos en el cemento. Estos son materiales con diferentes propiedades entre los cuales debe existir compatibilidad en la transmisión de los esfuerzos. La convergencia hacia los valores exactos dependerá en gran medida de la fase de pre – procesamiento, en la cual se aplican las condiciones de borde tanto en cargas como en restricciones, así como en la aplicación de los tipos de materiales. Esto es fundamental para la etapa de procesamiento en la cual se componen los sistemas de ecuaciones con los cuales el software generara los resultados del análisis.

Figura 7.10 Desplazamientos Máximos y Mínimos en el eje Z vs. Número de Elementos Modelo 2

No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Error Relativo ε _{rr}	ɛ _{rr [%]}	Esfuerzo Mínimo σ _{min} [psi]	Error Relativo _{Err}	E _{rr [%]}
600	325446	0,867523337	86,75	2112	602	0,29
1800	43114	0,120007422	12,00	1510	1439	0,95
2400	37940	0,000158144	0,02	2949	0	0,00
3000	37934	-	-	2949	-	-

El resultado en el cálculo de los errores se presenta en las tablas 7.9 y 7.10.

Tabla 7.9 Errores para	los Esfuerzos	modelo 2
------------------------	---------------	----------

No. Elementos	Desplazamiento máximo en Z u _{z max} [pulg]	Error Relativo _{Err}	ɛ_{rr [%]}	Desplazamiento mínimo en Z u _{z min} [pulg]	Error Relativo ε _{rr}	E _{rr [%]}
600	1,045	0,8880382775	88,80	-0,828	1,00125604	100,13
1800	0,117	0,000000000	0,00	0,00104	0,16250000	16,25
2400	0,117	0,0085470085	0,85	0,000871	0,20551091	20,55
3000	0,118	-	-	0,000692	-	-

Tabla 7.10 Errores para los Desplazamientos modelo 2

Entre 2400 y 3000 elementos los errores son muy inferiores al 2%, salvo en el valor correspondiente al desplazamiento mínimo que es de 20,55%, pero a pesar de esta discrepancia se puede establecer la convergencia a los resultados al encontrarse los esfuerzos máximos y mínimos, al igual que el desplazamiento máximo cercanos al valor exacto.

7.1.2.1 Variación del Módulo de Young en el cemento

En la tabla 7.11 se muestran los valores cuando existe una variación en el modulo de Young.

Modulo de Young E[psi]	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
2,00E+5	34740	1261	0,1000	0,000564
8,00E+5	34424	5179	0,0976	0,000562
2,00E+6	37970	3058	0,1180	0,000569

Tab	la 7	.11	V	alores	de	Obtenidos	para	diferentes	módulos	de	Young	model	lo 2
		-											-

En las figuras 7.11 y 7.12 se muestra la variación de los esfuerzos y desplazamientos con respecto a la variación del módulo de Young.

Figura 7.11 Valores de Esfuerzos para diferentes Módulos de Young

Figura 7.12 Desplazamientos para diferentes Módulos de Young

Se puede apreciar que para los dos primeros valores la tendencia es a la disminución del esfuerzo máximo presente, pero cuando el modulo de elasticidad toma el valor de 2 x 10^6 psi, aumenta el esfuerzo, esto se puede interpretar como un alejamiento a la convergencia al valor exacto por la cantidad de elementos utilizados. Para los cambios de módulo de Young, se mantuvo la cantidad de elementos en 2400 de acuerdo al cálculo de error para establecer la convergencia.

7.1.2.2 Resultados del Modelo 2

Las figuras 7.13 y 7.14 muestran los esfuerzos y los desplazamientos respectivamente.

Figura 7.13 Criteria Von-Mises modelo 2

Como era de esperarse los valores máximos se encuentran en el casing con 37940 psi y en el cemento alrededor de 5136 psi.

Así mismo los desplazamientos aumentan progresivamente a medida que la profundidad de análisis es menor, al encontrarse más alejado de la sección que fue fijada.

Figura 7.14 Criteria desplazamiento en Z modelo 2

7.1.3 MODELO 3

7.1.3.1 Elementos H8

elementos de upo 116 se muestran en la tabla 7.12.							
No. Nodos	No. Elementos	Esfuerzo Máximo	Esfuerzo Mínimo σ _{min}	Desplazamiento máximo en Z	Desplazamiento mínimo en Z		
110005	Liementos	σ _{max} [psi]	[psi]	u _{zmax} [pulg]	u _{zmin} [pulg]		
3560	860	51698	4047	0,144	0,00626		
9120	1600	50807	4113	0,149	0,00293		
17920	3200	48583	4113	0,151	0,00133		
26720	4800	48737	4111	0,152	0,000874		
40080	7200	48778	4132	0,152	0,000873		

Los valores obtenidos en el análisis para hallar la convergencia utilizando elementos de tipo H8 se muestran en la tabla 7.12.

La figura 7.15, indica que para el modelo 3, la convergencia es más estable y los valores son similares aún para pocos elementos.

Figura 7.15 Esfuerzos Máximos y Mínimos vs. Número de Elementos Modelo 3 (elementos H8)

. En la tabla 7.13 se aprecia que la convergencia es mucho mejor para este modelo a razón de que los errores son mucho menores.

No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Error Relativo _{Err}	٤ _{rr [%]}	Esfuerzo Mínimo σ _{min} [psi]	Error Relativo _{Err}	E _{rr [%]}
860	51698	0,017234709	1,72	4047	0,016308377	1,63
1600	50807	0,043773496	4,38	4113	0,000000000	0,00
3200	48583	0,003169833	0,32	4113	0,000486263	0,05
4800	48737	0,00084125	0,08	4111	0,005108246	0,51
7200	48778	-	_	4132	_	-

Los desplazamientos poseen un comportamiento similar y se aprecian en la figura 7.16

Figura 7.16 Desplazamientos Máximos y Mínimos en el eje Z vs. Número de Elementos Modelo 3 (elementos H8)

No. Elementos	Desplazamiento máximo en Z u _{z max} [pulg]	Error Relativo _{Err}	ɛ _{rr [%]}	Desplazamiento mínimo en Z u _{z min} [pulg]	Error Relativo _{Err}	ɛ_{rr} [%]
860	0,144	0,0347222222	3,47	0,00626	0,53194888	53,19
1600	0,149	0,0134228188	1,34	0,00293	0,54607509	54,61
3200	0,151	0,0066225166	0,66	0,00133	0,34285714	34,29
4800	0,152	0,000000000	0,00	0,000874	0,00114416	0,11
7200	0,152	_	-	0,000873	-	-

Tabla 7.14 Errores para los Desplazamientos en Elementos H8 modelo 3

De acuerdo a los valores de errores obtenidos, se establece que la convergencia para el modelo 3 es mejor, por ser los valores de errores muy pequeños, siendo el mayor de 4,38% para el esfuerzo máximo y al ser el valor exacto para el desplazamiento máximo en Z entre 4800 y 7200 elementos.

7.1.3.2 Elementos H20

No. Nodos	No. Elementos	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
3560	860	51698	4047	0,144	0,00626
9120	1600	50807	4113	0,149	0,00293
17920	3200	48583	4113	0,151	0,00133
26720	4800	48737	4111	0,152	0,000874
40080	7200	48788	4132	0,152	0,00873

Los resultados para elementos parabólicos son los mostrados a continuación:

Tabla 7. 15 Valores Obtenidos para elementos H20 modelo 3

Tanto para elementos del tipo H8 como del tipo H20, los resultados obtenidos son los mismos. La razón está fundamentada en que este modelo a diferencia de los anteriores posee una distribución constante de la presión aún cuando exista una variación longitudinal, por lo cual las condiciones para algunos elementos son muy similares.

La cantidad de elementos que se maneja en este modelo es mucho mayor al estar en el orden de 860, 1600, 3200, 4800 y 7200 elementos. Por lo tanto son más elementos en la misma superficie, con lo cual se podría decir que ambas funciones se comportan de manera análoga.

7.1.3.3 Variación del Módulo de Young en el cemento

Modulo de Young	Esfuerzo Máximo σ _{max} [psi]	Esfuerzo Mínimo σ _{min} [psi]	Desplazamiento máximo en Z u _{zmax} [pulg]	Desplazamiento mínimo en Z u _{zmin} [pulg]
2,00E+05	49264	4232	0,155	0,000891
4,00E+05	48991	4167	0,153	0,000881
8,00E+05	48454	4106	0,151	0,000862
1,00E+06	48190	4109	0,149	0,000853
2,00E+06	46913	4424	0,143	0,000809

Una vez realizado el análisis los valores obtenidos se muestran en la tabla 7.16.

Tabla 7.16 Valores de Obtenidos para diferentes Módulos de Young modelo 3

Las gráficas que muestran el comportamiento de los esfuerzos y los desplazamientos se muestran en las figuras 7.17 y 7.18. La tendencia es a la disminución de los valores de esfuerzos y desplazamientos al ser el cemento más resistente a medida que aumenta el modulo elástico.

Figura 7.17 Valores de Esfuerzos para diferentes Módulos de Young

Figura 7.18 Desplazamientos para diferentes Módulos de Young

7.1.3.4 Resultados del Modelo 3

Para este modelo fue aplicada una distribución lineal en la longitud del cilindro del esfuerzo máximo horizontal en toda la superficie, siendo el mayor valor presente 6115,43psi para 6500 ft, variando entre 6480 y 6500 ft.

Los resultados obtenidos se muestran en las figuras 7.19 que muestra los valores de los esfuerzos y la figura 7.20 que muestra los desplazamientos en dirección del eje Z.

Figura 7.19 Criteria Von-Mises modelo 3

Figura 7.20 Criteria desplazamiento en Z modelo 3

De acuerdo al modelo de esfuerzos en el casing presentado por Rodríguez y otros (2003) [23] y teniendo éste propiedades como:

Diámetro Exterior = 5,5 pulg Diámetro Interior = 4,892 pulg $E = 30 \times 10^6$ psi v = 0,3

y con una presión aplicada de 5000 psi establecieron que los valores de los esfuerzos se encontraban entre 42570 y 34184 psi, los cuales variaban de acuerdo al valor del radio, encontrándose el esfuerzo mayor en el valor correspondiente al radio interior del casing.

Para el modelo 3, el valor del esfuerzo en el casing es de 48778 psi, con una carga variable linealmente desde 6115, 43 psi.

En el desarrollo de su modelo cemento - casing, en la tubería los esfuerzos están alrededor de 20000 y 50000 psi, estando sujeta su variación al cambio en el modulo de Young. En el revestimiento de cemento los esfuerzos obtenidos por ellos varían aproximadamente entre 4000 y 9000 psi, todo esto para una relación de Poisson de 0,1.

El modelo 3, con una relación de Poisson de 0,22 y un módulo de Young de $5,58 \times 10^5$ psi para el cemento, y el casing con las propiedades del acero API P110 se obtienen valores como muestra la fig 7.19 para el casing de 48778 psi y entre 4132 y 6923 psi para el cemento, encontrándose en el rango de esfuerzos presentado por Rodríguez y otros (2003).

De igual manera, cuando aumenta el modulo de elasticidad los esfuerzos tienen una tendencia a la disminución, pero manteniéndose en valores similares. Con la disminución de los esfuerzos disminuyen también los desplazamientos, por encontrarse en la zona de deformación elástica.

CONCLUSIONES

El estudio realizado se basó en el desarrollo de modelos de una sección de un pozo petrolero, específicamente, tomando en cuenta el casing y el cemento que lo reviste, estando estos sometidos a las presiones de la formación. Se realizaron variaciones en las cargas aplicadas y en los valores de módulo de elasticidad para obtener valores de esfuerzos y desplazamientos a través del Método de Elementos Finitos. De acuerdo a los resultados obtenidos se pueden establecer las siguientes conclusiones:

- De acuerdo a las condiciones de la formación y a las propiedades de los hidrocarburos se presentaran las presiones que incidirán en la estructura del pozo.
- Los esfuerzos horizontales utilizados en el análisis son elevados, al no considerarse la atenuación debida a las propiedades mecánicas de la formación por lo cual se establece que los valores de esfuerzos obtenidos serían menores.
- Para el modelo 1, los valores de esfuerzo son menores al no aplicarse una presión distribuida en toda la superficie, sino al determinarse los efectos de la distribución de los esfuerzos de acuerdo a la ruptura del agujero (borehole breakout).
- En el modelo 1, los esfuerzos más elevados se presentan en el casing en la zona cercana a la dirección de aplicación de las cargas. En el cemento los esfuerzos más considerables se encuentran en la sección de aplicación de SH y Sh. Los valores de esfuerzos no son significativos en el casing al compararlos con los valores de resistencia a la fluencia y a la ruptura del acero API P110.

- Tanto para el modelo 2 y el modelo 3 los máximos valores de esfuerzos los presenta el casing y se encuentran distribuidos en la superficie.
- Si los valores de las presiones distribuidas en la superficie del cemento aumenta, los valores de esfuerzos tanto en el casing como en el cemento aumentan también, por lo cual las propiedades del cemento tanto en modulo de Young o en cuanto a la relación de Poisson deben ser las adecuadas para evitar el colapso de la estructura.
- Los valores obtenidos para un módulo de Young de 5,58x10⁵ psi pueden ser menores si se utiliza un cemento en el cual esta propiedad aumente.
- Al aumentar los valores de modulo de Young en el cemento la tendencia es a la disminución de los esfuerzos en el casing ya que el cemento es capaz de compensar los valores de esfuerzos a través de la estructura.
- Los desplazamientos y por ende las deformaciones para todos los modelos se encuentran en la zona elástica.
- La convergencia para obtener los resultados se logró aun cuando el número de elementos no es tan elevado, lo cual indica que para la geometría desarrollada, el tipo de elementos y sus respectivas funciones de interpolación o de forma eran las adecuadas.

RECOMENDACIONES

Para la realización de trabajos posteriores y para crear una referencia completa en lo que al tema se refiere se recomienda:

- Construir modelos en los cuales estén presentes la formación, el cemento y el casing, para determinar exactamente el esfuerzo efectivo que se aplica en la superficie del cemento.
- Realizar variaciones en las cantidades de la relación de Poisson para verificar el comportamiento de los esfuerzos de acuerdo a estos cambios.
- Tomar en cuenta para estudios posteriores el efecto del esfuerzo principal vertical.
- Realizar estudios que involucren a la temperatura como generador de esfuerzos y como factor que produce cambios en las propiedades de los materiales.
- Construir mallas con diferentes tipos de elementos para verificar el comportamiento y la tendencia a obtener resultados más exactos.
- Desarrollar estos modelos empleando para su resolución otros métodos numéricos.
GLOSARIO DE TÉRMINOS

Acuíferos: Una zona subterránea de roca permeable saturada con agua bajo presión. Para aplicaciones de almacenamiento de gas, un acuífero necesitará estar formado por una capa permeable de roca en la parte inferior y una capa impermeable en la parte superior, con una cavidad para almacenamiento de gas.

Anticlinales: El anticlinal es un pliegue arqueado de rocas estratificadas cuyos estratos se inclinan en direcciones opuestas desde la cresta o eje del pliegue para formar una estructura de domo o bóveda.

Arenisca: Roca sedimentaria, de color amarillo y anaranjado. La arenisca es la roca sedimentaria más abundante después de la lutita y constituye cerca del 20% de las rocas sedimentarias. Roca sedimentaria con granulado grueso formado por masas consolidadas de arena.

Barrena de Perforación: Parte de una herramienta de perforación que corta la roca.

Calcárea: Suelo o roca con abundancia de cal.

Glauconiticas: Roca con glaucónita presente.

Sarta de Perforación (drill string): Tuberías de acero de aproximadamente 10 metros de largo que se unen para formar un tubo desde la barrena de perforación hasta la plataforma de perforación. El conjunto se gira para llevar a cabo la operación de perforación y también sirve de conducto para el lodo de perforación

Caliza: La caliza es una roca sedimentaria porosa formada por carbonatos, principalmente carbonato de calcio.

Fitoplancton: Flora acuática microscópica que flota libremente en el agua. Parte vegetal del plancton.

Lastrabarrena: Unión corta que se utiliza para unir la barrena a la sarta de perforación.

Lignito: variedad de carbón, de calidad intermedia entre el carbón de turba y el bituminoso.

Limolitas: Roca sedimentaria detrítica caracterizada por componentes varios (coloides, arcillas, limos).

Lutitas: Sedimentos limosos de grano muy fino.

Micáceo: Presencia de mica en rocas.

Pirítica: Roca con pirita en su composición.

Pizarra: Roca metamórfica y homogénea formada por la compactación de arcillas. Se presenta generalmente en un color opaco azulado oscuro y dividida en lajas u hojas planas.

Ripio: Tierra que sale al hacer la perforación de un pozo petrolero y que está contaminada con hidrocarburo.

Zooplancton: Organismos microscópicos animales que flotan en los ecosistemas acuáticos.

REFERENCIAS BIBLIOGRAFICAS

- 1. Association de Recherche Sur Les Techniquesa D'Exploitation du Petrole. (1993). *Cementing Technology and procedures*. FRANCIA: Editorial Paris.
- Barberi, Efraín (2001). *El Pozo Ilustrado*. Segunda Edición (CD-ROM). Venezuela: Ediciones PDVSA
- **3.** Beach, H. J. *Oil Well Cement Manual*. USA: Editorial Houston: Gulf Research and Development Company.
- **4.** Becker, Eric, Graham F. Carey & Tinsley Oden (1981). *Finite Elements. An Introduction.* Volumen I.USA: Prentice Hall.
- Bouzas R, José y Roberto Wallis (2004). Implementación de un algoritmo para resolver sistemas grandes de ecuaciones lineales mediante el método de elemento a elemento. Tesis UCV, Facultad de Ingenieria, Escuela Mecanica.
- 6. CEMEX de Venezuela. Cementos Petroleros según API 10. Disponible: http://www.cemexvenezuela.com/content/publica/cemento/index.asp?subm=5&ns=dge neral4.html&nsDer=gdralderecha4.html&submenu=submenu4.html. [Consulta 2005, agosto, 10]
- 7. Chacón R., Alejandro J. (2002). *Revoques de fluidos de perforación y su influencia en el proceso de la ^cementación de pozos*. INTEVEP.
- 8. Chandrupatla, Tirupathi R. & Ashok D. Belegundu (1997). *Introduction to Finite Elements in Engineering*. Second edition. USA: Prentice Hall.

- **9.** Charrier, Adams. (1985). *Drilling Engineering: A Complete Well Planning Approach*. USA: Editorial Penn Well Books.
- 10. Erick B., Nelson (1990). Well Cementing. Amsterdam. Editorial Amsterdam: Elsevier.
- 11. Frías V, Eduardo (2004). Aportaciones al estudio de las máquinas eléctricas de flujo axial mediante la aplicación del método de elementos finitos. Tesis de Doctorado, Departamento de Ingeniería Eléctrica, UPC.
- 12. Heathman, J. (Halliburton) & F.E. Beck (Gastar Exploration) (2006). Finite Element Analysis Couples and Cement designs for HT/HP wells in East Texas. Publicado por Internacional Association of Drilling Contractors (IADC) y Society of Petroleum Engineers (SPE) (No. 98869). Miami, USA.
- Lara, Rafael (2003). Calculo de Estructuras Mediante el empleo de modelos de Elementos Finitos. Disponible: www.ceisp.com/simposium/pdf/Simposium%20CEI %20Cuenca/2a%20sesion/15Empleode.pdf. [Consulta 2005, octubre, 15]
- 14. Lund, Björn (2000). Crustal Stress Studies Using Microearthquakes and Boreholes. UPPSALA UNIVERSITY, Suecia. Extraído el 10 de septiembre de 2005 de: http://www.geofys.uu.se/bl/Avh/
- **15.** *Método de Elementos Finitos. FUNDAMENTOS* (2001). Disponible: http://www.dim.edec.cl/cursos/elefin/elefinitos.htm [Consulta 2005, agosto, 20]
- 16. Montiel, Dayaray (2002). Estudio de la susceptibilidad a la corrosión bajo la tensión en un acero API P110 utilizando la técnica de presentación de Hidrógeno. Tesis UCV. Facultad de Ingenieria, Escuela de Metalurgia.

- 17. Mroginski, Javier L., Beneyto, Pablo A., Di Rado, H. Ariel Manzolillo, Juan E., Awruch, Armando M. (2004). *Análisis Tridimensional de Sólidos por el MEF*. Universidad Nacional del Nordeste de Argentina. Disponible: http://www.unne.edu.ar/Web/cyt/com2004/7-Tecnologia/T-006.pdf. [Consulta. 2006, enero, 15]
- **18.** OffshoreMineralsManagement.Glossary.Disponible:hhttp://www.mms.gov/glossary/c.htm.[Consulta 2005, agosto, 15]
- OTS Heavy Oil Science Centre. Completions and Workovers. Disponible: http://www.lloydminsterheavyoil.com/completi.htm#Tubing. [Consulta 2005, agosto, 15]
- 20. Popov, Egor (2000). Mecánica de Sólidos. Segunda edición. México: Ediciones Prentice-Hall
- 21. Reddy, B.R (SPE), A. Santra (SPE), D. McMechan (SPE), D. Gray (SPE), C. Brenneis & R. Dunn (Halliburton) (2005). *Cement Mechanical Property Measurements Under Wellbore Conditions*. Publicado por Society of Petroleum Engineers (No.95921). Dallas, USA.
- **22.** Reddy, J.N (1993). *An Introduction to the Finite Element Method*. Second edition. USA: McGraw Hill.
- 23. Rodríguez, W. J (SPE, PDVSA Intevep), W.W Fleckenstein (SPE, Colorado School of Mines) & W. Eustes (SPE, Colorado School of Mines) (2003). *Simulation of Collapse Load son Cemented Casing Using Finite Element Analysis*. Publicado por Society of Petroleum Engineering (No. 84566)

- 24. SCHLUMBERGER. *I-handbook*. Disponible: http://www.slb.com/. [Consulta 2005, Septiembre, 20]
- 25. Seminario de Cementación de Pozos (1992). *III Seminario de Cementación de Pozos*. INTEVEP.
- 26. Singer, Ferdinand L (1971). *Resistencia de Materiales*. México: Editorial Harper & Row Latinoamérica.
- 27. Smith, Dwight (1990). Cementing. USA. Editorial New York: SPE.
- 28. Stiles, D (ExxonMobil Development Co) (2006). Effects of Long-Term Exposure to Ultrahight Temperature on the Mechanicals Parameters of Cement. Internacional Association of Drilling Contractors (IADC) y Society of Petroleum Engineers (SPE) (No.98896). Miami, USA.
- **29.** TERRATEK. Disponible: www.terratek.com/drilling-completions/drillhome.html. [Consulta 2006, marzo, 3]
- **30.** U.S. Departament of Energy. *Energy Lessons*. Disponible: http://www.fossil.energy.gov/education/energylessons/oil/. [Consulta 2005, agosto, 10]
- **31.** Weaver, William Jr & Paul R. Johnston (1984). *Finite Elements for Structural Analysis*. USA: Prentice Hall.
- **32.** Zienkiewicz, O.C (1980). *El Método de los Elementos Finitos*. España: Editorial Reverté.

Gráfica Esfuerzo Axial vs. Deformación Axial

Para diferentes tipos de lechadas de ensayo de compresión sin confinar

APENDICES

Gráfica Esfuerzo Axial vs. Deformación Axial Para diferentes tipos de lechadas de ensayos triaxiales y compresión sin confinar

Deformación Axial, 🗞

TIPOS DE CEMENTOS

	D2-A		D2-B		D2-C		D3-A		
UCS	1142 p	osi	1082	psi	1214	psi	1258	psi	
Е	3,53E+05 p	osi	3,12E+05	psi	4,50E+05	psi	4,84E+05	psi	
ν	0,34		0,27		0,19		0,17		

	D3-B	D3-C	D4-A	D4-B
UCS	1311 psi	1351 psi	1813 psi	1769 psi
Ε	4,82E+05 psi	5,57E+05 psi	6,67E+05 psi	5,78E+05 psi
ν	0,21	0,24	0,21	0,20

	D4-C		A1		A2		A3	
UCS	1633	psi	7831	psi	8462	psi	10072	psi
Ε	5,58E+05	psi	1,59E+06	psi	1,44E+06	psi	1,62E+06	psi
ν	0,22		0,23		0,20		0,24	
			500	psi	1000	psi	1500	psi

DATOSREALES DE UN POZO

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
5.000.000	16.731	10.000	18.628	9.171	17.680	4596800000	4843280000	4350060000	2384460000	260000000
5.005.000	16.733	10.001	18.631	9.172	17.682	4601917320	4848904060	4354930580	2387104720	2602860260
5.010.000	16.735	10.002	18.633	9.174	17.684	4607035680	4854269160	4359802200	2390010480	2605721040
5.015.000	16.736	10.003	18.636	9.175	17.686	4612155080	4859896080	4364414080	2392656500	2608582340
5.020.000	16.738	10.004	18.638	9.177	17.688	4617275520	4865263520	4369287520	2395564080	2611444160
5.025.000	16.740	10.005	18.640	9.178	17.690	4622397000	4870632000	4374162000	2398211400	2614306500
5.030.000	16.742	10.005	18.643	9.179	17.692	4627519520	4876263080	4379037520	2400859240	2616907800
5.035.000	16.743	10.006	18.645	9.181	17.694	4632643080	4881633900	4383652260	2403769420	2619770920
5.040.000	16.745	10.007	18.647	9.182	17.696	4637767680	4887005760	4388529600	2406418560	2622634560
5.045.000	16.747	10.008	18.648	9.184	17.697	4642630980	4892116320	4393407980	2409330560	2625498720
5.050.000	16.749	10.009	18.644	9.185	17.697	4647232200	4895914400	4398287400	2411981000	2628363400
5.055.000	16.750	10.010	18.647	9.187	17.698	4652096280	4901550420	4402905000	2414894820	2631228600
5.060.000	16.752	10.011	18.647	9.188	17.699	4656960880	4906398640	4407786240	2417546560	2634094320
5.065.000	16.754	10.012	18.644	9.189	17.699	4661562620	4910456720	4412668520	2420198820	2636960560
5.070.000	16.756	10.013	18.645	9.191	17.700	4666428000	4915567800	4417551840	2423115240	2639827320
5.075.000	16.757	10.014	18.647	9.192	17.702	4671557800	4920943300	4422172300	2425768800	2642694600
5.080.000	16.759	10.015	18.649	9.194	17.704	4676688640	4926319840	4427057440	2428687040	2645562400
5.085.000	16.761	10.015	18.651	9.195	17.706	4681820520	4931697420	4431943620	2431341900	2648166300
5.090.000	16.763	10.016	18.654	9.197	17.708	4686953440	4937340720	4436830840	2434261960	2651034880
5.095.000	16.764	10.017	18.656	9.198	17.710	4692087400	4942720640	4441454160	2436918120	2653903980
5.100.000	16.766	10.018	18.658	9.200	17.712	4697222400	4948101600	4446343200	2439840000	2656773600
5.105.000	16.768	10.019	18.660	9.201	17.714	4702358440	4953483600	4451233280	2442497460	2659643740
5.110.000	16.770	10.020	18.663	9.202	17.716	4707495520	4959132360	4456124400	2445155440	2662514400
5.115.000	16.771	10.021	18.665	9.204	17.718	4712633640	4964516700	4460750580	2448079920	2665385580
5.120.000	16.773	10.022	18.667	9.205	17.720	4717772800	4969902080	4465643520	2450739200	2668257280
5.125.000	16.775	10.023	18.669	9.207	17.722	4722913000	4975288500	4470537500	2453665500	2671129500
5.130.000	16.777	10.024	18.671	9.208	17.724	4728054240	4980675960	4475432520	2456326080	2674002240
5.135.000	16.778	10.025	18.673	9.210	17.726	4733196520	4986064460	4480061560	2459254200	2676875500
5.140.000	16.780	10.025	18.675	9.211	17.727	4738072560	4991454000	4484958400	2461916080	2679482000

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
5.145.000	16.782	10.026	18.676	9.212	17.729	4743216660	4996577040	4489856280	2464578480	2682356040
5.150.000	16.784	10.027	18.678	9.214	17.731	4748361800	5001968400	4494755200	2467509200	2685230600
5.155.000	16.785	10.028	18.680	9.215	17.732	4753239920	5007360800	4499387100	2470172900	2688105680
5.160.000	16.787	10.029	18.682	9.217	17.734	4758386880	5012754240	4504287840	2473105440	2690981280
5.165.000	16.789	10.030	18.683	9.218	17.736	4763534880	5017880140	4509189620	2475770440	2693857400
5.170.000	16.791	10.031	18.685	9.220	17.738	4768683920	5023275400	4514092440	2478704800	2696734040
5.175.000	16.792	10.032	18.686	9.221	17.739	4773564900	5028402600	4518727200	2481371100	2699611200
5.180.000	16.794	10.033	18.688	9.223	17.741	4778715760	5033799680	4523631840	2484307280	2702488880
5.185.000	16.796	10.034	18.690	9.224	17.743	4783867660	5039197800	4528537520	2486974880	2705367080
5.190.000	16.798	10.034	18.692	9.225	17.745	4789020600	5044596960	4533444240	2489643000	2707975920
5.195.000	16.799	10.035	18.694	9.227	17.747	4794174580	5049997160	4538081860	2492581780	2710854900
5.200.000	16.801	10.036	18.697	9.228	17.749	4799329600	5055668800	4542990400	2495251200	2713734400
5.205.000	16.803	10.037	18.699	9.230	17.751	4804485660	5061071340	4547899980	2498191800	2716614420
5.210.000	16.805	10.038	18.701	9.231	17.753	4809642760	5066474920	4552810600	2500862520	2719494960
5.215.000	16.806	10.039	18.703	9.233	17.755	4814800900	5071879540	4557451080	2503804940	2722376020
5.220.000	16.808	10.040	18.705	9.234	17.757	4819960080	5077285200	4562363520	2506476960	2725257600
5.225.000	16.810	10.041	18.707	9.235	17.758	4824848600	5082691900	4567277000	2509149500	2728139700
5.230.000	16.811	10.042	18.708	9.237	17.760	4830009600	5087827680	4571919560	2512094520	2731022320
5.235.000	16.813	10.043	18.709	9.238	17.761	4834899420	5092963980	4576834860	2514768360	2733905460
5.240.000	16.815	10.044	18.711	9.240	17.763	4840062240	5098373280	4581751200	2517715200	2736789120
5.245.000	16.817	10.044	18.712	9.241	17.765	4845226100	5103510880	4586668580	2520390340	2739400560
5.250.000	16.818	10.045	18.714	9.243	17.766	4850118000	5108922000	4591314000	2523339000	2742285000
5.255.000	16.820	10.046	18.716	9.244	17.768	4855283680	5114334160	4596233200	2526015440	2745169960
5.260.000	16.822	10.047	18.717	9.246	17.770	4860450400	5119473840	4601153440	2528965920	2748055440
5.265.000	16.824	10.048	18.719	9.247	17.771	4865344380	5124887820	4606074720	2531643660	2750941440
5.270.000	16.825	10.049	18.721	9.248	17.773	4870512920	5130302840	4610723000	2534321920	2753827960
5.275.000	16.827	10.050	18.723	9.250	17.775	4875682500	5135718900	4615646100	2537275000	2756715000
5.280.000	16.829	10.051	18.724	9.251	17.776	4880578560	5140861440	4620570240	2539954560	2759602560
5.285.000	16.831	10.052	18.725	9.252	17.778	4885749960	5146004500	4625495420	2542634640	2762490640
5.290.000	16.833	10.053	18.726	9.251	17.779	4890647320	5151148080	4630421640	2544765080	2765379240
5.295.000	16.834	10.054	18.726	9.250	17.780	4895545200	5156016840	4635073560	2546895000	2768268360

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
5.300.000	16.836	10.054	18.726	9.250	17.781	4900443600	5160885600	4640001600	2549300000	2770882400
5.305.000	16.838	10.055	18.727	9.249	17.783	4905618380	5166030220	4644930680	2551429140	2773772300
5.310.000	16.840	10.056	18.729	9.248	17.784	4910518080	5171451480	4649860800	2553557760	2776662720
5.315.000	16.842	10.057	18.730	9.247	17.786	4915694680	5176597400	4654791960	2555685860	2779553660
5.320.000	16.844	10.058	18.732	9.246	17.788	4920872320	5182020480	4659724160	2557813440	2782445120
5.325.000	16.846	10.059	18.733	9.245	17.789	4925774100	5187167700	4664657400	2559940500	2785337100
5.330.000	16.848	10.060	18.735	9.245	17.791	4930953560	5192592600	4669591680	2562344200	2788229600
5.335.000	16.849	10.061	18.736	9.244	17.793	4936134060	5197741120	4674249580	2564470480	2791122620
5.340.000	16.851	10.062	18.738	9.243	17.795	4941315600	5203167840	4679185680	2566596240	2794016160
5.345.000	16.853	10.063	18.740	9.242	17.796	4946220240	5208595600	4684122820	2568721480	2796910220
5.350.000	16.855	10.064	18.741	9.241	17.798	4951403600	5213746200	4689061000	2570846200	2799804800
5.355.000	16.857	10.064	18.743	9.240	17.800	4956588000	5219175780	4694000220	2572970400	2802421440
5.360.000	16.859	10.065	18.745	9.239	17.802	4961773440	5224606400	4698940480	2575094080	2805316800
5.365.000	16.861	10.066	18.746	9.239	17.803	4966680940	5229759080	4703881780	2577496220	2808212680
5.370.000	16.862	10.067	18.748	9.238	17.805	4971868200	5235191520	4708544880	2579619120	2811109080
5.375.000	16.864	10.068	18.751	9.237	17.807	4977056500	5240904500	4713488000	2581741500	2814006000
5.380.000	16.866	10.069	18.753	9.236	17.809	4982245840	5246339280	4718432160	2583863360	2816903440
5.385.000	16.868	10.070	18.755	9.235	17.811	4987436220	5251775100	4723377360	2585984700	2819801400
5.390.000	16.870	10.071	18.756	9.234	17.813	4992627640	5256931680	4728323600	2588105520	2822699880
5.395.000	16.872	10.072	18.758	9.234	17.815	4997820100	5262369320	4733270880	2590506360	2825598880
5.400.000	16.874	10.073	18.760	9.233	17.817	5003013600	5267808000	4738219200	2592626400	2828498400
5.405.000	16.875	10.074	18.762	9.232	17.819	5008208140	5273247720	4742887500	2594745920	2831398440
5.410.000	16.877	10.074	18.763	9.231	17.820	5013122400	5278407160	4747837640	2596864920	2834017680
5.415.000	16.879	10.075	18.765	9.230	17.822	5018318760	5283848700	4752788820	2598983400	2836918500
5.420.000	16.881	10.076	18.767	9.229	17.824	5023516160	5289291280	4757741040	2601101360	2839819840
5.425.000	16.883	10.077	18.768	9.228	17.826	5028714600	5294452800	4762694300	2603218800	2842721700
5.430.000	16.885	10.078	18.770	9.228	17.827	5033631720	5299897200	4767648600	2605618080	2845624080
5.435.000	16.887	10.079	18.772	9.227	17.829	5038831980	5305342640	4772603940	2607734740	2848526980
5.440.000	16.889	10.080	18.773	9.226	17.831	5044033280	5310506240	4777560320	2609850880	2851430400
5.445.000	16.890	10.081	18.775	9.225	17.833	5049235620	5315953500	4782234600	2611966500	2854334340
5.450.000	16.892	10.082	18.777	9.224	17.835	5054439000	5321401800	4787192800	2614081600	2857238800

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
5.455.000	16.894	10.083	18.779	9.223	17.836	5059359760	5326851140	4792152040	2616196180	2860143780
5.460.000	16.896	10.084	18.780	9.223	17.838	5064564960	5332017600	4797112320	2618594160	2863049280
5.465.000	16.898	10.084	18.782	9.222	17.840	5069771200	5337468760	4802073640	2620707960	2865671120
5.470.000	16.900	10.085	18.784	9.221	17.842	5074978480	5342920960	4807036000	2622821240	2868577400
5.475.000	16.902	10.086	18.785	9.220	17.843	5079902100	5348089500	4811999400	2624934000	2871484200
5.480.000	16.903	10.087	18.787	9.219	17.845	5085111200	5353543520	4816678880	2627046240	2874391520
5.485.000	16.905	10.088	18.788	9.218	17.847	5090321340	5358713360	4821644100	2629157960	2877299360
5.490.000	16.907	10.089	18.790	9.217	17.849	5095532520	5364169200	4826610360	2631269160	2880207720
5.495.000	16.909	10.090	18.791	9.217	17.850	5100459000	5369340340	4831577660	2633665580	2883116600
5.500.000	16.911	10.091	18.793	9.216	17.852	5105672000	5374798000	4836546000	2635776000	2886026000
5.505.000	16.913	10.092	18.794	9.215	17.853	5110599780	5379970440	4841515380	2637885900	2888935920
5.510.000	16.915	10.093	18.796	9.214	17.855	5115814600	5385429920	4846485800	2639995280	2891846360
5.515.000	16.916	10.093	18.797	9.213	17.857	5121030460	5390603660	4851170480	2642104140	2894470540
5.520.000	16.918	10.094	18.799	9.212	17.859	5126247360	5396064960	4856142720	2644212480	2897381760
5.525.000	16.920	10.095	18.801	9.212	17.861	5131465300	5401527300	4861116000	2646607600	2900293500
5.530.000	16.922	10.096	18.803	9.211	17.862	5136396720	5406990680	4866090320	2648715160	2903205760
5.535.000	16.924	10.097	18.805	9.210	17.864	5141616480	5412455100	4871065680	2650822200	2906118540
5.540.000	16.926	10.098	18.806	9.209	17.866	5146837280	5417632480	4876042080	2652928720	2909031840
5.545.000	16.928	10.099	18.808	9.208	17.868	5152059120	5423098720	4881019520	2655034720	2911945660
5.550.000	16.929	10.100	18.809	9.207	17.869	5156993400	5428277400	4885709400	2657140200	2914860000
5.555.000	16.931	10.101	18.811	9.206	17.871	5162217060	5433745460	4890688660	2659245160	2917774860
5.560.000	16.933	10.102	18.812	9.206	17.873	5167441760	5438925440	4895668960	2661638720	2920690240
5.565.000	16.935	10.103	18.814	9.205	17.874	5172378120	5444395320	4900650300	2663742900	2923606140
5.570.000	16.937	10.103	18.815	9.204	17.876	5177604640	5449576600	4905632680	2665846560	2926232920
5.575.000	16.939	10.104	18.816	9.203	17.878	5182832200	5454758400	4910616100	2667949700	2929149600
5.580.000	16.941	10.105	18.818	9.202	17.879	5187770640	5460230880	4915600560	2670052320	2932066800
5.585.000	16.943	10.106	18.819	9.201	17.881	5193000020	5465413980	4920586060	2672154420	2934984520
5.590.000	16.944	10.107	18.821	9.201	17.883	5198230440	5470888280	4925281920	2674546680	2937902760
5.595.000	16.946	10.108	18.823	9.200	17.885	5203461900	5476363620	4930269240	2676648000	2940821520
5.600.000	16.948	10.109	18.825	9.199	17.886	5208403200	5481840000	4935257600	2678748800	2943740800
5.605.000	16.950	10.110	18.826	9.198	17.888	5213636480	5487025960	4940247000	2680849080	2946660600

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
5.610.000	16.952	10.111	18.828	9.197	17.890	5218870800	5492504160	4945237440	2682948840	2949580920
5.615.000	16.954	10.112	18.830	9.196	17.892	5224106160	5497983400	4950228920	2685048080	2952501760
5.620.000	16.956	10.113	18.831	9.195	17.893	5229050320	5503171440	4955221440	2687146800	2955423120
5.625.000	16.957	10.113	18.833	9.195	17.895	5234287500	5508652500	4959922500	2689537500	2958052500
5.630.000	16.959	10.114	18.835	9.194	17.897	5239525720	5514134600	4964916840	2691635440	2960974640
5.635.000	16.961	10.115	18.837	9.193	17.899	5244764980	5519617740	4969912220	2693732860	2963897300
5.640.000	16.963	10.116	18.838	9.192	17.901	5250005280	5524808640	4974908640	2695829760	2966820480
5.645.000	16.965	10.117	18.840	9.191	17.902	5254953080	5530293600	4979906100	2697926140	2969744180
5.650.000	16.967	10.118	18.841	9.190	17.904	5260195200	5535485800	4984904600	2700022000	2972668400
5.655.000	16.969	10.119	18.843	9.190	17.906	5265438360	5540972580	4989904140	2702411400	2975593140
5.660.000	16.970	10.120	18.845	9.189	17.908	5270682560	5546460400	4994610400	2704506480	2978518400
5.665.000	16.972	10.121	18.846	9.188	17.909	5275633220	5551654680	4999611760	2706601040	2981444180
5.670.000	16.974	10.122	18.847	9.187	17.911	5280879240	5556849480	5004614160	2708695080	2984370480
5.675.000	16.976	10.123	18.849	9.186	17.912	5285831200	5562339900	5009617600	2710788600	2987297300
5.680.000	16.978	10.123	18.851	9.185	17.914	5291079040	5567831360	5014622080	2712881600	2989929280
5.685.000	16.980	10.124	18.852	9.184	17.916	5296327920	5573028240	5019627600	2714974080	2992856880
5.690.000	16.982	10.125	18.854	9.184	17.918	5301577840	5578521520	5024634160	2717361920	2995785000
5.695.000	16.983	10.126	18.856	9.183	17.920	5306828800	5584015840	5029345620	2719453620	2998713640
5.700.000	16.985	10.127	18.857	9.182	17.921	5311784400	5589214800	5034354000	2721544800	3001642800
5.705.000	16.987	10.128	18.859	9.180	17.923	5317037180	5594710940	5039363420	2723338800	3004572480
5.710.000	16.989	10.129	18.860	9.178	17.925	5322291000	5599911200	5044373880	2725131760	3007502680
5.715.000	16.991	10.130	18.862	9.176	17.926	5327248680	5605409160	5049385380	2726923680	3010433400
5.720.000	16.993	10.131	18.864	9.174	17.928	5332504320	5610908160	5054397920	2728714560	3013364640
5.725.000	16.995	10.132	18.866	9.172	17.930	5337761000	5616408200	5059411500	2730504400	3016296400
5.730.000	16.997	10.133	18.868	9.170	17.932	5343018720	5621909280	5064426120	2732293200	3019228680
5.735.000	16.998	10.133	18.870	9.168	17.934	5348277480	5627411400	5069143560	2734080960	3021863260
5.740.000	17.000	10.134	18.872	9.166	17.936	5353537280	5632914560	5074160000	2735867680	3024796320
5.745.000	17.002	10.135	18.874	9.164	17.938	5358798120	5638418760	5079177480	2737653360	3027729900
5.750.000	17.004	10.136	18.876	9.162	17.940	5364060000	5643924000	5084196000	2739438000	3030664000
5.755.000	17.006	10.137	18.878	9.160	17.942	5369322920	5649430280	5089215560	2741221600	3033598620
5.760.000	17.008	10.138	18.880	9.158	17.944	5374586880	5654937600	5094236160	2743004160	3036533760

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi
5.765.000	17.010	10.139	18.881	9.156	17.945	5379552100	5660146180	5099257800	2744785680	3039469420
5.770.000	17.011	10.140	18.883	9.154	17.947	5384817880	5665655320	5103980440	2746566160	3042405600
5.775.000	17.013	10.141	18.884	9.152	17.949	5390084700	5670865200	5109003900	2748345600	3045342300
5.780.000	17.015	10.142	18.886	9.150	17.951	5395352560	5676376160	5114028400	2750124000	3048279520
5.785.000	17.017	10.143	18.887	9.148	17.952	5400320640	5681587340	5119053940	2751901360	3051217260
5.790.000	17.019	10.143	18.889	9.146	17.954	5405590320	5687100120	5124080520	2753677680	3053854440
5.795.000	17.021	10.144	18.891	9.144	17.955	5410559700	5692613940	5129108140	2755452960	3056792960
5.800.000	17.023	10.145	18.887	9.142	17.955	5415228000	5696319200	5134136800	2757227200	3059732000
5.805.000	17.024	10.146	18.888	9.140	17.956	5420198160	5701531680	5138864640	2759000400	3062671560
5.810.000	17.026	10.147	18.889	9.138	17.958	5425470960	5706744680	5143895120	2760772560	3065611640
5.815.000	17.028	10.148	18.890	9.136	17.959	5430442420	5711958200	5148926640	2762543680	3068552240
5.820.000	17.030	10.149	18.892	9.134	17.961	5435717040	5717474880	5153959200	2764313760	3071493360
5.825.000	17.032	10.150	18.893	9.132	17.962	5440689800	5722689700	5158992800	2766082800	3074435000
5.830.000	17.034	10.151	18.894	9.130	17.964	5445966240	5727905040	5164027440	2767850800	3077377160
5.835.000	17.036	10.152	18.896	9.128	17.966	5451243720	5733424320	5169063120	2769617760	3080319840
5.840.000	17.037	10.152	18.898	9.126	17.967	5456218560	5738944640	5173796160	2771383680	3082959360
5.845.000	17.038	10.153	18.900	9.124	17.969	5461497860	5744466000	5178529720	2773148560	3085902820
5.850.000	17.039	10.154	18.902	9.122	17.970	5466474000	5749988400	5183263800	2774912400	3088846800
5.855.000	17.040	10.155	18.903	9.120	17.972	5471755120	5755207380	5187998400	2776675200	3091791300
5.860.000	17.041	10.156	18.905	9.118	17.973	5476732560	5760731600	5192733520	2778436960	3094736320
5.865.000	17.042	10.157	18.906	9.116	17.974	5481710520	5765951880	5197469160	2780197680	3097681860
5.870.000	17.044	10.158	18.908	9.114	17.976	5486994240	5771477920	5202510560	2781957360	3100627920
5.875.000	17.045	10.159	18.910	9.112	17.977	5491973500	5777005000	5207247500	2783716000	3103574500
5.880.000	17.046	10.160	18.911	9.110	17.978	5496953280	5782227360	5211984960	2785473600	3106521600
5.885.000	17.047	10.161	18.913	9.108	17.980	5502239600	5787756260	5216722940	2787230160	3109469220
5.890.000	17.048	10.162	18.914	9.107	17.981	5507220680	5792979920	5221461440	2789291960	3112417360
5.895.000	17.049	10.162	18.916	9.105	17.982	5512202280	5798510640	5226200460	2791046700	3115059480
5.900.000	17.050	10.163	18.917	9.103	17.984	5517491200	5803735600	5230940000	2792800400	3118008400
5.905.000	17.051	10.164	18.919	9.101	17.985	5522474100	5809268140	5235680060	2794553060	3120957840
5.910.000	17.052	10.165	18.920	9.099	17.986	5527457520	5814494400	5240420640	2796304680	3123907800
5.915.000	17.053	10.166	18.922	9.097	17.987	5532441460	5820028760	5245161740	2798055260	3126858280

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
5.920.000	17.054	10.167	18.923	9.095	17.989	5537733760	5825256320	5249903360	2799804800	3129809280
5.925.000	17.055	10.168	18.925	9.093	17.990	5542719000	5830792500	5254645500	2801553300	3132760800
5.930.000	17.056	10.169	18.926	9.091	17.991	5547704760	5836021360	5259388160	2803300760	3135712840
5.935.000	17.057	10.170	18.928	9.089	17.993	5552999660	5841559360	5264131340	2805047180	3138665400
5.940.000	17.059	10.171	18.930	9.087	17.994	5557986720	5847098400	5269183920	2806792560	3141618480
5.945.000	17.060	10.172	18.931	9.085	17.995	5562974300	5852329340	5273928400	2808536900	3144572080
5.950.000	17.061	10.172	18.933	9.083	17.997	5568271800	5857870200	5278673400	2810280200	3147216800
5.955.000	17.062	10.173	18.935	9.081	17.998	5573260680	5863412100	5283418920	2812022460	3150171180
5.960.000	17.063	10.174	18.936	9.079	18.000	5578560000	5868645120	5288164960	2813763680	3153126080
5.965.000	17.064	10.175	18.938	9.077	18.001	5583550180	5874188840	5292911520	2815503860	3156081500
5.970.000	17.065	10.176	18.940	9.075	18.002	5588540880	5879733600	5297658600	2817243000	3159037440
5.975.000	17.066	10.177	18.942	9.073	18.004	5593842800	5885279400	5302406200	2818981100	3161993900
5.980.000	17.067	10.178	18.943	9.071	18.005	5598834800	5890515280	5307154320	2820718160	3164950880
5.985.000	17.068	10.179	18.945	9.069	18.007	5604138540	5896062900	5311902960	2822454180	3167908380
5.990.000	17.069	10.180	18.946	9.067	18.008	5609131840	5901300080	5316652120	2824189160	3170866400
5.995.000	17.070	10.181	18.947	9.065	18.009	5614125660	5906537780	5321401800	2825923100	3173824940
6.000.000	17.071	10.182	18.948	9.063	18.010	5619120000	5911776000	5326152000	2827656000	3176784000
6.005.000	17.072	10.182	18.949	9.061	18.011	5624114860	5917014740	5330902720	2829387860	3179431320
6.010.000	17.073	10.183	18.951	9.059	18.012	5629110240	5922566520	5335653960	2831118680	3182391160
6.015.000	17.075	10.184	18.953	9.057	18.013	5634106140	5928119340	5340718500	2832848460	3185351520
6.020.000	17.076	10.185	18.952	9.055	18.014	5639102560	5932734080	5345471040	2834577200	3188312400
6.025.000	17.077	10.186	18.953	9.053	18.015	5644099500	5937974900	5350224100	2836304900	3191273800
6.030.000	17.078	10.187	18.955	9.051	18.016	5649096960	5943529800	5354977680	2838031560	3194235720
6.035.000	17.079	10.188	18.956	9.049	18.017	5654094940	5948771920	5359731780	2839757180	3197198160
6.040.000	17.080	10.189	18.958	9.047	18.019	5659407520	5954328640	5364486400	2841481760	3200161120
6.045.000	17.081	10.190	18.959	9.045	18.020	5664406800	5959572060	5369241540	2843205300	3203124600
6.050.000	17.082	10.191	18.960	9.043	18.021	5669406600	5964816000	5373997200	2844927800	3206088600
6.055.000	17.083	10.192	18.961	9.041	18.022	5674406920	5970060460	5378753380	2846649260	3209053120
6.060.000	17.084	10.192	18.962	9.039	18.023	5679407760	5975305440	5383510080	2848369680	3211703040
6.065.000	17.085	10.193	18.964	9.037	18.025	5684724500	5980866320	5388267300	2850089060	3214668340
6.070.000	17.086	10.194	18.965	9.035	18.026	5689726640	5986112600	5393025040	2851807400	3217634160

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
6.075.000	17.087	10.195	18.967	9.033	18.027	5694729300	5991675300	5397783300	2853524700	3220600500
6.080.000	17.088	10.196	18.968	9.031	18.028	5699732480	5996922880	5402542080	2855240960	3223567360
6.085.000	17.090	10.197	18.970	9.029	18.030	5705052600	6002487400	5407617800	2856956180	3226534740
6.090.000	17.091	10.198	18.971	9.027	18.031	5710057080	6007736280	5412377880	2858670360	3229502640
6.095.000	17.092	10.199	18.973	9.025	18.032	5715062080	6013302620	5417138480	2860383500	3232471060
6.100.000	17.093	10.200	18.974	9.023	18.033	5720067600	6018552800	5421899600	2862095600	3235440000
6.105.000	17.094	10.201	18.976	9.021	18.035	5725391100	6024120960	5426661240	2863806660	3238409460
6.110.000	17.095	10.202	18.977	9.019	18.036	5730397920	6029372440	5431423400	2865516680	3241379440
6.115.000	17.096	10.202	18.978	9.017	18.037	5735405260	6034624440	5436186080	2867225660	3244031960
6.120.000	17.097	10.203	18.980	9.015	18.038	5740413120	6040195200	5440949280	2868933600	3247002720
6.125.000	17.098	10.204	18.981	9.014	18.040	5745740000	6045448500	5445713000	2870959000	3249974000
6.130.000	17.099	10.205	18.982	9.012	18.041	5750749160	6050702320	5450477240	2872665120	3252945800
6.135.000	17.100	10.206	18.984	9.010	18.042	5755758840	6056275680	5455242000	2874370200	3255918120
6.140.000	17.101	10.207	18.985	9.008	18.043	5760769040	6061530800	5460007280	2876074240	3258890960
6.145.000	17.102	10.208	18.986	9.006	18.044	5765779760	6066786440	5464773080	2877777240	3261864320
6.150.000	17.103	10.209	18.987	9.004	18.045	5770791000	6072042600	5469539400	2879479200	3264838200
6.155.000	17.105	10.210	18.989	9.002	18.047	5776122820	6077619340	5474626300	2881180120	3267812600
6.160.000	17.106	10.211	18.990	9.000	18.048	5781135360	6082876800	5479393920	2882880000	3270787520
6.165.000	17.107	10.211	18.989	8.998	18.048	5785827840	6087493620	5484162060	2884578840	3273442380
6.170.000	17.108	10.212	18.989	8.996	18.048	5790520320	6092430760	5488930720	2886276640	3276418080
6.175.000	17.109	10.213	18.990	8.994	18.050	5795855000	6097689000	5493699900	2887973400	3279394300
6.180.000	17.110	10.214	18.990	8.992	18.050	5800548000	6102626400	5498469600	2889669120	3282371040
6.185.000	17.111	10.215	18.990	8.990	18.051	5805562620	6107563800	5503239820	2891363800	3285348300
6.190.000	17.112	10.216	18.992	8.988	18.052	5810577760	6113144960	5508010560	2893057440	3288326080
6.195.000	17.113	10.217	18.993	8.986	18.053	5815593420	6118405020	5512781820	2894750040	3291304380
6.200.000	17.114	10.218	18.994	8.984	18.054	5820609600	6123665600	5517553600	2896441600	3294283200
6.205.000	17.115	10.219	18.996	8.982	18.055	5825626300	6129249360	5522325900	2898132120	3297262540
6.210.000	17.116	10.220	18.997	8.980	18.057	5830966440	6134511240	5527098720	2899821600	3300242400
6.215.000	17.117	10.221	18.998	8.978	18.058	5835984440	6139773640	5531872060	2901510040	3303222780
6.220.000	17.118	10.221	19.000	8.976	18.059	5841002960	6145360000	5536645920	2903197440	3305880240
6.225.000	17.120	10.222	19.001	8.974	18.060	5846022000	6150623700	5541744000	2904883800	3308861400

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
6.230.000	17.121	10.223	19.002	8.972	18.062	5851365520	6155887920	5546519160	2906569120	3311843080
6.235.000	17.122	10.224	19.004	8.970	18.063	5856385860	6161476880	5551294840	2908253400	3314825280
6.240.000	17.123	10.225	19.005	8.968	18.064	5861406720	6166742400	5556071040	2909936640	3317808000
6.245.000	17.124	10.226	19.006	8.966	18.065	5866428100	6172008440	5560847760	2911618840	3320791240
6.250.000	17.125	10.227	19.007	8.964	18.066	5871450000	6177275000	5565625000	2913300000	3323775000
6.255.000	17.125	10.228	19.009	8.962	18.067	5876472420	6182867340	5570077500	2914980120	3326759280
6.260.000	17.125	10.229	19.010	8.960	18.068	5881495360	6188135200	5574530000	2916659200	3329744080
6.265.000	17.125	10.230	19.011	8.958	18.068	5886193040	6193403580	5578982500	2918337240	3332729400
6.270.000	17.125	10.231	19.013	8.956	18.069	5891216760	6198998520	5583435000	2920014240	3335715240
6.275.000	17.125	10.231	19.014	8.954	18.069	5895914700	6204268200	5587887500	2921690200	3338375300
6.280.000	17.125	10.232	19.016	8.952	18.070	5900939200	6209864960	5592340000	2923365120	3341361920
6.285.000	17.125	10.233	19.017	8.950	18.071	5905964220	6215135940	5596792500	2925039000	3344349060
6.290.000	17.124	10.234	19.019	8.948	18.072	5910989760	6220734520	5600917920	2926711840	3347336720
6.295.000	17.124	10.235	19.020	8.946	18.072	5915688480	6226006800	5605370160	2928383640	3350324900
6.300.000	17.124	10.236	19.022	8.944	18.073	5920714800	6231607200	5609822400	2930054400	3353313600
6.305.000	17.124	10.237	19.023	8.942	18.074	5925741640	6236880780	5614274640	2931724120	3356302820
6.310.000	17.124	10.238	19.025	8.940	18.074	5930440880	6242483000	5618726880	2933392800	3359292560
6.315.000	17.124	10.239	19.027	8.938	18.075	5935468500	6248086260	5623179120	2935060440	3362282820
6.320.000	17.124	10.240	19.028	8.936	18.076	5940496640	6253361920	5627631360	2936727040	3365273600
6.325.000	17.123	10.241	19.029	8.933	18.076	5945196400	6258638100	5631754700	2938063700	3368264900
6.330.000	17.123	10.241	19.030	8.928	18.077	5950225320	6263914800	5636206680	2938740480	3370927560
6.335.000	17.123	10.242	19.031	8.924	18.077	5954925340	6269192020	5640658660	2939744080	3373919640
6.340.000	17.123	10.243	19.032	8.920	18.078	5959955040	6274469760	5645110640	2940745600	3376912240
6.345.000	17.123	10.244	19.033	8.915	18.078	5964655320	6279748020	5649562620	2941415100	3379905360
6.350.000	17.123	10.245	19.035	8.911	18.079	5969685800	6285357000	5654014600	2942412200	3382899000
6.355.000	17.123	10.246	19.035	8.906	18.079	5974386340	6290306100	5658466580	2943076760	3385893160
6.360.000	17.122	10.247	19.036	8.902	18.079	5979086880	6295585920	5662587840	2944069440	3388887840
6.365.000	17.122	10.248	19.038	8.897	18.080	5984118400	6301197240	5667039560	2944729060	3391883040
6.370.000	17.122	10.249	19.040	8.893	18.081	5989150440	6306809600	5671491280	2945717320	3394878760
6.375.000	17.122	10.250	19.041	8.888	18.082	5994183000	6312091500	5675943000	2946372000	3397875000
6.380.000	17.122	10.251	19.043	8.884	18.082	5998884320	6317705680	5680394720	2947355840	3400871760

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
6.385.000	17.122	10.251	19.044	8.879	18.083	6003917660	6322988880	5684846440	2948005580	3403537020
6.390.000	17.121	10.252	19.046	8.875	18.084	6008951520	6328604880	5688965880	2948985000	3406534560
6.395.000	17.121	10.253	19.047	8.871	18.084	6013653360	6333889380	5693417340	2949962340	3409532620
6.400.000	17.121	10.254	19.048	8.866	18.084	6018355200	6339174400	5697868800	2950604800	3412531200
6.405.000	17.121	10.255	19.048	8.862	18.085	6023390100	6344126880	5702320260	2951577720	3415530300
6.410.000	17.121	10.256	19.048	8.857	18.085	6028092200	6349079360	5706771720	2952215240	3418529920
6.415.000	17.121	10.257	19.049	8.853	18.085	6032794300	6354365420	5711223180	2953183740	3421530060
6.420.000	17.121	10.258	19.050	8.848	18.085	6037496400	6359652000	5715674640	2953816320	3424530720
6.425.000	17.120	10.259	19.051	8.844	18.086	6042532600	6364939100	5719792000	2954780400	3427531900
6.430.000	17.120	10.260	19.052	8.839	18.086	6047234960	6370226720	5724243200	2955408040	3430533600
6.435.000	17.120	10.261	19.051	8.835	18.086	6051937320	6374845620	5728694400	2956367700	3433535820
6.440.000	17.120	10.261	19.051	8.831	18.086	6056639680	6379798880	5733145600	2957325280	3436203680
6.445.000	17.120	10.262	19.053	8.826	18.086	6061342040	6385422420	5737596800	2957945640	3439206680
6.450.000	17.120	10.263	19.055	8.822	18.087	6066379800	6391047000	5742048000	2958898800	3442210200
6.455.000	17.120	10.264	19.056	8.817	18.088	6071418080	6396336960	5746499200	2959514220	3445214240
6.460.000	17.119	10.265	19.057	8.813	18.088	6076120960	6401627440	5750614480	2960462960	3448218800
6.465.000	17.119	10.266	19.058	8.808	18.089	6081160020	6406918440	5755065420	2961073440	3451223880
6.470.000	17.119	10.267	19.060	8.804	18.089	6085863160	6412546400	5759516360	2962017760	3454229480
6.475.000	17.119	10.268	19.061	8.799	18.090	6090903000	6417838700	5763967300	2962623300	3457235600
6.480.000	17.119	10.269	19.062	8.795	18.091	6095943360	6423131520	5768418240	2963563200	3460242240
6.485.000	17.119	10.270	19.064	8.790	18.091	6100647020	6428762080	5772869180	2964163800	3463249400
6.490.000	17.119	10.270	19.065	8.786	18.092	6105688160	6434056200	5777320120	2965099280	3465919600
6.495.000	17.118	10.271	19.066	8.782	18.092	6110392080	6439350840	5781433320	2966032680	3468927540
6.500.000	17.118	10.272	19.067	8.777	18.093	6115434000	6444646000	5785884000	2966626000	3471936000
6.505.000	17.118	10.273	19.067	8.773	18.093	6120138180	6449603420	5790334680	2967554980	3474944980
6.510.000	17.114	10.274	19.068	8.768	18.091	6124165320	6454899360	5793431280	2968143360	3477954480
6.515.000	17.108	10.275	19.069	8.764	18.088	6127852640	6460195820	5795848240	2969067920	3480964500
6.520.000	17.101	10.276	19.070	8.759	18.086	6131877440	6465492800	5797923040	2969651360	3483975040
6.525.000	17.095	10.277	19.072	8.755	18.083	6135561900	6471129600	5800333500	2970571500	3486986100
6.530.000	17.089	10.278	19.073	8.750	18.081	6139584360	6476427880	5802740840	2971150000	3489997680
6.535.000	17.083	10.279	19.074	8.746	18.078	6143265960	6481726680	5805145060	2972065720	3493009780

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
6.540.000	17.076	10.280	19.073	8.741	18.075	6146946000	6486345840	5807206080	2972639280	3496022400
6.545.000	17.070	10.280	19.075	8.737	18.073	6150964820	6491985500	5809603800	2973550580	3498695200
6.550.000	17.064	10.281	19.076	8.733	18.070	6154642000	6497285600	5811998400	2974459800	3501708600
6.555.000	17.058	10.282	19.078	8.728	18.068	6158658480	6502927080	5814389880	2975026080	3504722520
6.560.000	17.051	10.283	19.079	8.724	18.065	6162332800	6508228480	5816437120	2975930880	3507736960
6.565.000	17.045	10.284	19.080	8.719	18.063	6166346940	6513530400	5818822100	2976492220	3510751920
6.570.000	17.039	10.285	19.082	8.715	18.060	6170018400	6519174480	5821203960	2977392600	3513767400
6.575.000	17.033	10.286	19.083	8.710	18.058	6174030200	6524477700	5823582700	2977949000	3516783400
6.580.000	17.026	10.287	19.085	8.706	18.056	6178040960	6530123600	5825616160	2978844960	3519799920
6.585.000	17.020	10.288	19.087	8.701	18.053	6181708260	6535770540	5827988400	2979396420	3522816960
6.590.000	17.014	10.289	19.088	8.697	18.051	6185716680	6541075840	5830357520	2980287960	3525834520
6.595.000	17.008	10.290	19.090	8.693	18.049	6189724060	6546724600	5832723520	2981177420	3528852600
6.600.000	17.001	10.290	19.091	8.688	18.046	6193387200	6552031200	5834743200	2981721600	3531528000
6.605.000	16.995	10.291	19.093	8.684	18.044	6197392240	6557681780	5837102700	2982606640	3534546860
6.610.000	16.989	10.292	19.094	8.679	18.042	6201396240	6562989680	5839459080	2983145880	3537566240
6.615.000	16.983	10.293	19.096	8.675	18.039	6205055220	6568642080	5841812340	2984026500	3540586140
6.620.000	16.976	10.294	19.097	8.670	18.037	6209056880	6573951280	5843818240	2984560800	3543606560
6.625.000	16.970	10.295	19.099	8.666	18.034	6212713000	6579605500	5846165000	2985437000	3546627500
6.630.000	16.964	10.296	19.100	8.661	18.032	6216712320	6584916000	5848508640	2985966360	3549648960
6.635.000	16.958	10.297	19.102	8.657	18.030	6220710600	6590572040	5850849160	2986838140	3552670940
6.640.000	16.951	10.298	19.103	8.652	18.027	6224362560	6595883840	5852841280	2987362560	3555693440
6.645.000	16.945	10.299	19.105	8.648	18.025	6228358500	6601541700	5855175300	2988229920	3558716460
6.650.000	16.939	10.300	19.107	8.644	18.023	6232353400	6607200600	5857506200	2989095200	3561740000
6.655.000	16.933	10.300	19.108	8.639	18.021	6236347260	6612514480	5859833980	2989612340	3564418000
6.660.000	16.926	10.301	19.110	8.635	18.018	6239993760	6618175200	5861812320	2990473200	3567442320
6.665.000	16.920	10.302	19.111	8.630	18.016	6243985280	6623490380	5864133600	2990985400	3570467160
6.670.000	16.914	10.303	19.113	8.626	18.013	6247628920	6629152920	5866451760	2991841840	3573492520
6.675.000	16.908	10.304	19.112	8.621	18.010	6251271000	6633775200	5868766800	2992349100	3576518400
6.680.000	16.901	10.305	19.113	8.617	18.007	6254911520	6639091680	5870731360	2993201120	3579544800
6.685.000	16.895	10.306	19.115	8.612	18.005	6258898100	6644756300	5873039900	2993703440	3582571720
6.690.000	16.889	10.307	19.116	8.608	18.002	6262535760	6650074080	5875345320	2994551040	3585599160

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
6.695.000	16.883	10.308	19.117	8.603	18.000	6266520000	6655392380	5877647620	2995048420	3588627120
6.700.000	16.876	10.309	19.119	8.599	17.998	6270503200	6661059600	5879598400	2995891600	3591655600
6.705.000	16.870	10.310	19.120	8.595	17.995	6274136700	6666379200	5881894200	2996732700	3594684600
6.710.000	16.864	10.310	19.119	8.590	17.992	6277768640	6671001480	5884186880	2997222800	3597365200
6.715.000	16.858	10.311	19.120	8.586	17.989	6281399020	6676321600	5886476440	2998059480	3600394980
6.720.000	16.856	10.312	19.122	8.581	17.989	6286076160	6681991680	5890160640	2998544640	3603425280
6.725.000	16.853	10.313	19.123	8.577	17.988	6290403600	6687313100	5893494100	2999376900	3606456100
6.730.000	16.850	10.314	19.125	8.572	17.987	6294730520	6692985000	5896826000	2999857120	3609487440
6.735.000	16.848	10.315	19.126	8.568	17.987	6299407140	6698307720	5900506560	3000684960	3612519300
6.740.000	16.845	10.316	19.127	8.563	17.986	6303733280	6703630960	5903835600	3001160240	3615551680
6.745.000	16.842	10.317	19.127	8.559	17.985	6308058900	6708603980	5907163080	3001983660	3618584580
6.750.000	16.839	10.318	19.129	8.555	17.984	6312384000	6714279000	5910489000	3002805000	3621618000
6.755.000	16.837	10.319	19.131	8.550	17.984	6317059840	6719955060	5914164620	3003273000	3624651940
6.760.000	16.834	10.320	19.132	8.546	17.983	6321384160	6725280640	5917487680	3004089920	3627686400
6.765.000	16.831	10.320	19.134	8.541	17.983	6326059740	6730958520	5920809180	3004552980	3630369600
6.770.000	16.829	10.321	19.135	8.537	17.982	6330383280	6736285400	5924481160	3005365480	3633404840
6.775.000	16.826	10.322	19.137	8.532	17.982	6335058600	6741965100	5927799800	3005823600	3636440600
6.780.000	16.823	10.323	19.139	8.528	17.981	6339381360	6747645840	5931116880	3006631680	3639476880
6.785.000	16.821	10.324	19.141	8.523	17.981	6344056420	6753327620	5934785220	3007084860	3642513680
6.790.000	16.818	10.325	19.142	8.519	17.980	6348378400	6758657360	5938099440	3007888520	3645551000
6.795.000	16.815	10.326	19.144	8.514	17.980	6353053200	6764340960	5941412100	3008336760	3648588840
6.800.000	16.813	10.327	19.145	8.510	17.979	6357374400	6769672000	5945076800	3009136000	3651627200
6.805.000	16.810	10.328	19.147	8.506	17.978	6361695080	6775357420	5948386600	3009933160	3654666080
6.810.000	16.807	10.329	19.148	8.500	17.978	6366369360	6780689760	5951694840	3010020000	3657705480
6.815.000	16.804	10.330	19.150	8.493	17.977	6370689260	6786377000	5955001520	3009749340	3660745400
6.820.000	16.802	10.330	19.151	8.486	17.977	6375363280	6791710640	5958661280	3009475040	3663431200
6.825.000	16.799	10.331	19.153	8.480	17.976	6379682400	6797399700	5961965100	3009552000	3666471900
6.830.000	16.796	10.332	19.152	8.473	17.974	6383645840	6802024320	5965267360	3009270680	3669513120
6.835.000	16.794	10.333	19.150	8.466	17.972	6387608240	6806293000	5968923480	3008985720	3672554860
6.840.000	16.791	10.334	19.151	8.459	17.971	6391925280	6811627680	5972222880	3008697120	3675597120
6.845.000	16.788	10.335	19.152	8.453	17.970	6396241800	6816962880	5975520720	3008760820	3678639900

Profundidad (FT)	Sh	Peso del Lodo (lpg)	Sv	Pp (lbm/gal)	SH	SH (psi)	Sv (psi)	Sh (psi)	Pp (psi)	Peso del Lodo (psi)
6.850.000	16.786	10.336	19.154	8.446	17.970	6400914000	6822654800	5979173200	3008465200	3681683200
6.855.000	16.783	10.337	19.156	8.439	17.969	6405229740	6828347760	5982468180	3008165940	3684727020
6.860.000	16.780	10.338	19.158	8.433	17.969	6409901680	6834041760	5985761600	3008219760	3687771360
6.865.000	16.778	10.339	19.159	8.426	17.968	6414216640	6839379820	5989410440	3007913480	3690816220
6.870.000	16.775	10.339	19.161	8.419	17.968	6418888320	6845075640	5992701000	3007603560	3693504360
6.875.000	16.772	10.340	19.162	8.413	17.967	6423202500	6850415000	5995990000	3007647500	3696550000
6.880.000	16.769	10.341	19.164	8.406	17.967	6427873920	6856112640	5999277440	3007330560	3699596160
6.885.000	16.767	10.342	19.166	8.399	17.966	6432187320	6861811320	6002921340	3007009980	3702642840
6.890.000	16.764	10.343	19.167	8.393	17.966	6436858480	6867152760	6006205920	3007044040	3705690040
6.895.000	16.761	10.344	19.169	8.386	17.965	6441171100	6872853260	6009488940	3006716440	3708737760
6.900.000	16.759	10.345	19.171	8.379	17.965	6445842000	6878554800	6013129200	3006385200	3711786000
6.905.000	16.756	10.346	19.172	8.373	17.964	6450153840	6883898320	6016409360	3006409380	3714834760
6.910.000	16.753	10.347	19.174	8.366	17.963	6454465160	6889601680	6019687960	3006071120	3717884040
6.915.000	16.751	10.348	19.175	8.359	17.963	6459135540	6894946500	6023324580	3005729220	3720933840
6.920.000	16.748	10.349	19.176	8.353	17.962	6463446080	6900291840	6026600320	3005743520	3723984160
6.925.000	16.745	10.349	19.178	8.346	17.962	6468116200	6905997800	6029874500	3005394600	3726674900
6.930.000	16.743	10.350	19.180	8.339	17.961	6472425960	6911704800	6033507480	3005042040	3729726000
6.935.000	16.740	10.351	19.181	8.333	17.960	6476735200	6917052220	6036778800	3005046460	3732777620
6.940.000	16.737	10.352	19.182	8.326	17.960	6481404800	6922400160	6040048560	3004686880	3735829760
6.945.000	16.734	10.353	19.184	8.319	17.959	6485713260	6928109760	6043316760	3004323660	3738882420
6.950.000	16.732	10.354	19.185	8.313	17.958	6490021200	6933459000	6046944800	3004318200	3741935600
6.955.000	16.729	10.355	19.185	8.306	17.957	6494328620	6938447100	6050210140	3003947960	3744989300
6.960.000	16.726	10.356	19.187	8.299	17.957	6498997440	6944159040	6053473920	3003574080	3748043520
6.965.000	16.724	10.357	19.188	8.293	17.956	6503304080	6949509840	6057098320	3003558740	3751098260
6.970.000	16.723	10.358	19.190	8.286	17.956	6507972640	6955223600	6061084120	3003177840	3754153520
6.975.000	16.724	10.359	19.191	8.279	17.958	6513366600	6960575700	6065794800	3002793300	3757209300
6.980.000	16.726	10.359	19.193	8.273	17.959	6518398640	6966291280	6070868960	3002768080	3759902640
6.985.000	16.727	10.360	19.194	8.266	17.961	6523794420	6971644680	6075580940	3002376520	3762959200
6.990.000	16.729	10.361	19.196	8.259	17.962	6528827760	6977362080	6080656920	3001981320	3766016280
6.995.000	16.730	10.362	19.197	8.252	17.964	6534225360	6982716780	6085370200	3001582480	3769073880
7.000.000	16.732	10.363	19.199	8.246	17.965	6539260000	6988436000	6090448000	3001544000	3772132000