UNIVERSIDAD CENTRAL DE VENEZUELA

FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA MECÁNICA

CARACAS - VENEZUELA

FACTIBILIDAD TÉCNICA DE LA RECUPERACIÓN DE VAPORES EN TANQUES DE ALMACENAMIENTO DE CRUDO UTILIZANDO LA TECNOLOGÍA JET COMO MÉTODO DE EXTRACCIÓN

Trabajo de Grado presentado por:

Ing. Maricé del Valle Urbina Beroes

C.I.: 12.459.623

Tutor: Msc. José Rafael González Castillo

Para optar al título: Magister Scientiarum en INGENIERÍA MECÁNICA

Caracas, Octubre de 2003

APROBACIÓN DEL TUTOR

Este Trabajo de Grado, titulado FACTIBILIDAD TÉCNICA DE LA RECUPERACIÓN DE VAPORES EN TANQUES DE ALMACENAMIENTO DE CRUDO UTILIZANDO LA TECNOLOGÍA JET COMO MÉTODO DE EXTRACCIÓN presentado por, Ing. Maricé del Valle Urbina Beroes, ha sido aprobado por el tutor, quien lo ha encontrado correcto en su calidad y en su forma de presentación en fe de lo cual lo firma,

Msc. José Rafael González Castillo

Director del Trabajo de Grado

U.C.V.

Universidad Central de Venezuela

Caracas, Octubre 2003

APROBACIÓN DEL JURADO

Este Trabajo de Grado, titulado FACTIBILIDAD TÉCNICA DE LA RECUPERACIÓN DE VAPORES EN TANQUES DE ALMACENAMIENTO DE CRUDO UTILIZANDO LA TECNOLOGÍA JET COMO MÉTODO DE EXTRACCIÓN presentado por, Ing. Maricé del Valle Urbina Beroes, ha sido aprobado por el jurado, quienes lo han encontrado correcto en su calidad y en su forma de presentación en fe de lo cual lo firman,

PRESIDENTE DEL JURADO Msc. José Rafael González Castillo

> JURADO PRINCIPAL Msc. Rodolfo Berrios

> JURADO PRINCIPAL Msc. Frank Pietersz

> > Universidad Central de Venezuela

Caracas, Octubre 2003

DEDICATORIA

Este trabajo de investigación esta dedicado a la inspiración más grande que tengo en la vida: Mi Familia A mis padres Mariela y César

A mis hermanos Karina y Julio

RECONOCIMIENTOS

A mi tutor *José R. González*, por su valiosa amistad, por la orientación, colaboración, apoyo y enseñanza ofrecida en todo momento.

A mis padres *Mariela de Urbina* y *César Urbina* por el amor que me transmiten día a día y por enseñarme que las metas de la vida se logran con esfuerzo, constancia y dedicación.

A mis hermanos *Karina Urbina* y *Julio Urbina* que siempre me apoyaron para el logro de este éxito.

A mis amigos *Pablo Uzcátegui, Jorge Ramírez* y *Francisco Corrales* por toda su dedicación y contribución durante la realización de las pruebas experimentales.

A todo el *Personal del CEPRO* por el apoyo brindado y lo agradable del tiempo compartido durante la realización de las pruebas experimentales.

A mis compañeros de trabajo Orlando Mujica, Guillermo Peñaranda, Orlando Díaz,

Arjan Kamp y *Adriana Brito* por toda la ayuda para conseguir la información técnica requerida para la elaboración de ésta, mi tesis de grado.

A *Manuel Martínez* y *Yoraima Rojas* por su valiosa colaboración administrativa.

A mis amigos incondicionales *Jackeline Rodríguez* y *Maurizio Arnone*, con quienes he tenido el gusto de compartir desde el inicio y hasta el final este Postgrado, y sobre todo por aquellos momentos que disfrutamos juntos a lo largo de nuestros estudios.

A todas aquellas personas que de una forma u otra me ayudaron, les doy las gracias.

Maricé Urbina Beroes

RESUMEN

IDENTIFICACIÓN:

Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Mecánica

Tesis de Grado: FACTIBILIDAD TÉCNICA DE LA RECUPERACIÓN DE VAPORES EN TANQUES DE ALMACENAMIENTO DE CRUDO UTILIZANDO LA TECNOLOGÍA JET COMO MÉTODO DE EXTRACCIÓN

Autor: Ing. Maricé del Valle Urbina Beroes Tutor: Msc. José Rafael González Castillo

Resumen

En este trabajo se presenta el estudio analítico-numérico en dos dimensiones (2D) y experimental de un nuevo dispositivo de succión tipo bomba Jet para la extracción de vapores emanados de crudo almacenado en tanques. El dispositivo fue diseñado de acuerdo con el modelo de Bijoa Jiao (**Ref. 1**) y su factibilidad de uso como para la extracción de vapores fue motivado por Cunningham (**Ref. 2**) quien demostró la factibilidad de uso de estos dispositivos como compresores de gas utilizando líquido como fluido compresor.

Las curvas de eficiencia obtenidas con el modelo analítico-numérico (2D), mostraron un comportamiento parabólico similar al de los modelos unidireccionales y monofásicos de jets (Bijoa Jiao, **Ref. 1**); sin embargo, los valores de eficiencia fueron inferiores a los esperados y la envolvente de los puntos de máxima eficiencia mostraron una tendencia decreciente y no plana como la diagnosticada por Bijoa Jiao.

Finalmente, las pruebas de laboratorio (**CEPRO-PDVSA**), utilizando gas y crudo de producción, demuestran que el dispositivo Jet puede succionar gas a presión atmosférica y comprimirlo hasta 70 Psi, no obstante, la relación de energía requerida y consumida por volumen de gas succionado resultó ser del orden 100:1. Los costos de instalación, operación y mantenimiento de esta alternativa son inferiores a los de la alternativa conceptualizada por PDVSA que contempla el uso de compresores comerciales de gas. Sin embargo, la cantidad de gas recuperado por volumen de fluido requerido es tan baja que no permite justificar el uso de Jets para este fin.

PALABRAS CLAVES: Recuperación de Vapores, Tanques de almacenamiento, Tecnología Jet, Generación de vacío en recipientes a presión.

ÍNDICE GENERAL

DEDICATORIA	iv
RECONOCIMIENTOS	v
RESUMEN	vi
ÍNDICE GENERAL	vii
Lista de Figuras	xi
Lista de Tablas	xiv
Lista de Abreviaturas	xv
INTRODUCCIÓN	1
CAPÍTULO I	5
1. EL PROBLEMA	5
1.1. Planteamiento del Problema	5
1.2. Objetivos	10
1.2.1. Objetivo General	10
1.2.2. Objetivos Específicos	10
1.3. Justificación del estudio	11
1.4. Importancia del estudio	12
1.5. Recursos y contexto general de la investigación	12
1.6. Limitaciones de la investigación	13
CAPÍTULO II	14
2. MARCO TEÓRICO	14
2.1. Antecedentes	14
2.2. Bases Teóricas	15
2.2.1. Tecnología Jet	15

2.2.2. Recuperación de Vapores en tanques de almacenamiento	23
2.2.3. Esquema general de producción de crudo	25
CAPÍTULO III	30
3. MARCO METODOLÓGICO	30
3.1. Tipo de estudio	30
3.2. Método de Investigación	31
3.3. Fuentes y técnicas para la recuperación de datos	32
3.3.1. Centro de Información Técnica (CIT)	32
3.3.2. Gerencia del Conocimiento	33
3.3.3. Normas PDVSA	34
3.3.4. API	34
3.3.5. Ley Penal del Ambiente	35
3.3.6. Publicaciones SPE	36
3.4. Diseño utilizado y metodología	36
3.5. Instrumentos de medición aplicados	38
3.6. Cronograma de la investigación	38
CAPÍTULO IV	39
4. BASES DE DISEÑO, MODELADO Y SIMULACIÓN	39
4.1. Detalles del Modelado y Simulación	42
4.1.1. Detalles Fluidodinámicos	42
4.1.2. Solución del Modelo	43
4.1.3. Condiciones de Borde	44
4.2. Curvas de eficiencia para diferentes R y L/D	45
4.3. Comparación modelo teórico y curvas de simulación	48
4.4. Comparación curvas de eficiencia para R = 0,36 y diferentes L/D	49
4.5. Comparación puntos de máxima eficiencia	50

4.5. Descripción del equipo	51
4.6. Opciones de evaluación del equipo	54
4.7. Selección del diseño geométrico	55
4.7.1. Descripción del Método Gráfico	56
4.8. Diseño de herramienta, evaluación adicional	57
CAPÍTULO V	59
5. CENTRO EXPERIMENTAL DE PRODUCCIÓN (CEPRO)	59
5.1. Descripción del Circuito Experimental	59
5.2. Instrumentación disponible	60
CAPÍTULO VI	65
6. PROCEDIMIENTO EXPERIMENTAL	65
6.1. Descripción del proceso a evaluar	66
6.1.1. Prueba monofásica (bombeo de crudo con crudo)	67
6.1.2. Proceso 1 (compresión de gas con crudo)	68
6.1.3. Proceso 2 (compresión de gas con agua)	69
6.1.4. Proceso 3 (compresión de gas con gas de LAG)	69
6.2. Pruebas especiales	70
6.3. Fluidos de trabajo y rangos de operación	73
6.4. Condiciones operacionales a controlar y límites de control	73
6.5. Consideraciones del Banco de pruebas	74
6.6. Matriz Experimental	74
6.7. Esquema del Circuito y Diagrama de Instrumentación y Tuberías	75
6.8. Optimización de la recopilación de datos	78
CAPÍTULO VII	79
7. DERIVACION DE LAS ECUACIONES PARA EL JET	79

7.1. Representación esquemática del diseño	80
7.2. Ecuación de Poisson o Procesos politrópicos	81
7.2. Ecuación de los gases ideales	83
7.3. Balance de masa	83
7.4. Cálculo de las velocidades	84
7.5. Densidad del gas	85
7.6. Densidad de la mezcla	86
7.7. Energías específicas de las fases	86
7.8. Energía específica para la mezcla	91
7.9. Balance de cantidad de movimiento en la garganta	94
7.10. Balance de energía en la garganta	95
7.11. Caídas de presión	95
7.12. Balance de energía específica en la succión y en el difusor	97
7.13. Balance de energía total sobre el Jet	97
CAPÍTULO VIII	99
8. RESULTADOS Y DISCUSIÓN	99
8.1. Resultados Flujo Monofásico (bombeo de Crudo con Crudo):	100
8.2. Resultados Aplicación Recuperación de Vapores:	111
8.2.1. Resultados Proceso 1 (compresión de gas con crudo)	111
8.2.2. Resultados Proceso 2 (compresión de gas con agua)	119
8.2.3. Resultados Proceso 3 (compresión de gas con gas de LAG)	124
CONCLUSIONES Y RECOMENDACIONES	128
REFERENCIAS BIBLIOGRAFICAS	132
APENDICES	137

Lista de Figuras

Fig. 1 Estación típica del lago de Maracaibo	5
Fig. 2 Esquema genérico del proceso de separación	6
Fig. 3 Zona de alto riesgo debido a las emanaciones de los recipientes	7
Fig. 4 Esquema actual de proceso de separación	9
Fig. 5 Esquema de solución propuesto para una Estación de Flujo típica	9
Fig. 6 Esquema diseño comercial y diseño propio	17
Fig. 7 Curvas de eficiencia para diferentes relaciones de área	22
Fig. 8 Curvas de Recuperación de presión para diferentes relaciones de área	22
Fig. 9 Volumen de gas	25
Fig. 10 Curvas de Eficiencia vs. Relación de Area (para L/D = 5)	46
Fig. 11 Curvas de Recuperación de Presión (N) vs. Relación de Area (para L/D = 5)	46
Fig. 12 Curvas de Eficiencia vs. Relación de Area (para L/D= 10)	47
Fig. 13 Curvas de Recuperación de Presión vs. Relación de Area (para L/D= 10)	47
Fig. 14 Comparación curvas de eficiencia para R = 0,36 y modelo teórico y simulación	48
Fig. 15 Comparación curvas de eficiencia para R = 0,36 y mezcla (L/D ₁ , L/D ₂ y L/D ₃)	49
Fig. 16 Puntos de máxima eficiencia para las diferentes relaciones de área	50
Fig. 17 Corte esquemático del Jet de Superficie	52
Fig. 18 Corte esquemático del Jet de Superficie, despiece	53
Fig. 19 Corte esquemático del Jet de Superficie, en campo	53
Fig. 20 Corte esquemático del Jet de Superficie, con inserto y diferentes vistas	55
Fig. 21 Esquemático herramienta para extraer boquilla	58
Fig. 22 Ubicación de equipos principales del Circuito Experimental del CEPRO	60

N°

Fig. 23 Estación de gas	61
Fig. 24 Pozo Experimental	62
Fig. 25 Sistema de Separación	63
Fig. 26 Sistema de bombeo de crudo y agua	64
Fig. 27 Instrumentación de tanques	64
Fig. 28 Arreglo del circuito experimental, prueba Jet de Superficie	66
Fig. 29 Esquemático del Circuito Experimental del Jet	71
Fig. 30 Esquemático del Circuito Experimental del Jet, vista frontal	72
Fig. 31 Esquemático del Circuito Experimental del Jet, vista lateral	72
Fig. 32 Esquemático del Circuito Experimental del Jet e instrumentación para un Jet	76
Fig. 33 Esquemático del Circuito Experimental e instrumentación, Jet 1 y Jet 2	77
Fig. 34 Esquemático del Circuito Experimental, fase de diseño y fase de construcción	77
Fig. 35 Flujo de inyección vs Caída de presión (Q _{succ} = 150 BPD; R = 0,170; P _d = 100 Psig)	78
Fig. 36 Representación esquemática del Jet	81
Fig. 37 Sistema P-V de un gas ideal	82
Fig. 38 Caída de presión vs Flujo de inyección (R = 0,132, Q _{succ} = 150 BPD, P _d = 100 Psig)	102
Fig. 39 Caída de presión vs Flujo de succión (R = 0,132, Q _{iny} = 300 BPD, P _d = 200 Psig)	103
Fig. 40 Caída de presión vs Flujo de inyección ($R = 0,132, Q_{succ} = 150 \text{ BPD}, P_d = 100 \text{ Psig}$)	104
Fig. 41 Caída de presión vs Flujo de inyección (R = 0,170, Q _{succ} = 150-450 BPD, P _d = 100 Psig)	106
Fig. 42 Caída de presión vs Flujo de inyección (R = 0,170, Q _{succ} = 150-350 BPD, P _d = 200 Psig)	107
Fig. 43 Caída de presión vs Flujo de inyección ($R = 0,170, P_d = 100 y 200 Psig$)	108
Fig. 44 Caída de presión vs Flujo de inyección ($R = 0,280$, $Q_{succ} = 150$ BPD, $P_d = 100$ Psig)	108
Fig. 45 Flujo de inyección vs Caída de presión (R = 0,132, R = 0,170 y R = 0,280, Q _{succ} = 150 BPD)	110
Fig. 46 Flujo de succión vs presión de succión (R = 0,132, Q_{iny} = 1400 BPD)	114
Fig. 47 Flujo de succión vs presión de succión (R = 0,132, 0, Q _{iny} = 1700 BPD)	115

Fig. 48 Flujo de succ. y ΔP vs Flujo de inyec. (R = 0,132, P _{pozo} = P _{atm} , Arreglo Jet 1 y 2)	116
Fig. 49 ΔP vs Flujo de inyección (R = 0,080, P _{pozo} = P _{atm} , Arreglo Jet1 y 2)	117
Fig. 50 Flujo de succión vs Flujo de inyección (R = 0,132, P _{instrum} = P _{atm} , Arreglo Jet 2)	118
Fig. 51 Flujo de succión vs Flujo de iny. (R = 0,132, P _{instrum} = P _{atm} , Arreglo Jet 1 y 2)	119
Fig. 52 Esquemático de la compresión de gas con agua	120
Fig. 53 Flujo de succ (aire) y ΔP vs caudal de inyecc (agua), R = 0,132, P _{succ} = P _{atm} , Arreglo Jet 2	121
Fig. 54 Flujo de succ (aire) y ΔP vs caudal de inyecc (agua), R = 0,132, P _{succ} = P _{atm} , Jet 2, rep	121
Fig. 55 Flujo de succ (aire) y ΔP vs caudal de inyecc (agua), P _{succ} = P _{atm} Jet 1 y 2	122
Fig. 56 Flujo de succ (aire) y ΔP vs caudal de inyecc (agua), P _{succ} = P _{atm} , Jet 1 y 2, Vortex 1"	123
Fig. 57 Flujo de succ (aire) y ΔP vs caudal de inyecc (agua), P _{succ} = P _{atm} , Vortex 1", Jet 1	124
Fig. 58 Flujo de succ (aire) y ΔP vs caudal de inyecc (agua), Jet de 3 ^{1/2} ".	124
Fig. 59 Flujo de succ (gas) y vs caudal de inyecc (gas), R = 0,132, P _{instrum} = P _{atm} , Jet 1	125
Fig. 60 Flujo de succ (gas) y vs caudal de inyecc (gas), R = 0,132, P _{instrum} = P _{atm} , Jet 2	125
Fig. 61 Flujo de succión (gas) y vs caudal de inyección (gas), R = 0,132, P _{pozo} = P _{atm} , Jet 2	126
Fig. 62 Flujo de succión (gas) y vs caudal de inyección (gas), R = 0,132, P _{pozo} = P _{atm} , Jet 1 y 2	127

Lista de Tablas

Tabla 1 Cronograma de actividades	38
Tabla 2 Relaciones de áreas evaluadas.	41
Tabla 3 Relaciones de las longitudes de la zona de mezcla	42
Tabla 4 Propiedades del crudo y gas	42
Tabla 5 Condiciones de borde del prototipo	44
Tabla 6 Matriz Experimental para la aplicación en estaciones de flujo	75
Tabla 7 Puntos Experimentales: Aplicación Crudo-Crudo	101

N°

Lista de Abreviaturas

- Aanular: Área de la sección transversal final del anular que rodea el cono interior de la tobera.
- **A**_{boquilla}: Área de la sección transversal del cono interior de la tobera.
- **A**garganta: Área de la garganta.
- API Instituto Americano de Petróleo.
- **CEPRO:** Centro Experimental de Producción.
- *E:* Eficiencia del dispositivo.
- *HAP* Aire contaminante.
- *k:* Energía cinética turbulenta.
- *K*_d: Coeficiente de pérdidas por fricción en el difusor.
- *K*_{*j*}: Coeficiente de pérdidas por fricción en la boquilla.
- **K**s: Coeficiente de pérdidas por fricción en la succión.
- *K*_t: Coeficiente de pérdidas por fricción en la garganta.
- *K*_n: Coeficiente de pérdidas por fricción en la boquilla.
- *K*_{td}: Coeficiente de pérdidas por fricción entre la garganta y el difusor.
- *L.A.G:* Levantamiento artificial por gas.
- *Ippca* Libras por pulgada cuadrada absoluta.
- *M*: Relación dimensional para la tasa de flujo másico.
- *M*_{succión}: Flujo másico de succión a la entrada del dispositivo.
- *Minyección*: Flujo másico de inyección a la entrada del dispositivo.

Mscfd Miles de	pies cúbicos	estándar	por día.
----------------	--------------	----------	----------

- *MMscfd* Millones de pies cúbicos estándar por día.
- **N:** Relación dimensional de recuperación de presión.
- P: Presión.
- **P**atm: Presión atmosférica.
- *P*_d: Presión a la descarga del dispositivo.
- *P*_{*j*}: Presión del fluido motriz o de potencia.
- **P**s: Presión a la succión del dispositivo.
- **R:** Relación de áreas.
- *Re* Número de Reynolds.
- t: Tiempo.
- **VOC** Compuestos orgánicos volátiles.
- *VRU* Unidades de recuperación de vapores.
- 2D Dos dimensiones.
- **3D** Tres dimensiones.

INTRODUCCIÓN

Los fluidos provenientes de los yacimientos de petróleo, cuando se encuentran en estado de reposo en tanques de estaciones de flujo o zonas de almacenamiento, emanan fluidos volátiles que son atractivos energéticamente y que además de incrementar la presión interna de los recipientes que los contienen, al ser venteados (liberados) generan una atmósfera de alta peligrosidad y riesgo de incendio o explosiones.

Generalmente, los volúmenes emanados son relativamente bajos, sin embargo, los requerimientos actuales energéticos del país y las normas ambientales obligan a la eliminación de tal atmósfera peligrosa y al reciclo de los fluidos liberados.

Este requerimiento se convierte en un problema de alta incidencia en el aspecto económico, dado que se requiere de sistemas de compresión de alta capacidad, que permitan recuperar fluidos que se encuentran a bajos niveles de presión (8 pulgadas de agua) para inyectarlos a un sistema de recolección de gas que, generalmente, se encuentra a presiones desde 40 Psi hasta 100 Psi.

En trabajos previos de publicación interna en PDVSA, se cuantificó un volumen aproximado de gas venteado (perdido a la atmósfera) entre 90 Mscfd hasta 1,2 MMscfd que, de ser recuperado, pudiera ser utilizado en operaciones de levantamiento artificial por gas, en nuevos pozos productores o existentes que requieran de un cambio de método de levantamiento artificial. Por otra parte, volúmenes tan elevados de gas, al ser venteados generan condiciones inseguras en el ambiente, desde el riesgo de incendios hasta la contaminación ambiental que generan los posibles líquidos que sean arrastrados. La alternativa de recuperar los vapores con compresores comerciales fue evaluada en PDVSA (Ver **Anexo 1**) y resultó ser económicamente inviable por los elevados costos de capacidad instalada con relación al valor energético de los fluidos a recuperar. Aunque la ley de protección del ambiente justifica la necesidad de eliminar tal contaminación, se hace necesario analizar otras opciones tecnológicas a costos más razonables. Una de las opciones alternas al uso de compresores fue sugerida por (Urrutia, P., **Ref. 3**) quien menciona la posibilidad de utilizar bombas Jet como elemento de extracción económica de gas en tanques temporales en estaciones de flujo del lago de Maracaibo (Unidad de Exploración y Producción Lagocinco). Dado al éxito obtenido con una válvula de succión (Patente Intevep, J. González, M. Urbina, L Casique # 654-75-32) de crudo aplicada a nivel de subsuelo como elemento acelerador de fluidos utilizando gas como elemento motriz, donde se observó, atribuido a la succión generada, incrementos de producción desde el 10-48 % de producción, se sugirió adecuar el diseño de la misma para instalaciones de superficie y en específico para este objetivo.

El dispositivo fue diseñado de acuerdo con el modelo de Bijoa Jiao (Ref. 1) y su factibilidad de uso como para la extracción de vapores fue avalada por Cunningham (Ref. 2) quien demostró la factibilidad de uso de estos dispositivos como compresores de gas utilizando líquido como fluido impulsor.

Dado el cambio de objetivo de uso del dispositivo válvula de succión como un elemento recuperador de vapores, como una respuesta novedosa sin respaldo en la literatura, se procedió a generar el soporte analítico (mostrado en este trabajo) partiendo de las sugerencias de autores tales como Bijoa (**Ref. 1**) y Cunningham (**Ref. 2**). Para esto fue necesario resolver numéricamente mediante diferencias finitas (**CFX**[®], AEA Technology, **Ref. 4**) y en dos dimensiones (2D) con un modelo axisimétrico, extrapolable a 3D, las

2

ecuaciones de continuidad, energía y momento lineal en el interior de dicha válvula, con lo cual se esperaba verificar la factibilidad de uso de este dispositivo en la aplicación mencionada. Como un resultado inicial, se obtuvo que las curvas de eficiencia obtenidas con el modelo axisimétrico, mostraban valores máximos inferiores a los calculados por Bijoa Jiao y adicionalmente, la curva descrita por tales valores mostró una tendencia cóncava descendiente diferente a la tendencia creciente y asintótica reportada por Bijoa Jiao. Este resultado motivó a reproducir las curvas de Bijoa Jiao encontrando que las mismas provenían de la resolución de un modelo unidireccional que puede ser catalogado como aproximado, mientras que los resultados del modelo axisimétrico proveen de una reproducción más fiel del comportamiento físico fluidodinámico del Jet. Por esta razón se recomienda, como producto adicional de este trabajo, sustituir las curvas de Bijoa Jiao por las producidas en este trabajo con lo cual se obtendrán soluciones que conduzcan a diseños de Jets más precisos.

En este trabajo se presenta el estudio analítico-numérico en dos dimensiones (2D) y experimental del dispositivo de succión tipo bomba Jet para la extracción de vapores emanados de crudo almacenado en tanques. Las curvas de eficiencia obtenidas con el modelo analítico-numérico (2D), mostraron un comportamiento parabólico similar al de los modelos unidireccionales y monofásicos de Jets (Bijoa Jiao, **Ref. 1**); sin embargo, los valores de eficiencia fueron inferiores a los esperados y la envolvente de los puntos de máxima eficiencia mostraron una tendencia decreciente y no plana como la diagnosticada por Bijoa Jiao.

Finalmente, las pruebas de laboratorio (**CEPRO-PDVSA**), utilizando gas y crudo de producción, demuestran que el dispositivo Jet puede succionar gas a presión atmosférica y comprimirlo hasta 70 Psi, no obstante, la relación de energía requerida y consumida por

3

volumen de gas succionado resultó ser del orden 100:1. Los costos de instalación, operación y mantenimiento de esta alternativa son inferiores a los de la alternativa conceptualizada por PDVSA que contempla el uso de compresores comerciales de gas. Sin embargo, la cantidad de gas recuperado por volumen de fluido requerido es tan baja que no permite justificar el uso de Jets para este fin.

El presente trabajo esta estructurado en ocho capítulos, siendo el primero el que expone el problema, los objetivos y la justificación de la investigación. El segundo trata del marco teórico, que comprende los fundamentos teóricos y antecedentes, en el tercero se propone el marco metodológico, el cual consta del diseño de investigación, tipo de estudio, instrumentos, método de investigación y validez, el cuarto expone las bases de diseño, modelado y simulación, así como las características del dispositivo que será evaluado, en el quinto capítulo se dará a conocer las características del Centro Experimental de Producción **CEPRO** y el procedimiento experimental será presentado en el capítulo seis. En el séptimo capítulo se dan a conocer las ecuaciones que rigen el comportamiento del Jet y por último, en el capítulo ocho, se presentan los resultados y la discusión de los mismos.

CAPÍTULO I

1. EL PROBLEMA

1.1. Planteamiento del Problema

Las estaciones de flujo (**Fig. 1**) son instalaciones necesarias para la separación y tratamiento (en algunos casos) de los fluidos (gas, petróleo, agua, sólidos y sedimentos) provenientes de los pozos petroleros. En estas instalaciones se concentran equipos de bombeo monofásico (multifásico en vías de desarrollo), separadores, depuradores, líneas y múltiples de distribución y tanques de almacenamiento temporal para las fases líquidas separadas.

Fig. 1 Estación típica del lago de Maracaibo

Dependiendo del campo productor, la separación de las fases se puede realizar en una o en varias etapas identificadas por los niveles de presión de operación: alta (2000-1000 Psi), media (1000-500 Psi) y baja (hasta presiones inferiores a 40 Psi). El objetivo básico de cada etapa de separación es extraer el mayor contenido posible de la fase gaseosa de la corriente total, tanto libre como diluida en la fase líquida, véase en la **Fig. 2** esquema genérico del proceso. El dimensionamiento de los separadores es determinado dependiendo de los niveles de presión, el espacio disponible y el aspecto de seguridad y costo. Con este esquema, y dependiendo de la presión mínima del gas separado (~40 Psi) y del tipo de crudo, se mantiene gas disuelto en el mismo, que finalmente es liberado a niveles atmosféricos durante la etapa de almacenamiento en los tanques.

Fig. 2 Esquema genérico del proceso de separación

El arrastre de gas en la fase líquida trae como consecuencia errores en la medición de líquido y se requiere de un tiempo de residencia a las condiciones de almacenamiento para la liberación. Este tiempo depende del tipo de crudo y de la eficiencia de los equipos instalados en la estación de flujo.

En general, el gas diluido en el crudo proveniente del proceso de separación, se libera en los tanques de almacenamiento temporal a presión atmosférica produciendo un

incremento de presión dentro del tanque como consecuencia de su acumulación, aumentando el riesgo de la estación (ver **Fig. 3**). Aunque estos tanques son diseñados con válvulas de alivio o de liberación brusca de presión, con descarga a líneas de venteo y/o mecheros, cuando el gas es venteado a la atmósfera se generan problemas de contaminación en el entorno de la estación y cuando se dirigen al mechero, se produce la irremediable pérdida de su energía.

Fig. 3 Zona de alto riesgo debido a las emanaciones de los recipientes

Dentro de las alternativas que existen para mejorar la problemática actual del proceso, ver **Fig. 4**, se encuentran diferentes sistemas/métodos para la recuperación de vapores, sin embargo, los trabajos previos del tema han demostrado que el costo de instalación y mantenimiento, entre otros, resultan ser muy elevados [**Ref. 3**]. Por esta razón y tomando en consideración los bajos costos de inversión, en este trabajo se propone evaluar la Tecnología Jet como una alternativa para recuperar estas emisiones continuas de gas de baja, utilizando en particular un nuevo diseño de Jet anular [**Ref. 5**] para la generación de succión (ver equipo en la **Fig. 5**). Se plantea realizar el diseño e instalación de un banco de pruebas donde se pueda representar el proceso y al mismo tiempo almacenar la data en tiempo real. Una vez caracterizado el proceso experimentalmente, se podrá concluir si la recuperación de vapores en tanques de almacenamiento de crudo es técnicamente factible, así como también identificar y evaluar las variables más importantes del proceso.

En la **Fig. 4** se muestra una estación de flujo típica, con los equipos mínimos requeridos para el transporte de crudo hacia los patios de tanque, es decir, un circuito abierto representado por un grupo de pozos, integrados por un múltiple de producción, donde se concentran los fluidos que se enviarán al separador, posteriormente la corriente menos densa (gas) y las mas pesadas (crudo – agua) se derivarán al depurador y al tanque de almacenamiento respectivamente; continuando en ambos casos procesos separados que finalmente llegaran hasta el sistema de compresión y patios de tanque. Detállese en la **Fig. 4** que se ha representado de color verde las tuberías que transportan el caudal de crudo, de color azul las tuberías del caudal de gas y de color amarillo las líneas que representan el venteo de la estación.

En la **Fig. 5** se muestra la propuesta de instalación del Jet de Superficie para la Aplicación en estaciones de flujo, donde el suministro del fluido motriz se obtiene del tanque de almacenamiento, posteriormente se presuriza utilizando un sistema de bombeo adicional, que trabajará a la condición requerida por el Jet y con la finalidad de succionar los vapores emanados por los tanques. La configuración del circuito adicional se presenta con líneas de color fucsia.

Nótese que la descarga del equipo se envía nuevamente a la entrada del separador para cerrar el ciclo de la mezcla bifásica, evitando la pérdida al ambiente de este gas de baja presión.

8

Fig. 4 Esquema actual de proceso de separación

Fig. 5 Esquema de solución propuesto para una Estación de Flujo típica

1.2. Objetivos

1.2.1. Objetivo General

Determinar la factibilidad técnica de utilizar la Tecnología Jet como una alternativa para recuperar las emisiones continuas de gas de baja proveniente de los tanques de almacenamiento de crudo.

1.2.2. Objetivos Específicos

- Recopilar toda la información referente al proceso de la recuperación de vapores en tanques de almacenamiento, cuantificar y recuperar los niveles de emanaciones de vapores y/o gases provenientes del proceso de almacenamiento de crudo en las estaciones típicas recolectoras de crudo.
- Formular una matriz experimental según los modelos teóricos para la recuperación de vapores en tanques de almacenamiento de crudo utilizando un Jet diseñado en Venezuela [Ref. 5] para la extracción de las emanaciones. Tomando en cuenta las limitaciones del sistema en general.
- Determinar los parámetros de funcionamiento del proceso adecuados a las condiciones operacionales de la industria que permitan la evaluación del proceso diseñado.
- Conceptualizar la configuración geométrica del método y/o sistema solución a este problema por vías mecánicas, que incluya la generación de succión por vacío en los recipientes con el uso del dispositivo tipo jet para la compresión del gas.
- Diseñar e instalar el banco de pruebas en el Centro Experimental de Producción (CEPRO): Formulación del circuito y sus limitaciones, búsqueda de materiales e

instrumentación requerida, instalación y supervisión de la construcción del circuito en campo (CEPRO).

- Ejecutar las pruebas en el CEPRO según la matriz experimental diseñada, calibrar la instrumentación a utilizar, supervisar las pruebas y seleccionar los parámetros más relevantes del circuito. Comparar resultado experimental con modelos teóricos [Ref. 6].
- Determinar la relación óptima entre el fluido succionado y el fluido de inyección, según los resultados experimentales, así como la opción más rentable.

Es conveniente comentar que durante la investigación pueden surgir objetivos adicionales, modificarse los objetivos iniciales e incluso ser sustituidos por nuevos objetivos, esto dependerá de la dirección que tome la investigación.

1.3. Justificación del estudio

A pesar de que el tópico del problema planteado pudiera no ser tan atractivo como por ejemplo, con obtener una mayor rentabilidad en la explotación de crudos pesados u otro tópico de gran impacto económico a corto plazo, la investigación se considera conveniente por diversos motivos: se abordará un tema anteriormente no estudiado por la Industria Petrolera, por lo que se dispondrá de un arte previo de la Recuperación de Vapores en general y en especial utilizando la Tecnología Jet. Adicionalmente ayudará a resolver un problema ambiental, disminuyendo o erradicando las emisiones al ambiente.

Los resultados experimentales podrán ser la base para desarrollar alguna teoría o apoyarla, se podrá establecer la comparación de diferentes variables o cuan importante es la relación entre ellas. Por otra parte, la investigación pudiera ser el inicio de un nuevo sistema indispensable a la hora de evaluar o diseñar una estación de flujo.

Desde el punto de visto metodológico, esta investigación pudiera servir para una posterior evaluación que defina un modelo numérico que represente el proceso de recuperación de vapores mediante la información recopilada experimentalmente, que dotará al estudio la validez del modelo.

1.4. Importancia del estudio

Profundizar el conocimiento referente a la recuperación de vapores de gas en estaciones de flujo, a partir de las cuales se espera encontrar la factibilidad técnica del esquema propuesto y su enfoque desde el punto de vista experimental.

La importancia para la Industria en el caso de ser factible la implantación de este nuevo sistema en campo, estará determinada principalmente por la oportunidad de ahorro de gas en los tanques de almacenamiento, disminuir los riesgos de incendio que pudiesen generarse por el venteo continuo de vapores a través de la chimenea de los tanques de almacenamiento, así como asegurar el desarrollo de las operaciones con el mínimo impacto ambiental posible.

Desde el punto de vista científico se analizará un nuevo método para la recuperación de vapores que aportará una ventana de aplicación para incrementar la recuperación de gas. Adicionalmente se utilizará un equipo de diseño propio, empleado exitosamente a nivel de fondo de pozo [**Ref. 7**], y en esta oportunidad a nivel de superficie aportando la base de conocimientos para nuevas aplicaciones.

1.5. Recursos y contexto general de la investigación

Para el cumplimiento de los objetivos, se cuenta con las instalaciones de PDVSA Intevep, específicamente el Centro Experimental de Producción **CEPRO**, así como las diferentes fuentes documentales existentes en estas instalaciones.

1.6. Limitaciones de la investigación

Inicialmente se consideró que parte de las pruebas se realizarían en un Banco de pruebas de las instalaciones de PDVSA Intevep, ubicado en el Edificio Noroeste 6. Sin embargo, fue aprobado el presupuesto para ejecutar los experimentos en el Centro Experimental de Producción (**CEPRO**) cuya instalación esta dotada por una configuración realista de las estaciones de flujo, por lo que se formalizó allí la totalidad de las pruebas. Es importante mencionar que también se tenía previsto la aplicación del método/sistema resultante en Campo (UEY Lagocinco), no obstante, esta acción dependerá de los resultados encontrados.

Considerando que la totalidad de pruebas se ejecutarán en el centro experimental de producción **CEPRO**, las restricciones de la investigación se verán delimitadas por la infraestructura y capacidad de la instalación. A continuación se presenta un resumen de las limitaciones enmarcadas por los cuatro sistemas que conforman el proceso a evaluar:

a) Sistema de Recolección de Producción: la capacidad de la infraestructura instalada está limitada por 2000 BPD, y con una presión del múltiple de producción entre 50 y 200 Psig, por lo que la analogía de la investigación se realizará para representar pozos con una producción no mayor de 2000 BPD, mezcla gas - crudo, sin presencia de sólidos,

b) Sistema de Separación: flujo gas - crudo, separadores verticales, medición por peso, porcentaje de incertidumbre de la medición entre 1 y 2 %, sin contenido de sólidos.

c) Sistema de Almacenamiento: limitado sólo a Tanques de Techo Fijo.

d) Sistema de Recolección de Vapores: se utilizará para la extracción de las emanaciones el dispositivo Jet Anular [Ref. 5].

CAPÍTULO II

2. MARCO TEÓRICO

Sustentar teóricamente el estudio mediante el marco teórico, implica analizar y exponer las teorías, los enfoques, las investigaciones y los antecedentes en general que se consideren válidos para el correcto vínculo del estudio, por lo cual a continuación se presentará un resumen de los aspectos más importantes que integran esta tesis de grado, considerándose: La Tecnología Jet, La Recuperación de Vapores en Tanques de Almacenamiento y Los Sistemas de Producción de Crudo.

2.1. Antecedentes

Los problemas de pérdida de energía por emanaciones en las estaciones de flujo convencionales, no es una dificultad nueva. Sin embargo, muy pocos han sido los investigadores que han tomado en cuenta este problema, bien sea por no considerarse un inconveniente de alto impacto ó debido a que los costos de inversión resultan poco atractivos. No obstante, algunos pioneros dentro de la industria petrolera han determinado un grado de importancia, encontrando:

- En 1993, PDVSA instaló una Unidad de Recuperación de Vapores (URV) en la estación de flujo de Centro Lago I. Se estimó una tasa de recuperación de 2,1 MMscfd.
- En 1996, PDVSA realizó un Análisis de Proceso/Riesgo (Sistema de separación, dispersión de gases, sistema de pararrayos...), a la estación de flujo EF-21-5, de la UE Lagocinco. El estudio indicó un estimado de 10,0 MMscfd de emisiones (tasa instantánea).

- 3. En 1997, PDVSA UE Centro Sur Lago, evaluó emisiones en las estaciones, encontrándose valores en el orden de 1 MMscfd.
- En 1999, PDVSA INTEVEP junto con la UE Lagocinco, realizó una evaluación hidráulica de las estaciones de flujo, reportando un estimado de 0,09 - 0,8 MMscfd de emisiones venteadas a la atmósfera [Ref. 8].
- En el 2000, PDVSA I & P Occidente, realizó estudio para la evaluación de opciones de URV. El mismo señaló cuantificaciones en las emisiones de vapor en el orden de 1,2 -1,4 MMscfd.
- 6. En el 2001, PDVSA UE Lagocinco, desarrolló una tesis a fin de definir un esquema de URV para las estaciones de flujo. Se estimó una tasa de emisiones en el orden de: 0,6
 1,2 MMscfd, y una tasa máxima probable de 3,0 MMscfd (instantánea), [Ref. 3].
- 7. En el año 2001, la gerencia de apoyo técnico de ingeniería y proyectos de PDVSA, ejecutó un estudio "Recuperación de vapores en tanques y optimización del proceso de producción en estaciones de flujo", donde se plantean diferentes esquemas de recuperación de gases en tanques mediante la tecnología Jet.

2.2. Bases Teóricas

2.2.1. Tecnología Jet

El dispositivo Jet es un equipo sencillo, no posee partes móviles, su geometría es adecuada para su fácil instalación. Dentro de las principales partes del equipo se destacan básicamente tres secciones: tobera y boquilla, garganta y difusor. La acción de bombeo y/o compresión (depende de la aplicación) es obtenida cuando un fluido impulsor transfiere su energía al fluido a succionar a la salida de la boquilla y la garganta del dispositivo [**Ref. 9**]. A continuación un breve resumen de las secciones del dispositivo:

2.2.1.1. Descripción de las secciones que conforman el dispositivo Jet

a) La Tobera: consta de dos partes cónicas y concéntricas de igual longitud: la sección convergente del cuerpo y la boquilla (descrita esta última como la sección cónica interior). A través de la sección transversal de la boquilla, circula el fluido de baja presión y por el área entre la superficie externa del cono interior y la superficie interna de la sección convergente del cuerpo o tobera, pasará el fluido impulsor o de potencia. La reducción del área transversal anular de esta sección genera un aumento progresivo de la velocidad del fluido impulsor, el cual, al salir de la boquilla anular, genera un "jet", también anular de alta velocidad y baja presión rodeando el núcleo de fluido de baja energía para dar inicio al final de la tobera a la transferencia de energía cinética entre el fluido impulsor y el fluido a succionar.

b) La garganta: Se considera la garganta, como la sección más importante del equipo Jet, debido a que es en ésta, donde el fluido impulsor le transfiere parte de su energía al fluido succionado, obteniéndose como resultado la mezcla de los dos fluidos y un nivel energético intermedio a los iniciales. Se cumple que a mejor mezclado, mejor es la eficiencia del equipo. En 1974 Cunningham [Ref. 2] verificó que la eficiencia de estos dispositivos es mayor cuando el proceso de mezcla es realizado totalmente en la garganta, no obstante, la eficiencia disminuye drásticamente cuando la zona de mezcla se extiende hasta el difusor o cuando la longitud de la garganta es excesiva.

c) El Difusor: en esta sección la mezcla que sale a la garganta con un nivel intermedio de energía cinética, transforma su energía cinética en energía de presión, debido a un incremento progresivo en su sección transversal. Esta sección debe ser diseñada para recuperar la presión requerida para el transporte del fluido.

16

El diseño del dispositivo Jet evaluado en esta tesis de grado esta conformado por las tres partes descritas anteriormente, sin embargo, el diseño difiere al de los modelos comerciales debido a que el fluido impulsor o de potencia forma un anular con respecto al fluido succionado que viene por la boquilla, ver **Fig. 6**, los diseños comerciales poseen la configuración contraria. Con esta nueva configuración se logra un mejor intercambio de la cantidad de movimiento entre el fluido impulsor y el fluido succionado debido a que el área de contacto entre los dos fluidos es superior, consecuentemente el proceso de mezclado entre ambos fluidos logra una mejor transferencia de la energía [**Ref. 9**].

Fig. 6 Esquema diseño comercial y diseño propio

2.2.1.2. Parámetros que definen el comportamiento del Jet

a) Parámetros geométricos: Existen dos parámetros geométricos relevantes que definen el comportamiento del Jet. Relación de áreas "R" y Relación de longitud de la zona de mezcla "L/D": Relación de áreas: Se denomina "R" y se define como la relación entre el área de la sección transversal del anular por donde atraviesa el fluido impulsor y el área de la sección transversal de la garganta del dispositivo.

$$R = \frac{A_{anular}}{A_{g \arg anta}}$$

Relación de la longitud de la zona de mezcla "t = L/D": Se define como la relación entre la longitud de la zona de mezcla y el diámetro de la garganta. Es un parámetro que representa la efectividad de la transferencia de energía entre el fluido motriz y el fluido bombeado. Según diversos autores la longitud óptima es L/D = 5 [Ref. 10]. Mientras este parámetro sea más pequeño, la transferencia de energía entre ambos fluidos será más deficiente. Para una relación de la longitud de la zona de mezcla mayor, la mezcla de ambos fluidos mejorará y la transferencia de energía entre los mismos será mayor. Sin embargo, existe un punto de equilibrio ó diseño óptimo, que dependerá de las condiciones operacionales, ya que si la relación "L/D" es muy grande y las velocidades en el dispositivo son muy elevadas, las fuerzas de fricción serán mayores pudiéndose perder parte de la energía desarrollada en el dispositivo.

$$\ell = \frac{L}{D}$$

b) Parámetros operacionales: Existen dos parámetros operacionales relevantes que definen el comportamiento del Jet: Relación de masas "**M**" y Recuperación de presión "**N**":

Relación de flujo másico "M": Se define como la relación entre el flujo másico del flujo de baja presión y el flujo másico del flujo de alta presión. Este parámetro adimensional indica la calidad de la selección realizada del equipo. M representa la relación entre lo

succionado versus lo inyectado. Mientras mayor es esta relación mejor comportamiento tendrá el dispositivo.

$$M = \frac{M_{succión}}{M_{inyección}}$$

Recuperación de presión "N": Se define como la relación entre la diferencia de presión entre la descarga y succión del equipo y la diferencia de presión entre la succión del fluido motriz y la descarga del equipo.

$$N = \frac{P_d - P_s}{P_j - P_d}$$

2.2.1.3. Modelos teóricos que definen el comportamiento del Jet

Muchos autores han dedicado parte de sus investigaciones en desarrollar la Tecnología Jet, conocer sus bondades y limitaciones, dentro de las cuales puede determinarse que el primer uso de un Jet-Pump de agua es acreditado a James Thomson (1852) en Inglaterra [**Ref. 11**]. J.M. Rankine desarrolló la teoría básica de operación en 1870 usando conceptos de conservación de la masa y energía [**Ref. 12**]. Posteriormente, Lorenz (1910) modeló las pérdidas de la mezcla [**Ref. 13**] y Gosline y O'Brian [**Ref. 14**], realizaron una primera representación matemática, la cual fue luego desarrollada por Cunningham [**Ref. 10**]. Este último describe un conjunto de ecuaciones dimensionales del comportamiento de bombas geométricamente similares.

La primera descripción de la operación de una bomba Jet para una aplicación de campo fue descrita en una publicación en 1933 para levantamiento artificial en pozos de petróleo [**Ref. 15**]. En 1970 el primer prototipo se instaló en un pozo de petróleo [**Ref. 16**]. Desde entonces, ha sido muy poca la información publicada al respecto.

Las primeras ecuaciones desarrolladas por los mencionados autores fueron para líquidos, no obstante, el flujo proveniente de la formación contiene gas y, esto afecta el rendimiento de las bombas. Por su parte Cunningham [**Ref. 17**], encontró simples y útiles ecuaciones aún cuando el modelo inicial es monófasico.

Las ecuaciones desarrolladas para obtener las curvas de eficiencia de un "Jet Pump" convencional fueron definidas por Jiao [**Ref. 1**], utilizando como base los parámetros dimensionales establecidos (**R**; L/D, **M**, **N**), así como también por investigadores como Petrie [**Ref. 18**] cuyas ecuaciones difieren de Jiao sólo en el número y valores de los coeficientes de pérdidas en los modelos matemáticos.

Las curvas de eficiencia de un "Jet Pump" convencional fueron definidas por Jiao [**Ref. 1**], de acuerdo a las siguientes suposiciones:

- Flujo unidireccional
- El fluido impulsor y bombeado se consideran incompresibles.
- Estado estacionario.
- Flujo isotérmico.
- La energía cinética a la entrada y salida del "Jet Pump" se considera despreciable.
- Perfecto mezclado de los fluidos a la salida de la garganta.
- Se desprecian efectos de borde y fricción.

Estas suposiciones fueron realizadas con respecto al dispositivo convencional que se caracteriza, en particular, por presentar una boquilla centrada en el área de flujo, la cual no representa la mejor disposición de los fluidos cuyo efecto se relaciona a una escasa área de contacto entre los fluidos interactuantes, tal y como se había mencionado anteriormente.
a) Modelo teórico para flujo monofásico desarrollado por Jiao [Ref. 1]:

$$M = \frac{M_{succión}}{M_{inyección}}$$

$$N = \frac{P_d - P_s}{P_j - P_d}$$

$$N = \frac{2 \times R + (1 - 2 \times R) \times \left(\frac{R}{1 - R}\right)^2 \times M^2 - (1 + K_{td}) \times R^2 \times (1 + M)^2}{(1 + K_n) - 2 \times R - (1 - 2 \times R) \times \left(\frac{R}{1 - R}\right)^2 \times M^2 + (1 + K_{td}) \times R^2 \times (1 + M)^2}$$

 $E = N \cdot M$

En la **Fig. 7** y en la **Fig. 8** se presentan gráficamente el modelo teórico de Jiao, por medio de las curvas de eficiencia y recuperación de presión, ambas con respecto a diferentes relaciones de área [**Ref. 1**]. Estas curvas de eficiencia y recuperación de presión, fueron obtenidas introduciendo al programa Math-Cad[®] el modelo matemático consultado en la literatura [**Ref. 1**] con seis relaciones de áreas específicas, éstas pudieran ser de gran utilidad a la hora de compararlas con los resultados de simulaciones numéricas del dispositivo.

Los estudios encontrados con respecto a modelos teóricos están –en la mayoría de los casos- enfocados a la parte monofásica, a excepción de referencias como la del método de extracción de gas en Estaciones de Flujo propuesto en la **Ref. 6**, que a pesar de considerar flujo bifásico, no valida su desarrollo matemático con la parte experimental. Es bien conocido que determinar un sistema de ecuaciones que considere la compresibilidad del gas y transferencia de energía entre fluidos multifásicos es una labor compleja, con lo

que pretender una evaluación del proceso tomando en cuenta resultados experimentales mediante variables controladas pudiera derivar una opción realista y efectiva.

Fig. 7 Curvas de eficiencia para diferentes relaciones de área

Fig. 8 Curvas de Recuperación de presión para diferentes relaciones de área

2.2.2. Recuperación de Vapores en tanques de almacenamiento

La mayoría de los tanques de almacenamiento de crudo a nivel mundial no tienen recuperación de vapor por lo que en ellos se desarrollan gases que son venteados a la atmósfera [**Ref. 19**]. La industria desde 1990 se ha visto en la necesidad de cuantificar estas emisiones debido a la necesidad de disminuir la contaminación ambiental. Por la naturaleza de las emisiones que se ventean a la atmósfera, las mismas están dentro de la categoría de Aire Contaminante (**HAP**) y Compuestos orgánicos volátiles (**VOC**).

Un aspecto importante para propósitos de los reportes de regulación y como base para el diseño de unidades recuperadoras de vapor (VRU) lo representa cuantificar los Compuestos orgánicos volátiles (VOC). Muchas operadoras han intentado medir las emisiones en sitio. Sin embargo, el alto costo y los resultados poco predecibles que pueden ser directamente atribuidos a la naturaleza del sistema del tanque, han desanimado al uso de medición en campo como opción viable para la estimación de emisiones.

En Junio de 1993, el Instituto Americano de Petróleo (API) inició un proyecto para desarrollar un método de estimación de las emisiones de los tanques de almacenamiento de crudo. El método se basa en el uso de técnicas computarizadas de simulación de procesos. Dentro de los cuales se resalta que los componentes mas comunes encontrados en las emisiones son N-Hexano, Benceno, Tolueno, Etil-Benceno y Xilenos los 189 gases considerados como contaminantes. El método usado es el AP-42, éste esta diseñado para cuantificar las emisiones, sin embargo, fue desarrollado considerando que los productos del hidrocarburo tienen una presión de vapor igual o menor a 12 Psi, en la realidad esta presión esta por encima de 35 Psi por lo que la estimación no es la mas realista.

23

Según la publicación realizada por Choi, M.S. en la SPE [Ref. 19] las emisiones de los tanques de almacenamiento se clasifican en tres categorías:

- *Pérdidas Intermitentes (Flashing Loss)*: estas pérdidas representan los vapores que son generados cuando la presión del crudo es reducida desde la presión del separador de baja hasta la presión del tanque de almacenamiento. Esta fuente de emisión es la más grande de las tres. Depende de la temperatura, presión y composición de los fluidos que entran al tanque.
- Pérdidas de Trabajo (Working Loss): estos son los vapores que son desplazados desde el tanque durante el ciclo de llenado. Son producto de la liberación y del desplazamiento de vapores ocasionados por las variaciones del nivel del líquido cuando se llena y se vacía el tanque.
- Pérdidas de respiración (Breathing Loss): los vapores que son generados cuando el tanque es calentado y enfriado durante el curso del día, y la vaporización de los hidrocarburos líquidos debido a los efectos del aire despojado.

La forma más rigurosa de determinar las emisiones en los tanques es medir el flujo actual, tomar una muestra del vapor y analizar la composición de la muestra a través de técnicas que revelen la Cromatografía del gas. Desafortunadamente este procedimiento es sumamente costoso (aproximadamente \$30000), [**Ref. 19**].

La composición y rata de los diferentes vapores (*flashing, working, breathing*) varía de acuerdo a cada cambio operacional y a las condiciones del ambiente. La presión interna de los tanques puede variar desde 0,5 oz/in² vacío hasta 4-8 oz/in² presión.

Con respecto a la cuantificación del volumen de gas, la **Ref. 20** y la **Ref. 21** enfatizan que es difícil llegar a una regla del dedo pulgar que pueda ser usada para estimar el volumen de gas que esta siendo venteado desde un tanque de almacenamiento. Probablemente los factores más importantes son la presión de separación que es descargada al tanque y la gravedad del crudo. Sin embargo, en la **Fig. 9** se muestra una aproximación del volumen de gas que será desarrollado por barril de crudo si la presión del separador, la presión del tanque de almacenamiento y la gravedad **API** del crudo son conocidos. Esta curva no debería ser usada para estimar unidades de recuperación de vapor, no obstante, ayuda a reconocer cual tanque tiene potencial para una **URV**.

Fig. 9 Volumen de gas

2.2.3. Esquema general de producción de crudo

A continuación se presenta una breve descripción de las instalaciones que intervienen directamente con el estudio realizado a los fines de establecer las principales características de cada proceso [**Ref. 22**, **Ref. 23**, **Ref. 24**].

a) Estaciones de Flujo: Las estaciones de flujo reciben la producción multifásica desde los pozos, en los separadores de producción es donde se efectúa el proceso de separación del gas y líquidos, siendo el crudo enviado al tanque de almacenamiento de la estación, permitiendo un tiempo de residencia para la estabilización del crudo, luego se transporta mediante bombeo hasta su destino definitivo, los patios de tanques ubicados en tierra firme. El gas separado, se recupera mediante una red de recolección de baja presión, siendo su destino final una planta de compresión o las miniplantas de compresión, donde se retorna a la producción como gas de alta presión.

b) Múltiples de Producción: A los múltiples de producción llegan los fluidos multifásicos provenientes de cada uno de los pozos productores. Consisten generalmente de dos tubos colocados en posición horizontal, paralelos entre sí y conectados ambos a las líneas de flujo que llegan a la estación. Según su función se denominan en:

- □ *Múltiple de producción general:* recibe la producción de todos los pozos (6, 8 ó 10").
- Múltiple de pruebas: se utiliza para aislar la línea de flujo de cada pozo, con el fin de medir su producción (4, ó 6").

c) Sistemas de separadores: Es uno de los equipos más utilizados en la industria petrolera, es utilizado para separar de una corriente de hidrocarburo, el líquido y gas que existe a una temperatura y presión específica. Las funciones de un separador se enumeran como, evitar arrastre de gotas de líquido en la corriente de gas y evitar presencia de burbujas de gas en la corriente líquida. Generalmente son de dos tipos:

- Separadores bifásicos: separa los fluidos del pozo, líquido y gas, el gas por el tope y el líquido por el fondo.
- Separadores trifásicos: separa los fluidos del pozo, líquido, agua y gas, el gas por el tope y el agua por el fondo, y el petróleo por la mitad.

Los separadores generalmente poseen cuatro secciones fundamentales:

- Description: Primaria: remover partículas líquidas grandes arrastradas por el gas (deflectores).
- Secundaria: separar gotas dispersas en el gas mediante separación gravimétrica.
- Acumulación de líquidos: remover burbujas de gas arrastrada por el líquido (rompe vórtices).
- Extracción de neblina: despojar partículas líquidas no separadas en la sección secundaria (Malla de alambre).

Se fabrican en diseños: horizontales, verticales, esféricos. Hay separadores para la producción general y separadores de prueba. Los separadores se fabrican de acero, cuyas características corresponden a las normas establecidas para funcionar en etapas específicas de alta, mediana o baja presión. En la separación de gas y petróleo es importante considerar la expansión que se produce cuando el gas se desprende del petróleo y la función que desempeña la presión. La separación para una, dos o tres etapas está regulada por factores tales como presión de flujo en el cabezal del pozo, la presión con la que llega a la estación, la relación gas – petróleo, la temperatura y el tipo de crudo. La última etapa de separación ocurre en los tanques de almacenamiento, donde todavía se desprende gas del petróleo, a una presión levemente mayor o igual a la atmosférica.

d) Sistema de Tanques: Existen muchos tipos de tanques, éstos estarán pautados por el uso que se le dará a los mismos, en lo que respecta a esta tesis de grado se enfocará toda la información referente a los tanques en las estaciones de flujo.

Los tanques utilizados para el almacenamiento son cilíndricos y su altura y diámetro están en función de su capacidad. Los hay de dos tipos: empernados para volúmenes pequeños

27

en caso contrario se utilizan tanques soldados. Para ambos casos la construcción de los tanques es de acero al carbono o aleados de acero.

De acuerdo al uso, climatología, el tamaño, el viento, hay que considerar el tipo de techo.

- □ *Abiertos:* ejemplo agua de procesos.
- *Fijos:* crudos pesados o medianos. Estos tanques se diseñan normalmente para soportar presiones internas próximas a la atmosférica o a presiones inferiores a 1,5 "H₂0 o su equivalente, 1,0 kg/cm² ó 14,22 Psi, [**Ref. 24**]. Este estudio esta limitado a tanques de techo fijo.
- Flotantes: crudos muy livianos o productos del petróleo.

Se debe proveer de un venteo adecuado a fin de prevenir una sobre presión o la creación de un vacío, lo cual puede ocurrir durante el llenado o vaciado, o cambios en la temperatura ambiente. Para tanques de techo fijo, los venteos serán de tipo abierto, a menos que se requiera un venteo para presión y vacío, o alguna instalación especial para el caso de **RVTA**.

Estimación de pérdidas en Tanques

El Manual de Petróleo de Medidas estándar, **API 2518**, en su capítulo número 19, muestra la medición para las pérdidas por evaporación [**Ref. 25**]. Esta referencia esta enfocada al cálculo de las pérdidas por evaporación en tanques de techo fijo, donde se muestra un método mejorado para estimar las pérdidas por evaporación total o su equivalente a las emisiones de hidrocarburos a la atmósfera desde los tanques que almacenan crudo. Las ecuaciones que se presentan en esta publicación fueron desarrolladas utilizando los datos de pruebas en tanques y son estimadas con una referencia de perdidas anuales desde tanques de techo fijo sin aislamiento y para varios líquidos almacenados, presiones de vapor del almacenamiento, tamaño de los tanques, condiciones meteorológicas, y condiciones de operación.

Para mayor detalle, en la **Ref. 25** se encuentran detalles de la metodología de cálculo. En las normas se aconseja que para la selección de equipos de **RVTA** se deberían considerar todas las pérdidas relacionadas al cálculo y no sólo las originadas por evaporación. Existen otros factores no discutidos en esta publicación, tal como la operación de los tanques, mantenimiento, y seguridad, que son importantes en el diseño y selección de los equipos del tanque para una aplicación dada.

d) Sistema de bombeo: Suministra al fluido la energía necesaria para llegar por intermedio del oleoducto a los tanques de almacenamiento provisional. Para crudos pesados las bombas mas usadas son las reciprocantes, de doble efecto dúplex.

e) Línea de gas: Todo sistema que transporta el gas una vez separado del petróleo en los separadores hasta que sale de la estación de flujo. Puede seguir dos vías: a) Hacia las plantas de conservación de gas, donde es comprimido a altas presiones; b) gas venteado.

f) Equipos auxiliares: Equipos para inyección de química, sistemas de pararrayos, facilidades eléctricas: generadores, transformadores, alumbrado, motores, etc.

g) Sistema de distribución: El sistema de distribución comprende el múltiple de producción, conjunto de válvulas que integran las tuberías entre el múltiple de producción y los separadores.

CAPÍTULO III

3. MARCO METODOLÓGICO

3.1. Tipo de estudio

Tomando en cuenta el alcance, el porqué de la investigación, los fundamentos teóricos y los aspectos que quieren probarse, a continuación se definirá el tipo de investigación que caracteriza el estudio. Según el nivel de conocimiento científico, diferentes autores clasifican los tipos de investigación en tres: observación, descripción, explicación (por ejemplo, Sellitz, Jahoda, Deustsch y Cook, 1965; y Babbie, 1979).

Este estudio se inicia de manera *exploratoria* debido a que la recuperación de vapores en los tanques de almacenamiento es un tema poco explorado, por lo que se busca con este estudio construir un marco teórico de referencia.

Así mismo para ejecutar la parte experimental, y considerando que este tema no ha sido abordado dentro de la Industria Petrolera, cuenta con pocos antecedentes en cuanto a su modelo teórico y a su aplicación práctica, es necesario buscar la información disponible del tema y explorar lo que la literatura pueda aportar. Bajo este escenario es posible encontrarse con fenómenos de la recuperación de vapores que son desconocidos, con lo cual podría darse lugar a una investigación más completa y que pueda establecer la comparación de un modelo teórico y el experimental.

Esta investigación representa también un *estudio descriptivo* debido a que para poder alcanzar los objetivos generales es necesario medir las variables más importantes del proceso general de recuperación de vapores, así como de la tecnología Jet, ver cómo cada una de ellas independientemente puede influir en el sistema, para así describir lo que se investiga. Por medio de este estudio es posible llevar a cabo un conocimiento de mayor profundidad que el *exploratorio*. El propósito es la delimitación de los hechos que conforman el problema de investigación. Por lo que será posible establecer las características del sistema, identificar las variables más importantes, descubrir y comprobar la posible asociación de las variables de investigación (relación entre los distintos fluidos de inyección, ver la relación entre aspectos teóricos y los simulados).

Una vez *explorado* el tema de la recuperación de vapores, sus antecedentes, y cómo puede estudiarse el fenómeno, así como la estructura que debe incluirse para la ejecución de la parte experimental, se describe el proceso por medio de los resultados experimentales, para dar lugar a correlacionar las ecuaciones que describen cada proceso de manera de responder a las causas de los eventos físicos, para así explicar por qué ocurre un fenómeno en qué condiciones se da éste, y cómo dos o más variables están relacionadas entre sí.

3.2. Método de Investigación

El método de investigación lo constituye el conjunto de procesos que la investigación involucra para llegar a la observación, descripción y explicación de la recuperación de vapores en tanques de almacenamiento utilizando la tecnología Jet como método de extracción.

El *método de análisis* es el seleccionado para este trabajo por la naturaleza del mismo, inicia su conocimiento con la identificación de cada una de las partes que caracterizan el proceso, de este modo se establece las relaciones causa - efecto entre los elementos que componen el objeto de investigación.

3.3. Fuentes y técnicas para la recuperación de datos

La revisión de la literatura consistió en detectar, obtener y consultar la bibliografía y otros materiales que pudieran ser útiles para los propósitos del estudio. Es recomendable iniciar la investigación en un Centro de Información Técnica donde se puedan verificar varias bases de datos, en este caso se consultó en el Centro de Información Técnica de PDVSA Intevep (**CIT**) la revisión de la literatura de interés.

Durante la revisión se encontró muy poca información referente al tema de estudio. La detección de la literatura se realizó en las Fuentes primarias: revisión de la bibliografía por medio de libros, tesis, disertaciones, seminarios. Así como en las Fuentes secundarias: organizaciones que publican en el campo, como por ejemplo **SPE**.

De esta manera, se plantearon una combinación de palabras claves asociadas al marco teórico. Los resultados de la investigación arrojaron un número considerado de publicaciones que abordaban los temas investigados, sin embargo, sólo unas pocas publicaciones fueron seleccionadas por ajustarse mejor a los objetivos y propósitos del estudio. A continuación se presenta un resumen de la investigación realizada y cuyo período abarcó los meses comprendidos entre abril y diciembre del año 2002.

3.3.1. Centro de Información Técnica (CIT)

Se recopiló toda la información técnica referente a la Recuperación de Vapores y Tecnología Jet en PDVSA Intevep y en la Industria petrolera en general, con lo cual se obtuvo información relevante y necesaria que concierne a la recuperación de vapores, y los métodos de extracción, para tal fin se dispuso de la base de datos interna y los resultados se resumen a continuación.

- Con respecto a la Recuperación de Vapores en Tanques de Almacenamiento, se encontró un Informe Técnico de Modelado y simulación de facilidades de producción para el manejo de crudos: Recolección de vapores de crudos generados en los tanques de compensación de las estaciones de flujo [Ref. 6], sin éxito en cuanto a manuales técnicos, o informes de inteligencia tecnológica asociados al tema de discusión.
- Considerando que de los métodos de extracción de vapor se considera la Tecnología Jet como el centro de esta investigación, se ubicó la documentación técnica referente a las diferentes aplicaciones donde ha sido utilizada la Tecnología Jet dentro de la Industria Petrolera, encontrándose 53 informes técnicos, 42 referentes a su uso potencial para las operaciones de subsuelo y 11 a las operaciones de superficie, no obstante, sólo el mencionado en el punto anterior, estaba relacionado específicamente con la recuperación de vapores.

3.3.2. Gerencia del Conocimiento

La Gerencia del Conocimiento es una sección que se puede visualizar en la página web de PDVSA y que tiene como finalidad traer en discusión temas de atención concernientes a problemas operacionales, mejoras tecnológicas, aplicación de nuevos métodos; de manera de obtener una rápida difusión entre el personal interno que se encuentra ubicado en diferentes zonas del país. Dentro de la Gerencia del Conocimiento se encontró que grupos como Ingeniería básica y conceptual de Occidente han estudiado la idea de unidades recuperadoras de vapor, considerando un mínimo de inversión, no obstante, los estudios relacionados han sido internos y sin publicaciones emitidas. Se encontró una serie de consejos como un diseño de proceso que se propuso para unidades recuperadoras de vapor en las estaciones de flujo de Centro Lago, Occidente. De esas experiencias en los foros de conocimiento se encontró que en la estación de flujo EF CL-2 se contaba con un sistema de recolección de vapores el cual operaba a dos niveles de presión 0 lppcm de los tanques de almacenamiento y 15 lppcm de los separadores de segunda etapa de la estación de flujo. Se utilizaron compresores reciprocantes, posteriormente se suspendió la evaluación debido a que las válvulas de los compresores reciprocantes reciprocantes resultaron muy sensibles y generalmente los vapores de crudos livianos eran muy ricos en C3+ depositándose en las mismas.

3.3.3. Normas PDVSA

La revisión de las Normas PDVSA con respecto a tanques y recipientes fue ejecutada, encontrándose de particular interés las Normas PDVSA para tanques atmosféricos o de baja presión **F-201-PRT** [**Ref. 26**]. En las mismas se establece que en cuanto al venteo en tanques, la especificación de Ingeniería para tanques de almacenamiento de techo fijo, en lo que respecta al diseño e instalación de los venteos normales y de emergencia deberán ser especificados según la norma **API STD 2000** [**Ref. 27**].

Las normas PDVSA para tanques atmosféricos o de baja presión **F-201-PRT** surgieron como resultado de la revisión e incorporación de los criterios técnicos de PDVSA y de todas las normas venezolanas e internacionales (**COVENIN**, **ASTM**, **API**, **ASME**, y **ANSI**).

3.3.4. API

La normativa básica para la construcción de tanques de almacenamiento de petróleo, soldados es el API-650 [Ref. 24]. El API-650 ofrece cuatro bases de diseño diferentes: el método básico original y tres alternativas con bases no mandatarios, que permiten la utilización de valores más altos de los esfuerzos en diseño. Las reglas de diseño dadas en el código API-650 cubren los requerimientos mínimos y necesita ser suplementaria con

34

los requerimientos del comprador. Además existen normas internacionales para la construcción de tanques y que dependen del tamaño y el uso del mismo, las siguientes pautas rigen la normativa:

Estación de Flujo: API 12 B-D

Petróleo crudo: API 650

Gas líquido: API 620

Con respecto específicamente a los tanques de techo fijo, el apéndice F de la norma API-650 cubre el diseño de los tanques con presiones internas pequeñas. En cuanto al venteo en tanques de techo fijo, el API-650 exige que los venteos sean dimensionados de conformidad con las exigencias del API-2000 para los máximos caudales de bombeo especificados.

Tal y como se había mencionado anteriormente, una estimación de las ecuaciones necesarias para estimar las pérdidas por evaporación o las equivalentes emisiones de hidrocarburos en la atmósfera para tanques de techo fijo, se dispone en el manual de medidas estándar de petróleo, Publicación **API 2518**, Capítulo 19, 1991, en el mismo se establece en la sección 1, las pérdidas por evaporación, **Ref. 25**.

3.3.5. Ley Penal del Ambiente

La Ley Penal del Ambiente impone un mínimo impacto ambiental, teniéndose que cumplir las medidas necesarias para acatar este requerimiento. Dentro de las cláusulas establecidas se fija la cantidad mínima aceptada de emisiones que pueden ser venteadas a la atmósfera como consecuencia de despresurización de los tanques de almacenamiento de crudo y correspondiente a 0,81 lb/hr [**Ref. 28**].

3.3.6. Publicaciones SPE

Las publicaciones reportadas por la **SPE** con respecto a la recuperación de vapores en tanques de almacenamiento han sido limitadas, sin embargo, de las publicaciones encontradas se reunieron varios artículos de interés como por ejemplo: API Proyecto de vapores para tanques, [**Ref. 19**], Cuando realizar la recuperación de vapores [**Ref. 21**], Sistema Jet de Vapor, Un método alternativo para la recuperación de vapor [**Ref. 29**], una metodología práctica para la recuperación de vapor en tanques de almacenamiento de crudo [**Ref. 30**], Aplicaciones de recuperación de vapor en tanques de crudo [**Ref. 31**] y que han sido las bases para el desarrollo del marco teórico.

3.4. Diseño utilizado y metodología

El diseño de la investigación estará basado en las pruebas experimentales que se desarrollarán en el **CEPRO**, las cuales ofrecerán el veredicto de los objetivos planteados.

Para la realización de estas pruebas se ejecutó una fase previa de diseño analítico y experimental, en la que se estudiaron los parámetros geométricos y operacionales a evaluar, así como los modelos teóricos y su verificación mediante simulación numérica. Se visitaron las instalaciones del referido circuito experimental (CEPRO) para conocer su funcionamiento y finalmente se preparó el diseño del circuito y la matriz experimental, así como la estrategia de evaluación del mismo. La metodología a seguir se esquematiza de la siguiente manera:

\Rightarrow Estado del arte

- Búsqueda de información referente a recuperación de vapores en tanques de almacenamiento (RVTA) en general.
- Propuesta del método y/o sistema para la RVTA.
- Selección del método que será evaluado.

- Búsqueda de la cuantificación de las emanaciones.
- Búsqueda Tecnología Jet aplicada en Recuperación de vapores.
- Modelos teóricos y simulación numérica.

⇒ Formulación de la matriz experimental

• Formulación de la matriz experimental del método propuesto según simulación numérica y/o modelos teóricos y limitaciones del sistema. En este aspecto se presentará el estudio analítico-numérico en dos dimensiones (2D) del Jet adaptado a la extracción de vapores emanados de crudo almacenado en tanques.

⇒ Diseño e instalación del banco de pruebas

- Formulación del circuito y sus limitaciones.
- Búsqueda de materiales e instrumentación requerida.
- Instalación del circuito en campo (CEPRO).

⇒ Ejecución de las pruebas en Campo

- Calibración de la instrumentación.
- Supervisión de las pruebas.
- Selección de los parámetros más relevantes del sistema.

⇒ Análisis de resultados de las pruebas de campo

- Recopilación de la data experimental y selección de la mejor representación esquemática de los resultados (gráfica, tabular, etc.).
- Comparación de resultados experimentales y teóricos.
- \Rightarrow Elaboración de conclusiones, recomendaciones y libro de tesis de grado.

3.5. Instrumentos de medición aplicados

Los resultados experimentales a obtener durante la evaluación en el **CEPRO** serán recopilados por el sistema de adquisición de datos inicialmente cada 3 segundos, siendo optimizados a 20 segundos y convertidos posteriormente en archivos en formato de Excel[®], con esta información se generaran las gráficas y/o tablas que presentaran los resultados por cada configuración operacional y geométrica evaluada.

3.6. Cronograma de la investigación

Las actividades planificadas para el desarrollo de la presente tesis de grado se esquematizan en la **Tabla 1**, donde se muestra la relación entre las etapas de la investigación y el tiempo de ejecución. La representación gráfica se ilustra empleando un Diagrama de Gantt cuyo inicio en el tiempo corresponde al mes de Marzo del año 2002.

Tabla 1	Cronograma	de	actividades
---------	------------	----	-------------

ETAPAS					CR	RON	OG	RAI	MA I	DE .	TRA	BA	JO				
Revisión bibliográfica (documentos PDVSA, literatura de procesos de estaciones de flujo, patio de tanques, Normativas Ambientales, Nacionales e Internacionales).																	
Cuantificación de las emanaciones, preparación de las pruebas en el Centro Experimental de Producción. Diseño Experimental y selección de condiciones de operación.																	
Simulación numérica. Instalación del prototipo en el CEPRO. Ejecución de las pruebas.																	
Análisis de los datos experimentales, comparación con el modelo teórico para luego predecir el comportamiento en pruebas de Campo.																	
Elaboración y entrega de la Tesis																	
Tiempo (meses)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

CAPÍTULO IV

4. BASES DE DISEÑO, MODELADO Y SIMULACIÓN

Evaluar la Factibilidad de la Recuperación de Vapores en Tanques de Almacenamiento es un proceso que pudiera estimarse analítica o experimentalmente. Debido a la naturaleza del sistema, el desarrollo analítico estaría compuesto por múltiples procesos relacionados entre sí, y cuya resolución requeriría de complejas ecuaciones y resultados cuya certeza no pudieran comprobarse. En este caso la opción experimental luce adecuada para determinar las limitaciones y bondades que pudiera ofrecer la **RVTA**.

Generalmente, existen diferentes vías para recuperar los vapores, en PDVSA (Ver **Anexo 1**) la alternativa de recuperar los vapores con compresores comerciales fue evaluada y resultó ser económicamente inviable por los elevados costos de capacidad instalada con relación al valor energético de los fluidos a recuperar, por lo que en la búsqueda de la optimización y rentabilidad del recobro, surge la opción de la extracción de vapores utilizando el dispositivo Jet, éste brinda bajo costo de inversión e instalación.

La cantidad de crudo derivado a los tanques de almacenamiento, el volumen de gas venteado, la eficiencia del sistema de separación serán elementos que condicionarán el rango de operación del dispositivo Jet. En trabajos previos de publicación interna en PDVSA, se cuantificó un volumen aproximado de gas emanado (perdido a la atmósfera) entre 90 Mscfd hasta 1,2 MMscfd que, de ser recuperado, pudiera ser utilizado en operaciones de levantamiento artificial por gas, en nuevos pozos productores o existentes que requieran de un cambio de método de levantamiento artificial. En tal sentido toda la información de operación de los elementos involucrados en el sistema determinará las condiciones de evaluación del Jet en un banco de pruebas.

El éxito de las pruebas experimentales estará determinado básicamente por reproducir fielmente las condiciones de operación que tendría el sistema en una estación de flujo real. En este aspecto una acertada matriz experimental es de gran importancia.

El dispositivo Jet será el elemento principal que definirá la matriz experimental, pues éste representa el corazón del circuito. El dispositivo fue diseñado de acuerdo con el modelo de Bijoa Jiao [**Ref. 1**] y su factibilidad de uso como para la extracción de vapores fue avalado por Cunningham [**Ref. 2**] quien demostró la posibilidad de aplicación de estos dispositivos como compresores de gas utilizando líquido como fluido impulsor.

Dado el cambio de objetivo de uso del dispositivo válvula de succión (Tecnología Jet aplicada a fondo de pozo) como un elemento recuperador de vapores, como una respuesta novedosa sin respaldo en la literatura, se procederá en este capítulo a generar el soporte analítico partiendo de las sugerencias de los autores antes mencionados: Bijoa [**Ref. 1**] y Cunningham [**Ref. 2**].

Para esto fue necesario resolver numéricamente mediante diferencias finitas y en dos dimensiones (2D) con un modelo axisimétrico, extrapolable a 3D, las ecuaciones fundamentales de conservación de la masa y momento en el interior de dicho dispositivo, dando origen a sistemas de ecuaciones diferenciales parciales no lineales, se utilizó para resolver las ecuaciones, el programa computacional basado en el método de los volúmenes finitos (CFX[®], Ref. 4). Los resultados de las simulaciones permitirán predecir el comportamiento del Jet mediante parámetros dimensionales tales como: R, M, L/D y N.

Se propone modelar y simular diferentes configuraciones geométricas, determinadas por diferentes relaciones de área y longitudes de la zona de mezcla. Este procedimiento generará la optimización de las variables internas del Jet estableciendo las bases de diseño del dispositivo. Con los resultados que se obtengan, se pretende realizar la

validación de las curvas de eficiencia reportadas por los diferentes investigadores [**Ref. 1**] y [**Ref. 18**] y las curvas generadas por los resultados de las simulaciones.

El dispositivo propuesto es un prototipo que se diseñará bajo la premisa de diámetro de garganta constante, por lo que para analizar diversas relaciones de área, el tamaño de la boquilla es el que debe ser variado para obtener diferentes condiciones geométricas.

El modelo base está definido para una relación de áreas de $R_1 = 0,132$, éste representa el diseño de boquilla más ajustado que permitiera cualquier proceso de fabricación. Las restantes relaciones de áreas se obtienen mediante una progresión geométrica. El factor de la mencionada progresión geométrica fue establecido mediante simulación numérica con el criterio de obtener diferentes configuraciones de boquillas que aseguren variaciones significativas en los rangos de flujo y las condiciones de presión aguas arriba y abajo del prototipo. La razón geométrica del prototipo se define a continuación:

$$\chi = e^{\frac{1}{4}}$$

De esta manera las relaciones de área disponibles, se presentan en la Tabla 2

Relación de área						
R ₁	0,132					
R_2	0,170					
R₃	0,218					
R_4	0,280					
R₅	0,360					
R_6	0,462					

Tabla 2 Relaciones de áreas evaluadas.

Los resultados de las simulaciones con diferentes configuraciones de boquillas serán comparados con la data experimental. De aquí que se valide la simulación como herramienta confiable de diseño.

Para determinar cómo la longitud de la zona de mezclado afecta la eficiencia del equipo, se realizaran simulaciones con tres longitudes de la zona de mezcla diferentes (ver **Tabla 3**), para la relación de área $R_5 = 0,36$.

Relación de longitud de Mezcla						
L/D ₁	2,5					
L/D ₂	5					
L/D ₃	10					

Tabla 3 Relaciones de las longitudes de la zona de mezcla

4.1. Detalles del Modelado y Simulación

4.1.1. Detalles Fluidodinámicos

Las propiedades del crudo y del gas que se utilizaron en todas las simulaciones, corresponden a valores típicos de producción, los mismos se presentan en la **Tabla 4**.

 Tabla 4 Propiedades del crudo y gas

Gravedad API:	27,5
Viscosidad del crudo:	4 Centipoise @ 100°F
Gravedad del gas:	0,707

Considerando la geometría del equipo, el anular representa el área más pequeña del dispositivo, en éste se desarrollan altísimas velocidades, que tienen asociados números de Reynolds por encima de 2000. Por este motivo, todas las simulaciones fueron realizadas considerando régimen de flujo turbulento. Es importante mencionar que en la succión y en la descarga del dispositivo, pueden existir velocidades que determinen un régimen de flujo laminar (Re<2000). Sin embargo, el modelo de turbulencia adiciona a las pérdidas laminares una componente dependiente del grado de turbulencia del flujo.

Dependiendo de que tan cerca esté el flujo de un régimen u otro, el aporte de cada componente en las pérdidas totales será de mayor o de menor importancia.

El modelo de turbulencia utilizado en todas las simulaciones fue k-ε. Este basa todos sus cálculos en las ecuaciones de Navier Stokes promediadas en el tiempo. En el **Anexo 2** se muestran las ecuaciones utilizadas para el cálculo de los parámetros de turbulencia iniciales del modelo.

Considerando la simetría axial del diseño del dispositivo Jet, se realizan todas las simulaciones con modelos 2D, con el fin de optimar el tiempo de cálculo.

Para el caso de modelado y simulación de flujo bifásico, cuando el número de Mach bifásico [**Ref. 32**] es inferior de 0,3 y el flujo de gas es isotérmico, el gas se comporta como flujo incompresible [**Ref. 33**]. En el programa computacional **CFX**[®], se tratará de simular el gas como flujo incompresible, siempre verificando la mencionada condición.

4.1.2. Solución del Modelo

La solución del programa **CFX**[®], permite controlar la solución numérica por medio de las variables mencionadas a continuación:

- Máximo número de iteraciones: Número de soluciones del sistema de ecuaciones requerido para alcanzar convergencia. En la mayoría de las simulaciones el máximo número de iteraciones fue 4000.
- Tolerancia del Flujo Másico: Valor de la precisión impuesta al modelo. En las simulaciones realizadas se fija la tolerancia del flujo másico a 1E-6. En algunos casos, se lograba convergencia según la tolerancia másica, sin embargo, tal convergencia no era satisfactoria debido a que los residuales de la presión, viscosidad, entre otros,

superaban el valor mínimo impuesto de 1E-2, en este caso se aumentaba la tolerancia másica hasta obtener mejor convergencia de todos los parámetros.

4.1.3. Condiciones de Borde

Se consideran Condiciones de Borde a aquellos valores de presión, velocidad; impuestas en las fronteras del sistema físico. En la **Tabla 5** se presentan las condiciones de borde utilizadas en el modelo.

En todas las simulaciones realizadas, la presión de succión del crudo y la presión del fluido motriz a la entrada del dispositivo, se mantuvieron de magnitud constante. Para caracterizar el dispositivo Jet, se iniciaron las simulaciones con una presión en la descarga igual a la presión de succión del crudo. Se tomó una diferencia de presión constante que definirá la próxima presión de descarga de la simulación.

La caracterización del prototipo concluye cuando la contrapresión en el dispositivo inhibe succión o cause retroflujo a la zona de succión del crudo. Para cada simulación realizada el programa computacional **CFX**[®] emitirá como resultado los flujos másicos y los parámetros más importantes del equipo como gradiente presión, velocidad, fracción volumétrica, vectores de velocidad.

Condiciones de Borde				
Ps	Presión del crudo en la succión del equipo.			
Pj	Presión de inyección en la succión del equipo.			
P _d	Presión de salida de la mezcla.			
Wall-int	Velocidad = 0 en las paredes internas.			
Symmet	Velocidad radial = 0 en la simetría con respecto al eje axial.			

Tabla 5 Condiciones de borde del prototipo

4.2. Curvas de eficiencia para diferentes R y L/D

Las curvas mostradas a continuación se obtuvieron de los resultados de las simulaciones. La **Fig. 10** y la **Fig. 11** muestran los resultados de las simulaciones, mediante las curvas de eficiencia y recuperación de presión, respectivamente, para diferentes relaciones de área, y manteniendo constante L/D = 5.

La Fig. 12 y Fig. 13 muestran los resultados de las simulaciones, mediante las curvas de la eficiencia y recuperación de presión, respectivamente, para diferentes relaciones de área, y L/D = 10 constante.

Las curvas de eficiencia y recuperación de presión correspondientes a la longitud de la zona de mezcla L/D = 2,5 no se compara como para los casos y L/D = 5 y L/D = 10 debido a que la eficiencia de esta longitud de mezcla es muy baja, sólo se muestra la curva de eficiencia para la relación de áreas R = 0,36; de la misma se verifica la misma tendencia y forma de los resultados de las simulaciones, para las otras zonas de mezcla.

En el **Anexo 3** se encuentra el modelo numérico del programa **CFX**[®] que se utilizó para resolver las ecuaciones del sistema para flujo monofásico y bifásico. Cada condición evaluada geométrica generó una tabla de datos específica (ver resultados en el **Anexo 4**), y corresponde a las distintas condiciones de operación, identificadas por la relación de áreas y relación de longitud de la zona de mezcla.

Se obtiene que las curvas de eficiencia obtenidas con el modelo axisimétrico, muestran valores máximos inferiores a los calculado por Jiao, B (ver **Fig. 14**). y adicionalmente, la curva descrita por tales valores muestra una tendencia cóncava descendiente diferente a la tendencia creciente y asintótica reportada por Jiao B (**Fig. 16**).

45

Fig. 10 Curvas de Eficiencia vs. Relación de Area (para L/D = 5)

Fig. 11 Curvas de Recuperación de Presión (N) vs. Relación de Area (para L/D = 5)

Fig. 12 Curvas de Eficiencia vs. Relación de Area (para L/D= 10)

Fig. 13 Curvas de Recuperación de Presión vs. Relación de Area (para L/D= 10)

4.3. Comparación modelo teórico y curvas de simulación

Las curvas de eficiencia obtenidas con el modelo computacional, muestran valores máximos inferiores a los calculados por los modelos de Jiao, B [**Ref. 1**] y de Petrie [**Ref. 18**], véase en la **Fig. 14** la comparación de las curvas de eficiencia para **R** = 0,36 y los modelos teóricos y la simulación.

Fig. 14 Comparación curvas de eficiencia para R = 0,36 y modelo teórico y simulación

Al reproducir las curvas de Jiao B. y Petrie, y comparándolas con las del **CFX**[®], se encontró que las mismas provenían de la resolución de un modelo unidireccional que puede ser catalogado como aproximado, mientras que los resultados del modelo axisimétrico proveen de una reproducción más fiel del comportamiento físico fluidodinámico del Jet. Por esta razón se recomienda, como producto adicional de este trabajo, sustituir las curvas de Jiao B. por las producidas en este trabajo con lo cual se obtendrán soluciones que conduzcan a diseño de Jets más precisos.

4.4. Comparación curvas de eficiencia para R = 0,36 y diferentes L/D

En la **Fig. 15** se presenta la comparación de las curvas de eficiencia, para diferentes longitudes de la zona de mezcla $(L/D_1, L/D_2 \ y \ L/D_3)$ manteniendo constante la relación de áreas **R = 0,36**. Así mismo, en el **Anexo 5** se pueden observar los gradientes de presiones y velocidades correspondientes a las curvas presentadas en la referida gráfica.

De la **Fig. 15** se observa que la eficiencia del equipo aumenta en relación directa con el aumento de la longitud de la garganta. Este comportamiento era el esperado, ya que a medida que el mezclado mejora, la transferencia de energía del fluido de alta al fluido de baja es mayor, proyectando como resultado, mejoras en la eficiencia.

Es oportuno mencionar que la mejora de "eficiencia" asociada a incrementos en la longitud de la zona de mezcla tiene como límite, la longitud a la cual se produce una mezcla total. A partir de esa longitud, incrementos sucesivos, conducirán a aumentos similares en pérdidas por fricción.

Fig. 15 Comparación curvas de eficiencia para R = 0.36 y mezcla (L/D₁, L/D₂ y L/D₃)

4.5. Comparación puntos de máxima eficiencia

Tal y como se mencionó anteriormente, la curva generada por los puntos de máxima eficiencia para el modelo teórico reportada por Jiao presenta una tendencia creciente y asintótica, mientras que para el caso simulado muestra una tendencia cóncava descendiente.

Si se observan los puntos de máxima eficiencia para las diferentes relaciones de área evaluada en la **Fig. 10** y en la **Fig. 12** (simulación), se puede concluir que a medida que disminuye la relación de área "R", disminuye también el punto de máxima eficiencia. No obstante, obsérvese en la **Fig. 7** (teórico), se observa el caso contrario. Este efecto es consecuencia directa de las pérdidas por fricción no consideradas en el modelo teórico.

En la **Fig. 16** puede observarse los puntos de máxima eficiencia para las diferentes relaciones de área, para este caso se utiliza la relación de la longitud de la zona de mezcla igual a L/D = 5.

Fig. 16 Puntos de máxima eficiencia para las diferentes relaciones de área

Las curvas de eficiencia obtenidas con el modelo analítico-numérico (2D), mostraron un comportamiento parabólico similar al de los modelos unidireccionales y monofásicos de Jets (Bijoa Jiao, **Ref. 1**); sin embargo, los valores de eficiencia fueron inferiores a los esperados y la envolvente de los puntos de máxima eficiencia mostraron una tendencia decreciente y no plana como la diagnosticada por Bijoa Jiao.

Con respecto a las curvas bifásicas, las mismas deben realizarse en un estudio posterior al presente, que asegure la convergencia de los resultados no encontrados en esta oportunidad.

Una vez caracterizado por medio de modelado y simulación el dispositivo Jet, a continuación se presenta físicamente las características del diseño que será construido así como sus principales partes y limitaciones.

4.5. Descripción del equipo

El Jet de Superficie es un dispositivo diseñado para generar succión, utiliza un fluido de alta presión como fluido motriz (proveniente del Sistema de Gas, de Bombeo de Crudo ó de Agua, dependiendo del proceso a evaluar) para transferirle su energía a un fluido de baja presión o fluido a bombear/comprimir (proveniente del Sistema de Crudo o Gas, dependiendo de la aplicación), tal y como se menciono en el Capítulo II, sección 2.2.1.

El diseño interno del equipo fue obtenido a raíz de las simulaciones y posteriormente fue concretado por la Patente de la Válvula de Succión Anular [**Ref. 5**]. El equipo evaluado posee un juego de seis (6) boquillas (Relaciones de Area) diferentes y dos longitudes de mezcla, intercambiables entre sí.

Físicamente el equipo está constituido por las siguientes partes (Véase Fig. 17 y Fig. 18):

51

Parte 1: Carcasa en forma de "T" invertida que recubre el Jet. Elaborada en acero 4140, en cada extremo presenta bridas, la del diámetro más pequeño se vincula con la entrada del fluido impulsor y corresponde a una clase de # 1500, para 2 pulgadas de diámetro, las restantes son de clase # 900 y 4 pulgadas de diámetro y se asocian con la succión del fluido impulsado y la descarga de la mezcla respectivamente.

Parte 2: La parte 2 integra uno de los internos del Jet de Superficie, en su apéndice contiene una boquilla (Véase Parte 2a, **Fig. 18**) que regula el área de flujo del fluido impulsor, y la primera parte corresponde a un cañón de mezcla (sección cilíndrica) donde ocurre el intercambio energético de las corrientes impulsora e impulsada. Esta parte es de fácil instalación; diseñada de manera tal de proporcionar el desarme y ensamblaje del mismo.

Parte 3: contiene parte del cañón de mezcla y el difusor.

Fig. 17 Corte esquemático del Jet de Superficie

Fig. 18 Corte esquemático del Jet de Superficie, despiece

En la **Fig. 19** véase el equipo construido e instalado en el banco de pruebas (circuito del Centro Experimental de Producción), donde se realizaran las pruebas del mismo.

Fig. 19 Corte esquemático del Jet de Superficie, en campo

4.6. Opciones de evaluación del equipo

a) Boquillas a evaluar:

Se evaluarán tres boquillas R = 0,132; R = 0,170 y R = 0,280, la selección de estas boquillas se realizó debido a que las mismas fueron las que mejores resultados aportaron en la aplicación en subsuelo para pozos de producción [**Ref. 7**].

b) Instalación del Inserto:

Las boquillas disponibles son diseñadas para un diámetro de la zona de mezcla constante, si se inserta una barra maciza en el interior del equipo "*Inserto*", el área de la longitud de mezcla disminuirá. Bajo esta nueva configuración podrá establecerse como afecta el diámetro de la garganta en el comportamiento del Jet. En la **Fig. 20** véase representación esquemática del Jet de superficie con los insertos, la cual corresponde a un caso especial de evaluación geométrica.

c) Equipo Jet de 3 1/2":

Se medirá el impacto en la caída de presión a través del equipo como consecuencia de utilizar un dispositivo Jet de 3^{1/2}", es decir, un equipo con un interno 28% más grande que el evaluado (Jet de 2^{7/8}").

d) Interno Convergente - Divergente:

Se evaluará como caso especial un Jet con las partes internas compuestas por una tobera convergente - divergente, es decir, sin presencia de la zona de mezcla. De las tres boquillas (R = 0,132; R = 0,170 y R = 0,280) se evaluarán, las dos primeras para un cañón de mezcla con longitud L = 7,5D y la última para un diseño de cañón de mezcla divergente.

Fig. 20 Corte esquemático del Jet de Superficie, con inserto y diferentes vistas

4.7. Selección del diseño geométrico

El diseño del equipo (combinación óptima de Relación de Area y Longitud de Mezcla para la máxima eficiencia), apropiado a las condiciones de operación del mismo son evaluadas según la metodología planteada en la **Ref. 34**, donde la Eficiencia del equipo, así como la Recuperación de Presión, para cada combinación posible de parámetros (Relación de Area y Longitud de Mezcla) se obtienen a partir del modelado computacional, utilizando como herramienta de trabajo el Código **CFX**[®].

Los resultados de las curvas de eficiencia y de recuperación de presión mostrados en las **Fig. 10, Fig. 11, Fig. 12**, y **Fig. 13**, para fluido monofásico, generan diseños más conservadores que los derivados a partir de modelos analíticos unidimensionales, ya que éstos no simplifican la naturaleza tridimensional del flujo en el interior del equipo.

4.7.1. Descripción del Método Gráfico

A continuación se presenta una breve descripción del método gráfico utilizado para la determinación de **M** y la eficiencia, a partir del valor de **N**, obtenido de parámetros operacionales supuestos, tómese en cuenta que bajo esta metodología se establecerá los cálculos para la elaboración de la matriz experimental.

Para el cálculo de **N**, se estima un diferencial de presión entre la descarga y la succión del equipo $(P_d - P_s)$ equivalente a 40 Psi, siendo éste considerado como un valor promedio de la caída de presión en el dispositivo Jet, y obtenido de los resultados de las pruebas del Jet a fondo de pozo reportadas en la **Ref. 35**. Se fija la presión de descarga (P_d) como la presión en la descarga del circuito ($P_d = 100$ Psig y $P_d = 200$ Psig) y se suponen diferentes presiones de inyección, de esta manera se obtiene el valor de **N**.

Con el valor de **N** se determina los valores de la Relación de Flujo Másico (**M**) y eficiencia correspondiente a cada Relación de Area, y Longitud de Mezcla, tal y como se detalla en el siguiente procedimiento:

En el gráfico de recuperación de presión, correspondientes a la **Fig. 11** y **Fig. 13**, se ubica la magnitud de la recuperación de presión (**N**), se traza una línea recta horizontal y se corta con las curvas de recuperación de presión de cada relación de área, se traza una vertical desde el punto de corte encontrado y se lee el flujo másico para cada relación de áreas.

De la relación de flujo másico encontrada en el paso precedente, se ubica el flujo másico para cada relación de áreas y se corta con la línea de eficiencia. De esta intersección se traza una línea horizontal y se lee del eje de las abscisas el valor de la eficiencia, para cada relación de área. Se selecciona como diseño la relación de áreas con mayor
eficiencia. Al calcular estos valores se verá que combinación es la que reporta mayor porcentaje de eficiencia y esta es la boquilla que debe instalarse en el dispositivo.

Para determinados valores de **N** que sean muy pequeños ó muy grandes, es posible que no se intercepte con algunas de las curvas de recuperación de presión, lo que se interpretara es que la misma no es la adecuada al sistema que se esta evaluando.

Es importante destacar que los procedimientos descritos previamente representan una estimación para la selección de la Relación de Area y de la Longitud de Mezcla, mientras no se conozca del desarrollo de ecuaciones o simulaciones numéricas que contemplen el cálculo de la eficiencia para flujo multifásico.

Nótese también, que se utilizará para todos los cálculos la simulación numérica correspondiente a una longitud de mezcla L/D = 5 a pesar que la del equipo a evaluar corresponde a una de L/D = 7,5. Se utilizó esta configuración como referencia para ser más conservadores.

4.8. Diseño de herramienta, evaluación adicional

Para realizar los cambios de boquillas del dispositivo a evaluar, era necesario optar por el desarme y ensamblaje de las bridas laterales que contienen el equipo ubicado en el banco de pruebas de las instalaciones del **CEPRO**, éste procedimiento está constituido básicamente por la extracción de los pernos de las bridas del dispositivo (succión y descarga), primero un lado y luego el siguiente, sin la necesidad de desarmar la conexión correspondiente a la línea de inyección.

La labor era realizada en un tiempo aproximado de tres horas, sin embargo, debido a la geometría interna del equipo y el asentamiento de la boquilla en los retenedores internos, se depositaba y adhería el crudo en estas partes confinadas, en consecuencia se

57

dificultaba la extracción de la boquilla. Por tal motivo, cuando se intentaba cambiar la boquilla del equipo resultaba ser engorroso perdiéndose tiempo de prueba.

Se concluyó que lo más factible para sacar las boquillas era una herramienta de impacto como la descrita en la **Fig. 21** ya que sólo se necesitaba de un golpe seco para despegar las incrustaciones. Sin embargo, se observó que el crudo endurecido en los bordes de la boquilla era difícil de extraer por lo que sugirió hacerle un canal interno a las boquillas con torno y por medio de éste canal extraer con la herramienta de diseño la boquilla.

Basándose en esta experiencia, se sugirió diseñar una herramienta que pudiera ser capaz de extraer la boquilla. El diseño fue propuesto y establecido teóricamente, sin embargo, no hubo disponibilidad de fabricar la herramienta debido a que los talleres para tal fin estaban ocupados y obligados a seguir una planificación que no presentaba holguras.

Fig. 21 Esquemático herramienta para extraer boquilla

CAPÍTULO V

5. CENTRO EXPERIMENTAL DE PRODUCCIÓN (CEPRO)

El Centro experimental de Producción **CEPRO** es un Laboratorio a escala real ubicado en Tía Juana, Estado Zulia, cuenta con todos los dispositivos para realizar pruebas calificadas en el área de superficie y subsuelo, las cuales simulan operaciones en Estaciones de Flujo, Levantamiento Artificial y Cementaciones de Pozo.

5.1. Descripción del Circuito Experimental

Para la ejecución de las pruebas experimentales se utilizaron las siguientes instalaciones del Centro Experimental de Producción (CEPRO): a) un Pozo Experimental dotado con una completación compuesta por distintos revestidores; b) una estación de flujo dotada de separadores y toda la instrumentación requerida para cuantificar los distintos fluidos enviados al dispositivo Jet; c) una estación de suministro de gas natural, dotada de la instrumentación necesaria para cuantificar y regular la cantidad inyectada al Jet; d) un grupo de bombas para el suministro de crudo a la instalación conformado por el circuito Jet y la estación de flujo; e) un grupo de tanques de almacenamiento de los fluidos involucrados en los procesos que se simulan; y f) un sistema de control de los procesos y adquisición de datos, a través de los cuales se supervisa cada una de las variables del proceso que se simule en el circuito. En la **Fig. 22** se encuentra un esquema de la ubicación de cada uno de los componentes mencionados previamente.

La instrumentación más importante utilizada se describe detalladamente en el **Anexo 6**, así como los rangos de operación y la precisión de la medición.

Fig. 22 Ubicación de equipos principales del Circuito Experimental del CEPRO

5.2. Instrumentación disponible

Para las pruebas a realizar es indispensable conocer en detalle la instrumentación existente en la instalación del **CEPRO**, así como la calibración requerida para los medidores, se considera con especial atención en esta tesis de grado la descripción de la instrumentación en la instalación de aquellos equipos que serán utilizados en los experimentos de interés. A continuación se reportan los medidores existentes en las distintas secciones del circuito:

a) Estación de gas

Para la determinación del caudal de gas que entrará al Jet como fluido succionado o como fluido impulsor, se dispone de dos tipos de equipos de medición: a) tipo venturi y b) tipo placa orificio. Se cuenta con dos instrumentos marca "Micro Motion" (tipo venturi), uno para caudales altos (**FT-011**) y el otro para caudales bajos (**FT-012**), y una placa orificio cuyo indicador es **FT-010**. Estos medidores contabilizaran la cantidad de gas que proviene del Múltiple de gas MTJ-5, ver **Fig. 23**.

Fig. 23 Estación de gas

b) Pozo Experimental

El pozo experimental será utilizado como un pulmón conformado por los revestidores de 13^{3/8}x7" alimentado por el fluido proveniente de los tanques de almacenamiento, véase **Fig. 24**. Existe medición tanto para la presión como para la temperatura en el cabezal del pozo. La temperatura puede ser cuantificada mediante el sensor **TI-108** (termocupla tipo T), ó un sistema RTD cuyo indicador es **TI-109**. La presión diferencial es cuantificada y transmitida por el sensor **PT-109**.

Fig. 24 Pozo Experimental

c) Sistema de Separación

Separador Bifásico: El ajuste de la presión de separación se efectúa a través de PY-414 y PY-415. Posee un medidor de nivel LC-213 el cual regula la descarga de líquidos. El caudal de crudo se calcula con el LY-211, mediante pulsos de descarga de 7 barriles c/u. A la descarga del gas (tope) existen dos medidores de presión ubicados aguas arriba y aguas abajo del medidor de flujo tipo "Vortex" (PT-416 y PT-312 respectivamente), para determinar la caída de presión a través del mismo. El caudal de gas puede ser validado mediante la placa orificio FT-212.

Depurador de gas: Posee un medidor de nivel **LC-413**. En la salida del gas (tope) existe una placa **orificio (FT-412**) que contabiliza el flujo de gas. En el fondo del equipo se mide el flujo de crudo por medio de un medidor de desplazamiento positivo (**FT-413**).

Obsérvese en la **Fig. 25** el Sistema de Separación, nótese que también existe en la instalación un separador trifásico (separador horizontal), no obstante, no se utilizará en las mismas.

Fig. 25 Sistema de Separación

d) Sistema de bombeo de crudo y agua

El flujo de crudo motriz utilizado para el Proceso de Recuperación de Vapores se contabiliza a la descarga conjunta de las bombas P-004A y P-004B, mediante un medidor de desplazamiento positivo FT-620 ó un equipo "Micromotion" FT-621. Así mismo, dependiendo de la bomba que esté en funcionamiento, a la descarga de ellas hay dos indicadores de presión PI-620A ó PI-620B.

El flujo de agua motriz utilizado para el Proceso de Recuperación de Vapores se contabiliza a la descarga conjunta de las bombas P-002A y P-002B, mediante un medidor de desplazamiento positivo FT-520 ó un equipo "Micromotion" FT-521. Así mismo, dependiendo de la bomba que esté en funcionamiento, a la descarga de ellas hay dos indicadores de presión PI-520A ó PI-520B. Obsérvese en la Fig. 26 el Sistema de bombeo de crudo y agua.

Fig. 26 Sistema de bombeo de crudo y agua

f) Instrumentación de tanques

Los tanques de almacenamiento de crudo **TK-01** y **TK-02** poseen un medidor de nivel **LT-610A** y **LT-610B** respectivamente. El tanque de medición **TK-03** posee un medidor de nivel **LT-630**. Finalmente, el tanque de almacenamiento de agua **TK-04** posee un medidor de nivel **LT-510**.

Fig. 27 Instrumentación de tanques

CAPÍTULO VI

6. PROCEDIMIENTO EXPERIMENTAL

La Metodología de Evaluación de las pruebas experimentales propuesta en esta tesis de grado tiene como objetivo validar la transferencia de energía entre dos fluidos de diferentes niveles energéticos que permita determinar la potencial aplicación de la Tecnología Jet en las instalaciones de superficie, para la recuperación de 1000 Mscfd de emanaciones provenientes de los tanques de almacenamiento a un costo rentable.

Dentro de la terminología se ha definido como "Aplicación" a las diferentes utilidades que puede tener el Jet en las instalaciones de Superficie o Subsuelo, su uso estará asociado al espacio físico donde se instalará el dispositivo. En este estudio sólo se contempla la "Aplicación" en estaciones de flujo. Así mismo, para la referida aplicación se han definido "Procesos", cuya nomenclatura esta asociada a la naturaleza del fluido impulsor y del fluido a bombear. Se han estipulado tres procesos diferentes para la compresión de gas.

Es importante mencionar que con el fin de validar los resultados de la simulación numérica del equipo realizados previamente, se propone iniciar el ensayo efectuando una prueba monofásica, es decir, inyectando crudo como fluido motriz para succionar crudo tal y como se describe en el punto 6.1.1. Se espera que los resultados obtenidos se asemejen tanto en forma como en tendencia a las curvas determinadas en la simulación numérica y en los modelos analíticos.

El comportamiento del equipo quedará definido por la combinación de los parámetros operacionales (presión de succión, presión de descarga, presión de inyección, caudal de inyección, caudal de succión) y geométricos (diferentes relaciones de boquillas subsónica y

65

longitud de mezcla), con la finalidad de cuantificar la caída de presión que pueda generar el equipo.

Los resultados permitirán establecer las condiciones de operación y la combinación de parámetros geométricos necesarios para que el Jet de Superficie pueda ser implantado exitosamente en las áreas operacionales.

6.1. Descripción del proceso a evaluar

En la **Fig. 28** se bosqueja la disposición de los principales equipos que integran el circuito a operar en el **CEPRO**, la medición y prueba dependerá de la aplicación de interés y del proceso evaluado, no obstante, se utilizará para los tres procesos el mismo circuito.

La construcción del circuito estimó la adaptabilidad del mismo para la ejecución de cada proceso. En los puntos siguientes se presenta una breve descripción de los procedimientos a seguir en cada prueba:

Fig. 28 Arreglo del circuito experimental, prueba Jet de Superficie

A continuación un resumen de la descripción de cada proceso.

Prueba monofásica: (Crudo como fluido impulsor para bombeo de Crudo).

Aplicación en estaciones de flujo: (Compresión de gas),

Proceso 1: Crudo como fluido impulsor.

Proceso 2: Agua como fluido impulsor.

Proceso 3: Gas de LAG como fluido impulsor.

6.1.1. Prueba monofásica (bombeo de crudo con crudo)

El procedimiento general esta representado por los tres pasos que se definen a continuación:

- Desde los tanques de almacenamiento (TK-1 / TK-2) se desplaza el crudo por medio de las bombas P-004 A/B a la alimentación del Jet de Superficie. Con el Micromotion FT-621 se medirá el caudal bombeado y la presión a la descarga de las bombas se conocerá por medio del sensor PT-621. La presión y temperatura del crudo a la entrada del Jet se medirá con los sensores PT-665 y TT-665 respectivamente.
- 2. El crudo motriz será desplazado mediante las bombas P-002 A/B desde los tanques de almacenamiento (TK-1 / TK-2), su caudal se determinará con el Micromotion FT-521 y la presión con el sensor de presión PT-521. La presión y temperatura de inyección del crudo justo a la entrada al Jet se medirá con los sensores PT-670 y TT-670.
- 3. La mezcla de crudo a la salida del Jet se enviará nuevamente a los tanques de almacenamiento (TK-1 / TK-2). La presión y temperatura de la mezcla se medirá a la descarga del equipo con los sensores PT-675 y TT-675 respectivamente. La estabilidad del sistema se comprobará con la periodicidad de las descargas del mismo.

6.1.2. Proceso 1 (compresión de gas con crudo)

La condición ideal del proceso sería obtener de los tanques de almacenamiento la corriente de suministro de gas al Jet de Superficie, sin embargo, como producto de utilizar crudo muerto (sin gas) la cantidad de vapores en los tanques del circuito (TK-1 / TK-2) es despreciable y no garantiza la reproducción de la matriz experimental planteada para este proceso. Por esta razón se utilizará el Pozo Experimental como un reservorio artificial a la presión demandada por el proceso. El procedimiento general esta representado por los tres pasos que se definen a continuación:

- 1. El fluido a comprimir por el Jet de Superficie, como se menciono anteriormente, será tomado del anular del Pozo Experimental, en donde se espera mantener niveles de presión de una atmósfera (a esta condición se simulará el gas acumulado en el tope de los tanques de almacenamiento) y el caudal será determinado con el medidor de flujo Vortex FY-660. La presión y temperatura del gas a la entrada del Jet se medirá con los sensores PT-665 (absoluto) y TT-665 respectivamente.
- 2. El fluido motriz (crudo) se tomará del Sistema de Bombeo mediante las bombas P-004A/B. Con el Micromotion FT-621 se medirá el caudal bombeado y la presión a la descarga de las bombas se conocerá medio del sensor PT-621. La presión y temperatura del crudo a la entrada del Jet se medirá con los sensores PT-670 y TT-670 respectivamente.
- 3. La mezcla de crudo gas a la descarga del Jet se enviará al separador bifásico (SB-1), donde serán separadas las fases y cuantificada la corriente de crudo. La presión y temperatura de la mezcla se medirá a la descarga del Jet con los sensores PT-675 y TT-675 respectivamente. La estabilidad del sistema se comprobará con la periodicidad de las descargas del separador.

6.1.3. Proceso 2 (compresión de gas con agua)

El procedimiento general esta representado por los tres pasos que se definen a continuación:

- El fluido a comprimir por el Jet de Superficie será tomado del anular del Pozo Experimental, en donde se espera mantener niveles de presión de una atmósfera (a esta condición se simulará el gas acumulado en el tope de los tanques de almacenamiento) y el caudal será determinado con el medidor de flujo Vortex FY-660. La presión y temperatura del gas a la entrada del Jet se medirá con los sensores PT-665 (absoluto) y TT-665 respectivamente.
- 2. El fluido motriz (agua) proveniente del tanque de almacenamiento TK-4 será suministrado a la alimentación del Jet de Superficie por medio de las bombas P-002A/B. Con el Micromotion FT-521 se medirá el caudal bombeado y la presión de inyección se medirá con el sensor PT-521. La presión y temperatura del crudo a la entrada del Jet se medirá con los sensores PT-670 y TT-670 respectivamente.
- 3. La mezcla de agua gas a la descarga del Jet se enviará al separador bifásico (SB-1), donde serán separadas ambas fases y cuantificada la corriente de agua. La presión y temperatura de la mezcla se medirá a la descarga del equipo con los sensores PT-675 y TT-675 respectivamente. La estabilidad del sistema se comprobará con la periodicidad de las descargas del separador.

6.1.4. Proceso 3 (compresión de gas con gas de LAG)

El procedimiento general esta representado por los tres pasos que se definen a continuación:

 El fluido a comprimir por el Jet de Superficie será tomado del anular del Pozo Experimental, en donde se espera mantener niveles de presión de una atmósfera (a

69

esta condición se simulará el gas acumulado en el tope de los tanques de almacenamiento) y el caudal será determinado con el medidor de flujo Vortex FY-660. La presión y temperatura del gas a la entrada del Jet se medirá con los sensores PT-665 (absoluto) y TT-665 respectivamente.

- 2. El fluido motriz se tomará del Múltiple de Gas principal, cuyo suministro proviene de Tía Juana V (a 1480 Psi), su caudal será regulado con una válvula Merla, y se cuantificará mediante una placa orificio y la instrumentación es el FY-010. La presión de suministro del gas será determinada con el sensor PT-010. La presión y temperatura de inyección del gas justo a la entrada al Jet se medirá con los sensores PT-670 y TT-670 respectivamente.
- 3. La corriente de gas a la salida del Jet se enviará al depurador D-1, donde será cuantificado el caudal volumétrico. La presión y temperatura de la mezcla se medirá a la descarga del equipo según los sensores PT-675 y TT-675 respectivamente. La estabilidad del sistema se comprobará cuando las presiones aguas arriba y aguas abajo del Jet no varíen en el tiempo.

6.2. Pruebas especiales

Este tipo de prueba se conceptualizó para obtener una mayor relación de compresión, es decir, para incrementar el diferencial de presión (ΔP) del conjunto. Se requieren dos equipos que serán dispuestos en serie, con lo que la energía de descarga del primero será aprovechada por el segundo, véase **Fig. 29**. Para ambos equipos se inyectará el mismo fluido motriz, regulando el caudal que se derivará a cada uno de ellos mediante la válvula Merla que fue instalada en cada línea de inyección.

Desde el punto de vista de infraestructura, para ejecutar las pruebas del circuito en serie en el centro experimental, sólo es necesario desplazar aguas abajo del primer Jet (desde ahora catalogado como **Jet 1**), la línea de flujo identificada con el número 1, véase **Fig. 29** y alinear allí el Jet número 2. Como puede también observarse en el esquemático mostrado en la **Fig. 29**, desde la conceptualización de las pruebas se consideró toda la infraestructura necesaria para la adaptación del **Jet 2** a la línea de flujo, así como la instrumentación esencial para la medición.

En la **Fig. 30** se muestra la disposición de los fluidos que entran y/o salen de la instalación, es importante mencionar que el fluido motriz que se suministrará a cada dispositivo debe ser de la misma naturaleza ya que ambos provienen de un mismo cañón de alimentación. Para el proceso 3 se utilizará el ramal de tubería para la inyección, en el caso de los procesos 1 y 2 se utilizará la manguera de alta presión.

En la **Fig. 31** se muestra una vista lateral del montaje, obsérvese que se ha ejemplificado los sensores de presión y temperatura (sensores de color azul); tanto en la succión y descarga de cada dispositivo, así como en la inyección respectiva.

Fig. 29 Esquemático del Circuito Experimental del Jet

Fig. 30 Esquemático del Circuito Experimental del Jet, vista frontal

Fig. 31 Esquemático del Circuito Experimental del Jet, vista lateral

6.3. Fluidos de trabajo y rangos de operación

- Gas de levantamiento a 1480 Psig, caudales comprendidos entre 200 y 2500 Mscfd.
- Crudo Rosa Mediano de apróx. 22,3 °API, caudales superiores a 100 BPD, es importante mencionar que el crudo utilizado en las pruebas es muerto, es decir, no tiene gas asociado.
- Agua industrial, caudales superiores a 100 BPD.

6.4. Condiciones operacionales a controlar y límites de control

Dada las condiciones mínimas requeridas para mantener la estabilidad del sistema los puntos 1 a 4 son necesarios.

- El caudal de gas de inyección se controlará en el rango ± 20 Mscfd con un mínimo de 200 y el máximo disponible en el CEPRO de apróx. 2500 Mscfd.
- 2. Para el suministro de crudo se requiere un control de flujo de \pm 10 BBPD y de presión de \pm 5 Psig.
- 3. Para el suministro de agua se requiere un control de flujo de \pm 10 BBPD y de presión de \pm 5 Psig.
- 4. Se considerara en la mayoría de los ensayos, que la presión del separador sea constante ($60 \pm 2 Psig$).
- Realizar pruebas de gravedad API y viscosidad del crudo, en laboratorios aprobados por la Industria petrolera, antes y después de la ejecución de las pruebas.
- Realizar el análisis Cromatográfico del gas en laboratorios aprobados por la Industria Petrolera, antes de la ejecución de las pruebas.
- El flujo de gas de inyección disponible para el CEPRO no podía superar los 3000 Mscfd por limitaciones del CEPRO.

 La instrumentación que se disponía en el CEPRO cuando se realizaron las pruebas, no permitía verificar el balance de masa del gas.

6.5. Consideraciones del Banco de pruebas

Para el cumplimiento de los objetivos propuestos en esta tesis de grado fue necesario incluir en el sistema existente, un circuito donde pudiera evaluarse el dispositivo Jet de Superficie como método de extracción de las emanaciones, para tal objetivo tuvo que diseñarse y construirse un montaje adjunto a la configuración existente, considerándose aspectos como: bajo costo de inversión, mínimo número de accesorios mecánicos adicionales, instrumentación adecuada y que el aspecto de seguridad fuese considerado. De esta manera se propuso un **C**ircuito **M**ultipuerto, es decir, que a través de las líneas de invección y succión se pudieran manejar diferentes tipos de fluido (gas, crudo, agua). Este punto será explicado en detalle en el Capítulo VI que se trata del Procedimiento Experimental.

6.6. Matriz Experimental

Los valores de presión y caudal de inyección del fluido motriz al Jet de Superficie, que a continuación se presentan, son derivados de la simulación numérica. Estos difieren, en algunos casos, de los valores que pudieran disponerse en campo o en el **CEPRO**, sobre todo en las regiones del modelo matemático donde el comportamiento del mismo se hace exponencial, es decir, donde se requieren elevados caudales o presiones del fluido motriz para verificar un pequeño incremento del efecto Jet.

Para alcanzar el objetivo se dispone de una matriz experimental adecuada a cada proceso, y determinada bajo la metodología presentada en el Capítulo IV de Modelado y simulación del equipo. En la **Tabla 6** se presenta un resumen de la matriz experimental para la aplicación en estaciones de flujo, el detalle de las características de cada experiencia puede ser visualizada en el **Anexo 7**.

Para ejecutar la matriz experimental se dispone de un procedimiento de arranque para cada tipo de experiencia. El **Anexo 8** muestra los pasos a seguir en el momento de arranque. Se recomienda al realizar el barrido de cada experimento registrar la hora de inicio de la apertura de inyección al Jet, y los demás parámetros de interés en el libro de laboratorio del **CEPRO** o en su defecto asentar la información en el formato que sea establecido para tal fin.

Boquilla	R = 0,132		R = 0,170		R = 0,280	
Fluidos de	Caudal de succión	Caudal de Inyección	Caudal de succión	Caudal de Inyección	Caudal de succión	Caudal de Inyección
succión e	de gas	de crudo	de gas	de crudo	de gas	de crudo
inyección	(Mscfd)	(BPD)	(Mscfd)	(BPD)	(Mscfd)	(BPD)
Proceso 1	500	200 - 1800	500	200 - 1800	500	200 - 1800
	1000	200 - 1800	1000	200 - 1800	1000	200 - 1800
	2000	200 - 1800	2000	200 - 1800	2000	200 - 1800
	3000	200 - 1800	3000	200 - 1800	3000	200 - 1800
Fluidos de	Caudal de succión	Caudal de Inyección	Caudal de succión	Caudal de Inyección	Caudal de succión	Caudal de Inyección
succión e	de gas	de agua	de gas	de agua	de gas	de agua
inyección	(Mscfd)	(BPD)	(Mscfd)	(BPD)	(Mscfd)	(BPD)
Proceso 2	500	200 - 1800	500	200 - 1800	500	200 - 1800
	1000	200 - 1800	1000	200 - 1800	1000	200 - 1800
	2000	200 - 1800	2000	200 - 1800	2000	200 - 1800
	3000	200 - 1800	3000	200 - 1800	3000	200 - 1800
Fluidos de	Caudal de succión	Caudal de Inyección	Caudal de succión	Caudal de Inyección	Caudal de succión	Caudal de Inyección
succión e	de crudo	de gas	de crudo	de gas	de crudo	de gas
inyección	(Mscfd)	(Mscfd)	(BPD)	(Mscfd)	(BPD)	(Mscfd)
Proceso 3	500	200 - 1800	500	200 - 1800	500	200 - 1800
	1000	200 - 1800	1000	200 - 1800	1000	200 - 1800
	2000	200 - 1800	2000	200 - 1800	2000	200 - 1800
	3000	200 - 1800	3000	200 - 1800	3000	200 - 1800

Tabla 6 Matriz Experimental para la aplicación en estaciones de flujo

6.7. Esquema del Circuito y Diagrama de Instrumentación y Tuberías

En la **Fig. 32** se presenta el esquemático de lo que será el Banco de Prueba para los experimentos relacionados a la tecnología Jet, obsérvese que este arreglo constituirá una sección que se le agregará a las instalaciones de superficie pertenecientes al **CEPRO**. La información contenida en esta figura corresponde sólo al Diagrama de Instrumentación

básica requerida y a los principales accesorios demandados, considérese que en esta representación se manifiesta la sección simple del circuito, es decir, cuando la evaluación se torna a un único dispositivo.

En la **Fig. 33** se presenta un esquema de lo que representaría una vista frontal del Circuito Experimental y el Diagrama de Instrumentación para el Jet de Superficie, cuando la opción de evaluar es el conjunto de los *dos* dispositivos en serie.

En la **Fig. 34** se muestra el circuito experimental, una vez construido. Obsérvese que las líneas de entrada y salida del Jet así como la instrumentación que se consideró la fase de conceptualización tiene correspondencia con el diseño propuesto.

Fig. 33 Esquemático del Circuito Experimental e instrumentación, Jet 1 y Jet 2

Fig. 34 Esquemático del Circuito Experimental, fase de diseño y fase de construcción

6.8. Optimización de la recopilación de datos

Con la finalidad de optimizar el tiempo de ejecución de la matriz de evaluación, se realizaron dos grupos de pruebas: a) una con nueve puntos experimentales distribuidos uniformemente en el rango de tasas de inyección, y b) con cuatro puntos experimentales distribuidos uniformemente en el rango referido en (a). De esta manera los intervalos de la variable del proceso se hacen mayores, y se verifica que la dispersión del ajuste de curvas para cada grupo de datos (a) y (b) sea mínima. En la **Fig. 35** se muestran los puntos experimentales y las curvas de ajuste obtenidas mediante esta metodología, y se aprecia el diferencial de R^2 de ambas curvas (< 0,34%).

Por lo anteriormente expuesto se valida la recopilación "reducida" de datos, reduciéndose en 50%, aproximadamente, el tiempo de ejecución de las pruebas.

Fig. 35 Flujo de inyección vs Caída de presión (Q_{succ} = 150 BPD; R = 0,170; P_d = 100 Psig)

CAPÍTULO VII

7. DERIVACION DE LAS ECUACIONES PARA EL JET

Los datos experimentales obtenidos a partir de este estudio mostraran el comportamiento empírico que un sistema de recuperación de vapores tiene en las estaciones de flujo, mediante los resultados será posible observar la tendencia de las curvas, las diferencias que marcan los cambios operacionales y/o geométricos. No obstante, un aspecto que ayudaría significativamente a comprender los fenómenos físicos que ocurren en el interior del dispositivo Jet lo aportaría el desarrollo de las ecuaciones que rigen el funcionamiento del equipo y su equivalencia con la parte experimental.

En el capítulo IV, se presentó la diferencia entre el modelo teórico del comportamiento del Jet partiendo de las sugerencias de autores tales como Bijoa [**Ref. 1**] y Cunningham [**Ref.** 2] y la solución numérica mediante diferencias finitas (**CFX**[®], AEA Technology, **Ref. 4**) y en dos dimensiones (2D) con un modelo axisimétrico, extrapolable a 3D, de las ecuaciones de continuidad, y momento lineal.

En este capítulo se propone que los resultados experimentales sean utilizados para validar el modelo numérico del dispositivo basado en ecuaciones representativas de los fenómenos físicos del sistema, dentro del concepto de uso del Jet como Recuperador de Vapores.

Para el desarrollo de las ecuaciones se utiliza el modelo presentado por Granados [**Ref. 6**] quien propone el análisis realizado por Gosline y O´brien [**Ref. 14**] agregando más complejidad al análisis incluyendo las siguientes modificaciones:

□ Fluido de succión compresible (densidad variable)

79

- Comportamiento politrópico del fluido succionado
- Los coeficientes de pérdidas en el Jet, se estiman como pérdidas de accesorios.
- Mezcla homogénea del gas en el líquido, es decir, flujo neblina [Ref. 36] a la salida de la garganta, por lo que no existe deslizamiento entre las fases después del mezclado.

Las ecuaciones de balance de energía, conservación de momento y continuidad para las distintas partes del Jet (véase partes del Jet en la Sección 2.2.1, del Capítulo II) son combinadas para obtener el sistema de ecuaciones no lineales que originan el modelo solución.

El modelo matemático predice el funcionamiento del Jet bajo distintas condiciones de operación y se utiliza para el diseño de la matriz experimental de laboratorio y posteriormente en Campo.

7.1. Representación esquemática del diseño

En la **Fig. 36** puede observarse que las secciones para el flujo de gas, están dadas por la siguiente nomenclatura: la succión del gas "s", véase número ①, la zona de entrada del gas "e", véase número ②. Para la mezcla: la garganta "t" (throat), véase número ③ y el difusor "d", véase número ④. En cuanto al líquido: la bomba "p", véase número ⑤, el venturi "v", véase número ⑥ y el chorro "j" (jet), véase número ⑦.

El problema puede ser descrito por las transiciones s \rightarrow e \rightarrow t \rightarrow d para el gas y p \rightarrow v \rightarrow j \rightarrow t \rightarrow d para el líquido. Un modelo matemático consistiría en desarrollar las ecuaciones de conservación de masa, cantidad de movimiento y de energía entre cada sección. Sin embargo, si las temperaturas de los fluidos están cercanas a las temperaturas del ambiente, y el flujo es relativamente rápido, se puede considerar el flujo isotérmico, y el gas adiabático (zona donde ésta tiene especial importancia). En este caso y despreciando la fricción en todas las zonas (excepto en la garganta), se puede omitir las ecuaciones de conservación de cantidad de movimiento en el líquido. La conservación de energía mecánica es en este caso equivalente a la conservación de cantidad de movimiento.

Véase en la Fig. 36 una representación esquemática del diseño Jet.

Fig. 36 Representación esquemática del Jet

A continuación las deducciones realizadas, a partir del cual se derivan las ecuaciones que permiten describir el funcionamiento del Jet gas-líquido.

7.2. Ecuación de Poisson o Procesos politrópicos

Este estudio se realizó con la finalidad de relacionar el caudal de gas en las diferentes secciones del Jet, a través de la presión respectiva en cada una de ellas.

- > Considerando un sistema adiabático.
- > Suponiendo que la fase gas se comporta como un gas ideal.

En la **Fig. 37**, se presenta un diagrama P-V de un gas ideal, este diagrama aplica en las zonas convergentes y divergentes del Jet.

Fig. 37 Sistema P-V de un gas ideal

La deducción de la ecuación de Poisson se efectúa a partir de la energía interna del fluido y la primera ley de la termodinámica, tal y como se presenta a continuación.

$$U = U(V,T) \tag{1}$$

Aplicando derivadas parciales

$$dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$
⁽²⁾

Para los gases ideales el término $(\partial U/\partial V)_T$. dV es igual a cero debido a que la temperatura no cambia, por lo que:

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} \cdot dT = C_{V} \cdot dT$$
(3)

De la primera Ley de la Termodinámica para un proceso reversible, se tiene:

$$\partial Q = dU + PdV \tag{4}$$

$$\partial Q = C_V \cdot dT + PdV \tag{5}$$

Si el gas está sujeto a un cambio reversible de estado ($\partial Q = 0$) se obtiene:

$$C_{V} \cdot dT = -P \cdot dV \qquad y \qquad C_{p} = V \cdot dP \tag{6}$$

Dividiendo las dos expresiones:

$$\frac{dP}{P} = -\frac{C_P}{C_V} \cdot \frac{dV}{V} \equiv -\gamma \cdot \frac{dV}{V}$$
(7)

La Ec.7 es obtenida considerando que el flujo de calor hacia el medio ambiente es cero (0), -Sistema Adiabático-. Integrando la expresión resultante se obtiene:

$$V_1^{\gamma} P_1 = V_2^{\gamma} P_2$$
 (8)

Otras maneras de escribir la Ley de Poisson:

$$T \cdot V^{\gamma - 1} = constante \tag{9}$$

$$T^{\gamma} \cdot P^{1-\gamma} = constante \tag{10}$$

Entre dos puntos la Ec.9 (Ecuación de Poisson) se expresa como:

$$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma-1} \qquad \Longrightarrow \qquad T_2 = T_1 \left(\frac{P_1}{P_2}\right)^{\frac{1-\gamma}{\gamma}} \tag{11}$$

7.2. Ecuación de los gases ideales

$$\frac{P}{\rho} = R \cdot T \tag{12}$$

La Ec.12 se obtiene al sustituir la definición de densidad en la ecuación de gas ideal.

7.3. Balance de masa

El balance de masa entre el punto (1) ubicado a la entrada de la bomba y el punto (2) ubicado en la salida del equipo sin acumulación ni generación de masa en el interior del equipo se obtiene:

$$\dot{m}_1 = \dot{m}_2 \qquad \Rightarrow Q_1 \cdot \rho_1 = Q_2 \cdot \rho_2$$
(13)

Sustituyendo las ecuaciones 12 en 13:

$$Q_1 = Q_2 \cdot \left(\frac{P_2}{P_1}\right) \cdot \left(\frac{T_1}{T_2}\right)$$
(14)

Utilizando la ecuación de Poisson presentada como la Ec.11 y sustituyéndola en la relación obtenida para el caudal de gas en dos puntos (Ec.14), se obtiene:

$$Q_1 = Q_2 \cdot \left(\frac{P_2}{P_1}\right) \cdot \left(\frac{T_2}{T_2}\right) \cdot \left(\frac{P_1}{P_2}\right)^{\frac{n-1}{n}}$$
(15)

$$Q_1 = Q_2 \cdot \left(\frac{P_1}{P_2}\right)^{\overline{n}} \tag{16}$$

Esta ecuación sólo válida para la fase gaseosa, suponiendo flujo adiabático; sin intercambio de calor entre los fluidos. Nótese que el coeficiente politrópico γ se sustituye por n.

Relacionando la ecuación obtenida para el caudal de gas con las diferentes secciones que conforman el Jet se obtiene:

$$Q_e = Q_s \cdot \left(\frac{P_s}{P_e}\right)^{1/n}; \qquad Q_t = Q_s \cdot \left(\frac{P_s}{P_t}\right)^{1/n}; \qquad Q_d = Q_s \cdot \left(\frac{P_s}{P_d}\right)^{1/n}$$
(17)

7.4. Cálculo de las velocidades

El cálculo de las velocidades de cada una de las fases presentes en el equipo, se realiza a partir de la definición de la velocidad superficial de una fase; es decir, se excluyen las fases adicionales y se considera que dicha fase fluye ocupando toda la superficie transversal de la tubería lo cual permite aplicarle el tratamiento debido a un flujo monofásico:

$$Q = V \cdot A \tag{18}$$

$$V_{p} = \frac{Q_{1}}{A_{p}};$$
 $V_{j} = \frac{Q_{1}}{A_{j}};$ $V_{s} = \frac{Q_{s}}{A_{s}};$ $V_{e} = \frac{Q_{e}}{A_{e}}$ (19)

Para determinar el área ocupada por cada uno de los fluidos en cualquier sección del equipo, se debe determinar la fracción volumétrica de cada una de las fases que se encuentran presentes, a continuación se presenta la fracción de líquido de la mezcla en la sección de la garganta t (H_t) y en la sección del difusor (H_d):

$$H_{t} = \frac{A_{lt}}{A_{lt} + A_{gt}}; \qquad H_{d} = \frac{A_{ld}}{A_{ld} + A_{gd}}$$
(20)

La velocidad del líquido y el gas en la sección de la garganta y el difusor del Jet, están dadas por:

$$V_{lt} = \frac{Q_l}{A_{total} \cdot H_t}; \qquad V_{gt} = \frac{Q_g}{A_{total} \cdot (1 - H_t)}$$
(21)

$$V_{ld} = \frac{Q_l}{A_{total} \cdot H_d}; \qquad V_{gd} = \frac{Q_{gd}}{A_{total} \cdot (1 - H_d)}$$
(22)

7.5. Densidad del gas

La densidad del gas en cada una de las secciones del Jet, se dedujo a partir de la ecuación de gases ideales (Ec.12) y la ecuación de Poisson (Ec.4); se tiene:

$$\rho_s = \rho_{std} \cdot \left(\frac{P_s}{P_{std}}\right)^{1/n}; \qquad \rho_t = \rho_s \cdot \left(\frac{P_t}{P_s}\right)^{1/n}; \qquad \rho_e = \rho_e \cdot \left(\frac{P_e}{P_s}\right)^{1/n}$$
(23)

La primera ecuación presentada para la densidad del gas se realiza a partir de un Sistema que se encuentra en condiciones de operación estándar y se supone que no existe intercambio de calor con el medio ambiente entre el punto donde se está succionando el gas y la entrada del equipo.

7.6. Densidad de la mezcla

Para determinar la densidad de la mezcla se supone que el flujo es homogéneo (no existe deslizamiento entre las fases gas y líquido).

$$\dot{m} = \rho \cdot Q = constante$$
 (24)

$$\dot{m}_{mezcla} = \dot{m}_l + \dot{m}_g = M \tag{25}$$

$$\rho_{mezcla} \cdot (Q_l + Q_g) = \rho_l \cdot Q_l + \rho_g \cdot Q_g$$
(26)

$$\rho_{mezcla} = \frac{\rho_l \cdot Q_l}{\left(Q_l + Q_g\right)} + \frac{\rho_g \cdot Q_g}{\left(Q_l + Q_g\right)}$$
(27)

La fracción de líquido para una mezcla bifásica sin deslizamiento entre las fases está dada por:

$$\lambda = \frac{Q_l}{(Q_l + Q_g)}, \qquad 1 - \lambda = \frac{Q_g}{(Q_l + Q_g)}$$
(28)

Finalmente la densidad de la mezcla se puede escribir como:

$$\rho_{mezcla} = \rho_l \cdot \lambda + \rho_g \cdot (1 - \lambda) \tag{29}$$

Utilizando la ecuación anterior, la expresión de la densidad de la mezcla para la salida de la garganta y del difusor resulta:

$$\rho_{mt} = \rho_l \cdot \lambda_t + \rho_{gt} \cdot (1 - \lambda_t)$$
(30)

$$\rho_{md} = \rho_l \cdot \lambda_d + \rho_{gd} \cdot (1 - \lambda_d) \tag{31}$$

7.7. Energías específicas de las fases

Para la deducción de la energía específica para flujo monofásico-líquido en el Jet, se considera lo siguiente:

Aplicando la segunda ley de Newton a una partícula de fluido, con longitud *ds* y área de sección transversal *dA*. Las fuerzas que actúan sobre la partícula son las fuerzas

ejercidas por la presión y el peso. Si se realiza una sumatoria de las fuerzas en la dirección del movimiento, la dirección s, el resultado es [Ref. 37, Ref. 38]:

$$PdA - \left(P + \frac{\partial P}{\partial s}ds\right)dA - \rho \cdot g \cdot ds \cdot dA \cdot \cos\theta = \rho \cdot ds \cdot dA \cdot a_s$$
(32)

Donde a_s es la aceleración de la partícula en la dirección s, y está dada por:

$$a_s = v \cdot \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t}$$
(33)

Debido a que se supone flujo estable, la velocidad con respecto al tiempo es igual a cero. Adicionalmente se puede decir que:

$$dh = ds \cdot \cos \theta = \frac{\partial h}{\partial s} ds \tag{34}$$

De modo que

$$\frac{\partial h}{\partial s} = \cos\theta \tag{35}$$

Si se divide la Ec. 32 por *dsdA* se obtiene:

$$-\frac{\partial P}{\partial s} - \rho g \frac{\partial h}{\partial s} = \rho v \frac{\partial v}{\partial s}$$
(36)

Considerando que es un líquido, la densidad es constante, por lo que se puede escribir:

$$v\frac{\partial v}{\partial s} = \frac{\partial \left(\frac{v^2}{2}\right)}{\partial s}$$
(37)

De esta manera se podría reescribir la Ec. 36 de la siguiente manera:

$$-\frac{\partial}{\partial s}\left(\frac{v^2}{2} + \frac{P}{\rho} + gh\right) = 0$$
(38)

Por lo tanto se puede concluir que a lo largo de una línea de corriente:

$$\frac{v^2}{2} + \frac{P}{\rho} + gh = const.$$
 (39)

Entre dos puntos sobre la misma línea de corriente, la Ec. 39 se definiría:

$$\frac{v_1^2}{2} + \frac{P_1}{\rho} + gh_1 = \frac{v_2^2}{2} + \frac{P_2}{\rho} + gh_2.$$
(40)

Si se considera que los dos puntos evaluados están en la misma cota de nivel, es decir, h_1 y h_2 son iguales, la Ec. 40 quedaría:

$$\frac{v_1^2}{2} + \frac{P_1}{\rho} = \frac{v_2^2}{2} + \frac{P_2}{\rho} = e$$
(41)

La Ec. 40 es conocida como Ecuación de Bernoulli, cuyas consideraciones son:

- Fluido incompresible (densidad constante).
- Flujo no viscoso (sin esfuerzos cortantes).
- Flujo estable $(\partial v / \partial t = 0)$.
- A lo largo de una línea de corriente ($v\partial v / \partial s = a_s$).

Para el caso de la fase gas, se tiene:

De acuerdo con la Ec. 9, para cada una de las secciones que componen el Jet se tiene que la energía específica esta dado por:

$$e_{p} = \frac{P_{p}}{\rho_{1}} + \frac{V_{lp}^{2}}{2}; \qquad e_{j} = \frac{P_{e}}{\rho_{1}} + \frac{V_{lj}^{2}}{2}; \qquad e_{lt} = \frac{P_{t}}{\rho_{1}} + \frac{V_{lt}^{2}}{2}$$
(42)

Hay muchas aplicaciones en las que un gas fluye a lo largo de la sección de un tubo o conducto cuya área transversal cambia y en las que un flujo isentrópico uniforme y estable es una buena aproximación a la situación de flujo real. El difusor cercano al frente de un motor a reacción, los gases de escape que pasan por los álabes de una turbina, las toberas del motor de un cohete, una tubería de gas natural rota, y los dispositivos para

medir flujos de gas son ejemplos de situaciones que se pueden modelar con un flujo isentrópico uniforme y estable.

De la ecuación de Euler [Ref. 37] ver Ec.42:

$$\frac{dP}{\rho} = g \cdot dz + v \cdot dv \tag{43}$$

Despreciando los cambios de elevación

$$v \cdot dv + \frac{dP}{\rho} = 0 \tag{44}$$

Si el área va cambiando la ecuación de continuidad sería:

$$\rho \cdot A \cdot v = const. \tag{45}$$

Aplicada entre dos secciones separadas por una distancia dx adopta la forma:

$$\rho \cdot A \cdot v = (\rho + d\rho)(A + dA)(v + dv)$$
(46)

Si se conserva sólo los términos de primer orden en las cantidades referenciales, la ecuación (46) puede escribirse como:

$$\frac{dv}{v} + \frac{dA}{A} + \frac{d\rho}{\rho} = 0 \tag{47}$$

La ecuación para la velocidad del sonido:

$$c = \sqrt{\frac{dP}{d\rho}} \tag{48}$$

De la ecuación de la velocidad del sonido, se obtiene *dP*, si se sustituye en la Ec. 43 y se obtendría:

$$vdv + c^2 \frac{d\rho}{\rho} = 0 \tag{49}$$

Eliminando $d\rho/\rho$ en la pasada ecuación y sustituyendo en la Ec. 46, nos quedaría:

$$\frac{dA}{dv} = \frac{A}{v} \left(\frac{v^2}{c^2} - 1 \right) = \frac{A}{v} \left(M^2 - 1 \right)$$
(50)

Se pueden realizar las siguientes observaciones con respecto a la Ec. 50:

- Si el área está aumentando, *dA>0*, y *M<1*, *dV* debe ser negativo, es decir *dV<0*. Este flujo subsónico tiene aceleración negativa.
- Si el área está aumentando y M>1, vemos que dV>0, por tanto, este flujo supersónico esta acelerándose en la sección divergente.
- 3. Si el área está disminuyendo y M < 1, entonces dV > 0, y el flujo se acelera.
- Si el área está disminuyendo y M>1, entonces dV<0, lo que indica un flujo que se frena.
- 5. En una garganta donde dA = 0, o bien dV = 0 o M = 1, o posiblemente ambos casos.

Si definimos una tobera como un dispositivo que acelera el flujo, las observaciones 2 y 3 describen una tobera y las observaciones 1 y 4 describen un difusor, un dispositivo que frena un flujo.

Para flujo isentrópico, se hace válida la siguiente ecuación:

$$P \cdot \rho^{k} = const, \ \acute{o} \ P \cdot \rho^{k} = P_{1} \cdot \rho_{1}^{k}, \ \frac{dP}{d\rho} = k \frac{P}{\rho}$$
(51)

De la Ec. 51 se despeja *dP* y se sustituye en la Ec. 43 obtenemos:

$$v \cdot dv + k \cdot \frac{P_1}{\rho_1^{k}} \cdot \rho_1^{k-2} d\rho = 0$$
(52)

Integrando ambos campos:

$$\frac{v^2}{2} + \frac{k}{k-1} \cdot \frac{P_1}{\rho_1^k} \cdot \rho_1^{k-1} = const$$
(53)

Reagrupando los términos:

$$\frac{v_1^2}{2} + \frac{k}{k-1} \cdot \frac{P_1}{\rho_1} = \frac{v_2^2}{2} + \frac{k}{k-1} \cdot \frac{P_2}{\rho_2}$$
(54)

Finalmente la energía específica en forma general (véase Ec. 53) se puede escribir como:

$$e = \frac{k}{k-1} \frac{P}{\rho} + \frac{v^2}{2}$$
(55)

La energía especifica para la fase gas en cada una de las secciones del equipo puede expresarse como:

$$e_{e} = \alpha \cdot \frac{P_{e}}{\rho_{ge}} + \frac{V_{ge}^{2}}{2}; \qquad e_{s} = \alpha \cdot \frac{P_{s}}{\rho_{gs}} + \frac{V_{gs}^{2}}{2}; \qquad e_{gt} = \alpha \cdot \frac{P_{t}}{\rho_{t}} + \frac{V_{gt}^{2}}{2}$$
(56)

Donde:

$$\alpha = \frac{\gamma}{\gamma - 1}; \qquad \gamma = \frac{C_p}{C_v}; \qquad R = C_p - C_v$$
(57)

7.8. Energía específica para la mezcla

Cambio de energía por unidad de tiempo por unidad de volumen y para la sección de la garganta está dada por la Ec.55.

$$E_{mezcla_total} = Q_l \cdot \rho_l \cdot e_l + Q_g \cdot \rho_g \cdot e_g$$
(58)

$$E_{mezcla_total} = Q_l \cdot \rho_l \cdot e_{lt} + Q_{gt} \cdot \rho_{gt} \cdot e_{gt}$$
(59)

Modificando las energías específicas de cada una de las fases por las ecuaciones obtenidas en la Ec.52 y 54, se tiene:

$$E_{mezcla_total} = Q_l \cdot \rho_l \cdot \left(\frac{P_t}{\rho_1} + \frac{V_{lt}^2}{2}\right) + Q_{gt} \cdot \rho_{gt} \cdot \left(\frac{P_t}{\rho_{gt}} + \frac{V_{gt}^2}{2}\right)$$
(60)

La energía específica se expresa como la energía total de la mezcla entre la masa de la mezcla, tal como se presenta a continuación:

$$e_{mezcla_total} = \frac{E_{mezcla_total}}{M}$$
(61)

Partiendo de la definición anterior se tiene que la energía específica está dada por:

$$e_{mezcla_total} = \frac{1}{M} \cdot \left[Q_l \cdot \rho_l \cdot \left(\frac{P_t}{\rho_1} + \frac{V_{lt}^2}{2} \right) + Q_{gt} \cdot \rho_{gt} \cdot \left(\frac{P_t}{\rho_{gt}} + \frac{V_{gt}^2}{2} \right) \right]$$
(62)

Conociendo que la masa de la mezcla es la suma de la masa del número de fases que se encuentren en el Sistema y expresándolo en función del caudal alimentado de cada una de las fases se tiene:

$$e_{mezcla_total} = \frac{1}{Q_l \cdot \rho_l + Q_{gt} \cdot \rho_{gt}} \cdot \left[Q_l \cdot \rho_l \cdot \left(\frac{P_t}{\rho_1} + \frac{V_{lt}^2}{2}\right) + Q_{gt} \cdot \rho_{gt} \cdot \left(\frac{P_t}{\rho_{gt}} + \frac{V_{gt}^2}{2}\right) \right]$$
(63)

Agrupando los diferentes términos de la Ec.63:

$$e_{mezcla_total} = \left[\frac{Q_l}{Q_l \cdot \rho_l + Q_{gt} \cdot \rho_{gt}} + \alpha \cdot \frac{Q_{gt}}{Q_l \cdot \rho_l + Q_{gt} \cdot \rho_{gt}}\right] \cdot P_t + \beta \cdot \frac{V_{lt}^2}{2} + (1 - \beta) \cdot \frac{V_{lg}^2}{2} \quad (64)$$

Agrupando los términos de velocidad presentados en la Ec.64, la velocidad de mezcla bifásica es:

$$V_{mezcla_total}^{2} = \beta \cdot V_{lt}^{2} + (1 - \beta) \cdot V_{lg}^{2}$$
(65)

La fracción de líquido puede expresarse como, la fracción volumétrica de líquido considerando que no existe deslizamiento entre las fases:

$$H_{t} = \lambda_{t} = \frac{Q_{l}}{\left(Q_{l} + Q_{gt}\right)} \tag{66}$$

Reordenando La Ec.64 en función de la fracción de líquido y la velocidad de mezcla se obtiene:
$$e_{mezcla_total} = \left[\frac{\lambda_t}{\rho_l \cdot \lambda_t + \rho_{gt} \cdot (1 - \lambda_t)} + \alpha \cdot \frac{1 - \lambda_t}{\rho_l \cdot \lambda_t + \rho_{gt} \cdot (1 - \lambda_t)}\right] \cdot P_t + \frac{V_t^2}{2}$$
(67)

$$e_{mezcla_total} = \left[\frac{\lambda_t + \alpha \cdot (1 - \lambda_t)}{\rho_{mezcla_total}}\right] \cdot P_t + \frac{V_t^2}{2}$$
(68)

Si se define una velocidad de mezcla en función de la Ec.68 como:

$$\dot{\rho}_{mezcla_total} = \left[\frac{\rho_{mezcla_total}}{\lambda_t + \alpha \cdot (1 - \lambda_t)}\right]$$
(69)

Se tiene finalmente una expresión para la energía específica de la mezcla similar a la obtenida para cada una de las fases.

$$e_{mezcla_total} = \left[\frac{P_t}{\rho_{mezcla_total}}\right] + \frac{V_t^2}{2}$$
(70)

Para la mezcla la salida del difusor se asume que no hay deslizamiento entre las fases y el patrón de flujo es tipo neblina [**Ref. 36**]. Se puede efectuar el mismo razonamiento hecho a la salida de la garganta para demostrar que:

$$e_{mezcla_difusor} = \left[\frac{P_t}{\rho_{mezcla_difusor}}\right] + \frac{V_d^2}{2}$$
(71)

Donde:

$$\rho_{mezcla_difusor} = \left[\frac{\rho_{mezcla_difusor}}{\lambda_d + \alpha \cdot (1 - \lambda_d)}\right]; \qquad V_d = \frac{Q_l + Q_{gd}}{A_d}$$
(72)

La energía específica de la mezcla no es más que, la suma de las energías de cada una de las fases por unidad de masa de mezcla. La energía específica del gas o del líquido de forma individual a la salida del difusor es entonces:

$$e_{ld} = \left[\frac{P_d}{\rho_l}\right] + \frac{V_{ld}^2}{2}$$
Para el líquido
(73)

$$e_{gd} = \left[\frac{P_d}{\rho_l}\right] + \alpha \cdot \frac{V_{gd}^2}{2}$$
 Para el gas (74)

7.9. Balance de cantidad de movimiento en la garganta

Ecuación integral de momento

Partiendo del concepto más general de cantidad de movimiento, donde un impulso genera una cantidad de movimiento:

$$F = ma \implies Fdt = mdv \implies Ft = mv \implies F = \dot{m}v$$
 (75)

$$\sum F = \sum \dot{m}v \qquad \Longrightarrow \sum PA = \sum \rho Qv \tag{76}$$

Realizando el balance de cantidad de movimiento ente la entrada y la salida de la garganta se tiene:

$$P_e \cdot A_e + \rho_l \cdot Q_l \cdot V_{lj} + \rho_{ge} \cdot Q_{ge} \cdot V_{ge} = P_t \cdot A_t + \rho_{mt} \cdot (Q_l + Q_{gt}) \cdot V_t + \Delta P_{et} \cdot A_t$$
(77)

Obsérvese que las pérdidas por fricción en el tramo e-t son representadas por ΔP_{et} tal y como se formula en la ecuación anterior.

Partiendo de la definición de balance de masa se puede expresar que:

$$\rho_{mt} \cdot (Q_l + Q_{gt}) = Q_l \cdot \rho_l + Q_{gt} \cdot \rho_{gt} \qquad \text{y} \qquad Q_{gt} \cdot \rho_{gt} = Q_{ge} \cdot \rho_{ge}$$
(78)

$$\rho_{mt} \cdot (Q_l + Q_{gt}) = Q_l \cdot \rho_l + Q_{et} \cdot \rho_{et}$$
(79)

Sustituyendo esta expresión en la ecuación de momento y agrupando términos tenemos:

$$\left(P_{e} - P_{t} - \Delta P_{et}\right) \cdot A_{t} = \rho_{l} \cdot Q_{l} \cdot \left(V_{t} - V_{lj}\right) + \rho_{ge} \cdot Q_{ge} \cdot \left(V_{t} - V_{ge}\right)$$

$$\tag{80}$$

7.10. Balance de energía en la garganta

Por el principio de conservación de la energía sabemos que la energía no se crea ni se destruye, sino que se transforma, se tiene que la energía que ingresa a un Sistema, será igual a la que sale más la que es transformada

$$E_e = E_s + E_t \tag{81}$$

$$\dot{m}\dot{e}_{e} = \dot{m}\dot{e}_{s} + E_{t} \tag{82}$$

$$Q_l \cdot \rho_l \cdot e_{lj} + Q_{ge} \cdot \rho_{ge} \cdot e_{ge} = (Q_l + Q_{gt}) \cdot \rho_{mt} \cdot e_{mt} + \Delta E_m$$
(83)

$$Q_{l} \cdot \rho_{l} \cdot \left(\frac{P_{e}}{\rho_{1}} + \frac{V_{lj}^{2}}{2}\right) + Q_{ge} \cdot \rho_{ge} \cdot \left(\alpha \cdot \frac{P_{e}}{\rho_{ge}} + \frac{V_{ge}^{2}}{2}\right) = \left(Q_{l} + Q_{gt}\right) \cdot \rho_{mt} \cdot \left(\frac{P_{t}}{\rho_{mt}} + \frac{V_{t}^{2}}{2}\right) + \Delta E_{m}$$
(84)

El término ΔE_m representa las pérdidas por mezclado. Despejando ΔE_m se tiene:

$$\Delta E_m = Q_l \cdot \rho_l \cdot e_{lj} + Q_{ge} \cdot \rho_{ge} \cdot e_{ge} - (Q_l + Q_{gt}) \cdot \rho_{mt} \cdot e_{mt}$$
(85)

7.11. Caídas de presión

Caída de presión en la zona de la garganta

Cuando en un sistema se determinan las perdidas por presión, generalmente se consideran las perdidas asociadas a la elevación, aceleración y las perdidas asociadas a los efectos de la fricción entre el fluido y el Sistema con el cual se encuentre en contacto. Sin embargo para la zona de la garganta se supone que no hay elevación y las perdidas por aceleración y expansión del fluido se consideran despreciables, por lo tanto a continuación se presentan las perdidas asociadas a la fricción, representadas mediante la ecuación de Fanny.

$$\Delta P_{et} = f_t \rho_{mt} \frac{L}{D} \frac{v^2}{2}$$
(86)

Para Régimen laminar el factor de fricción es determinado como 64/Re y para régimen de flujo turbulento se presenta una ecuación tipo Blassius [**Ref. 37**].

$$f_t = 0.3164 \cdot \mathrm{Re}^{-1/4} \tag{87}$$

Donde el Reynolds de mezcla se define como:

$$\operatorname{Re} = \frac{\rho_{mt} v_t D_t}{\mu_{mt}} \tag{88}$$

La viscosidad de la mezcla se determina según:

$$\mu_{mt} = \exp\left[\lambda_t Ln(\mu_t) + (1 - \lambda_t) Ln(\mu_{gt})\right]$$
(89)

Perdidas de energía en las diferentes zonas del Jet

a) Zona de la boquilla

Las perdidas de energía en la zona de la boquilla, se representan mediante un coeficiente de perdidas que considera el cambio de sección que ocurre en el equipo.

$$\Delta E_j = k_j \rho_l Q_l \frac{L}{D} \frac{v_j^2}{2}$$
(90)

Donde el coeficiente de perdidas está presentado como:

$$k_{j} = \left(0.5 \left[1 - \left(\frac{D_{\nu}}{D_{p}}\right)^{2}\right] + 0.8 \left(\frac{D_{\nu}}{D_{j}}\right)^{4} \left[1 - \left(\frac{D_{j}}{D_{\nu}}\right)^{2}\right] \operatorname{sen} \theta_{j} \left(\frac{D_{j}}{D_{\nu}}\right)^{4}$$
(91)

b) Zona de la cámara de mezclado

Las perdidas de energía en la zona de la cámara de mezclado, se representan mediante un coeficiente de perdidas que considera el cambio de sección que ocurre en el equipo.

$$\Delta E_e = k_e \rho_{eg} Q_{eg} \frac{L}{D} \frac{v_{ge}^2}{2}$$
(92)

Donde el coeficiente de perdidas está presentado como:

$$k_{j} = \left(0.5 \left[1 - \left(\frac{D_{t} - D_{j}}{D_{s}}\right)^{2}\right]\right)$$
(93)

c) Zona del difusor

Las perdidas de energía en la zona del difusor, se representan mediante un coeficiente de perdidas que considera el cambio de sección que ocurre en el equipo.

$$\Delta E_{d} = k_{d} (\rho_{dg} Q_{dg} + \rho_{l} Q_{l}) \frac{L}{D} \frac{v_{le}^{2}}{2}$$
(94)

Donde el coeficiente de perdidas está presentado como:

$$k_{d} = \left(2.6 \left[1 - \left(\frac{D_{t}}{D_{d}}\right)^{2}\right]\right) \operatorname{sen} \theta_{d}$$
(95)

7.12. Balance de energía específica en la succión y en el difusor

$$e_s = e_s + K_e \cdot \frac{V_e^2}{2} \tag{96}$$

$$e_{mt} = e_{md} + K_d \cdot \frac{V_t^2}{2} \tag{97}$$

7.13. Balance de energía total sobre el Jet

Aplicando el principio de conservación de la energía sobre el Jet, se tiene que la energía que ingresa a un Sistema, será igual a la que sale más la que es transformada

$$E_e = E_s + E_t \tag{98}$$

$$\dot{m}_l \dot{e}_l + \dot{m}_g \dot{e}_g = \dot{m}_m \dot{e}_m + \Delta E_m + \Delta E_j + \Delta E_e + \Delta E_d$$
(99)

$$Q_l \cdot \rho_l \cdot e_{lp} + Q_{gp} \cdot \rho_{gp} \cdot e_{gp} = (Q_l + Q_{gt}) \cdot \rho_{md} \cdot e_{md} + \Delta E_m + \Delta E_j + \Delta E_e + \Delta E_d$$
(100)

Sabiendo que la energía de la mezcla es:

$$(Q_l + Q_{gd}) \cdot \rho_{md} \cdot e_{md} = Q_l \cdot \rho_l \cdot e_l + Q_{gd} \cdot \rho_{gd} \cdot e_{gd}$$
(101)

El balance de energía en el Jet se expresa como:

$$Q_l \cdot \rho_l \cdot \left(e_{lp} - e_{ld}\right) - Q_{gs} \cdot \rho_{gs} \cdot \left(e_p - e_{ld}\right) = +\Delta E_m + \Delta E_j + \Delta E_e + \Delta E_d$$
(102)

Con la deducción de las ecuaciones presentadas, es necesario resolver un Sistema de ecuaciones no lineales y que esta determinado por las ecuaciones (102), (80), (96), (97) y (79).

CAPÍTULO VIII

8. RESULTADOS Y DISCUSIÓN

Los resultados aquí presentados permiten establecer las condiciones de operación y determinar las combinaciones de los parámetros geométricos básicos para que el Jet de Superficie pueda ser implantado exitosamente en las áreas operacionales.

El análisis de los resultados se enfoca hacia la determinación del éxito de succión de gas a condiciones atmosféricas mediante el uso de crudo, actuando este como un fluido motor que permita, además, comprimir dicho gas hasta las condiciones de solicitud en un tanque de almacenamiento o estación de flujo (50 - 100 Psig).

La cantidad de gas recuperado por volumen de fluido motor requerido es también un punto de alto interés en esta investigación, por lo que será estimado y analizado en los resultados.

Bajo este escenario, la primera fase de la evaluación en el **CEPRO** permitió establecer las variables independientes del Sistema, los tiempos de respuesta del mismo, sus limitaciones e identificar aquellas que tenían un impacto directo sobre el tipo, calidad y cantidad de la información generada.

Posteriormente a esta primera fase de reconocimiento, se iniciaron los ensayos, con lo cual, se recolectaron un total de **143** puntos experimentales. Estos experimentos están conformados por un estudio de bombeo monofásico de crudo y tres procesos bifásicos definidos para la compresión del gas.

Para obtener los resultados fue necesario conocer y caracterizar las propiedades físicas más importantes del crudo y del gas, las mismas se pueden consultar en el **Anexo 9**. De

99

la misma manera, en el **Anexo 10** se presentan las correlaciones empleadas para el cálculo de algunos parámetros operacionales (flujo másico del crudo y del gas, factor de compresibilidad del gas) requeridos en el procesamiento de los datos generados durante las pruebas.

A fin de establecer comparaciones entre los distintos casos experimentales, la data experimental cruda se clasificó geométrica y operacionalmente, y se presenta en el **Anexo 11** debido a su gran extensión.

Con ésta data se generaron las curvas del caudal succionado (crudo, gas, aire) vs caudal inyectado (crudo, agua, gas) y la caída de presión vs las curvas de caudal inyectado en el dispositivo para observar las tendencias.

Debido a la variedad de las pruebas ejecutadas, los resultados se presentarán de acuerdo a cada proceso, aplicación, y caso por separado. A continuación los resultados obtenidos para cada experiencia:

8.1. Resultados Flujo Monofásico (bombeo de Crudo con Crudo):

Se realizaron las pruebas con fluido monofásico (Crudo-Crudo) con el fin de establecer la correspondencia entre los resultados de la simulación numérica y los experimentales, con la finalidad de determinar su conveniencia como modelo de predicción.

La influencia de la geometría, fue determinada evaluándose tres tipos de boquillas (R = 0,132, R = 0,170 y R = 0,280), para un equipo de Longitud de Mezcla L = 7,5D refiriéndose a las dos primeras boquillas y de Longitud de Mezcla de sección divergente (ésta ultima longitud de mezcla físicamente es diferente ya que el equipo no presenta garganta, es decir, se encuentra la tobera y seguidamente el difusor) para la boquilla correspondiente a R = 0,280.

En la **Tabla 7** se presenta un resumen de los ensayos realizados, evaluados para tres tipos de boquillas, dos presiones de descarga (contrapresión, $P_d = 100$ Psig y $P_d = 200$ Psig) y utilizando Crudo como fluido motriz.

	Q _{succ} (BPD)	P _d (Psig)	Q _{iny} (BPD)
R=0,132 L=7,5D	150		300, 500, 700, 900
	250	100	500
	350		300
	450		300
	550		300
	650		300
R=0,170 L=7,5D	150	100	300, 500, 700, 900, 1100
		200	300, 500, 700, 900
	250	100	300, 500, 700, 900, 1100
		200	300, 500, 700, 900
	350	100	300, 500, 700, 900, 1100
		200	200, 300, 500, 700, 900
	450	100	300, 500, 700, 900, 1100
R=0,280 L=7,5D*	150	100	300-1100
		200	300-1100

Tabla 7 Puntos Experimentales: Aplicación Crudo-Crudo

A continuación se presentan las gráficas obtenidas con los **51** puntos experimentales correspondientes a crudo como fluido impulsor para succionar crudo. A partir de los mismos se puede apreciar lo siguiente:

Configuración geométrica Relación de áreas R = 0,132:

En la **Fig. 38** se muestra una gráfica con el prototipo del formato en el que se presentaran los resultados, cabe destacar que es de especial interés determinar la caída de presión a través del equipo (ΔP) y cuanto es necesario invertir (Flujo de inyección) para obtener ese ΔP . Por esta razón en la mayoría de los casos se presentaran las gráficas de la Caída de presión vs Flujo de inyección para el equipo Jet, empleando una Relación de Area y una Longitud de Mezcla determinada, y manteniendo una tasa de succión de crudo y una

presión en la descarga fijas, con lo cual el parámetro operacional independiente sería la tasa de inyección de crudo.

Adicionalmente se presentaran casos en los que la tasa de inyección se dejará fija y se variará la tasa de succión, bajo esta metodología también se determinará como queda afectado el ΔP . A continuación véase formato:

Fig. 38 Caída de presión vs Flujo de inyección (R = 0,132, Q_{succ} = 150 BPD, P_d = 100 Psig)

En la **Fig. 39** se muestra la variación del diferencial de presión del equipo vs incrementos controlados en el caudal de fluido de succión para un equipo Jet de Relación de Area **R** =0,132 y una Longitud de Mezcla L = 7,5D a distintas tasas de succión de crudo, comprendidas entre 150 y 650 BPD y manteniendo una tasa de inyección de crudo fija de 300 BPD y una presión de descarga fija de $P_d = 200$ Psig.

De esta figura se aprecia una pendiente negativa; es decir, para un caudal de inyección (fluido motriz) fijo, cualquier incremento en el caudal de succión, se traduce en una disminución en la capacidad del equipo para elevar la presión de descarga del mismo.

Fig. 39 Caída de presión vs Flujo de succión (R = 0,132, Q_{iny} = 300 BPD, P_d = 200 Psig)

En la **Fig. 40** se muestra la Caída de presión vs Flujo de inyección para un equipo Jet de Relación de Area **R =0,132** y una Longitud de Mezcla **L = 7,5D**, manteniendo una tasa de succión de crudo fija en 150 BPD y una presión en la descarga fija de P_d = 100 Psig (curva color azul).

Dada la oportunidad, se consideró conveniente analizar la posible influencia del contenido de gas en el crudo de succión (ver curva color fucsia). A este efecto, se decidió mantener fijo el caudal succionado mientras éste era enriquecido con gas. Se procedió, seguidamente a incrementar de manera escalonada el caudal del fluido motor y la tendencia se muestra y se compara con el bombeo de crudo muerto en la **Fig. 40**.

Nótese que la pendiente de ambas curvas es positiva y, la del crudo gasificado es inferior y más corta que la obtenida para el caso del bombeo de crudo muerto. Adicionalmente, se observa un corte violento por estrangulamiento aparente del fluido; esto indica que el contenido del gas en el crudo no favorece el bombeo del mismo (concordancia con lo reportado por Cunningham **Ref. 2**).

El efecto observado parece estar indicando que parte de la energía del fluido motor es empleada en comprimir el volumen de gas añadido al crudo y, que solo la energía restante, participa en el bombeo del crudo mezclado con el gas. En todo caso, el contenido del gas en el crudo de succión parece tener un resultado adverso al bombeo.

Otra posible causa esta relacionada con las pérdidas del sistema y con la posible formación de ondas de choque o discontinuidades, que más que favorecer el bombeo, generan barreras de presión en el interior del equipo (diseño subsónico) las cuales tienden a frenar el volumen a bombear. Sin embargo, este efecto no pudo ser determinado en el laboratorio a causa de las limitaciones en los instrumentos de medición y control; no obstante, fue observado a la entrada de la sección de mezcla de un Jet Supersónico a baja presión y velocidad que fue -paralelamente a este- analizado en los laboratorios de Intevep [**Ref. 39**], por otra parte, el estudio de ese fenómeno se escapa del alcance de este trabajo y se deja como tema de futuros trabajos de investigación utilizando el diseño de Jet aquí evaluado.

Fig. 40 Caída de presión vs Flujo de inyección ($R = 0,132, Q_{succ} = 150 \text{ BPD}, P_d = 100 \text{ Psig}$)

Configuración geométrica Relación de áreas R = 0,170:

En la **Fig. 41** se muestra la Caída de presión vs Flujo de inyección para un equipo Jet de Relación de Area **R** =0,170, una Longitud de Mezcla **L** = 7,5**D**, una presión en la descarga fija de 100 Psig, y cuatro opciones de curvas diferentes, cada una de ellas representa la variable fija de caudal de succión de crudo, para obtener cada curva se variaba el caudal de inyección de crudo. El caudal de succión se fija con los valores correspondientes a 150 BPD, 250 BPD, 350 BPD y 450 BPD.

Este ensayo tiene como objeto determinar el incremento del diferencial de presión e identificar el porcentaje del mismo que era invertido solo en manejo de caudal. Estas curvas muestran un comportamiento parabólico similar al de los modelos reportados en la literatura [**Ref. 1**, **Ref. 18**].

El diferencial de presión aumenta más rápidamente con respecto al incremento del volumen de fluido de energía a medida que el fluido succionado es aumentado.

Por otra parte, resulta aparente que la rapidez de incremento de presión, además de ser menor para bajos volúmenes de fluido de bombeo, requiere de un mayor consumo de fluido motor. Esta tendencia parece indicar la existencia de un compromiso entre la geometría del Jet y las pérdidas del sistema. Es oportuno señalar que por limitaciones del sistema, en ninguno de los casos evaluados se alcanzó un punto máximo lo cual no permite determinar si el equipo puede ser capaz o no de desarrollar mayores diferenciales de presión.

Nótese que esta situación representa un incremento en el gasto del fluido impulsor y por ende en los costos de bombeo. Este costo puede ser importante a menos que la energía sea provenga de una fuente natural.

105

A pesar de evaluar diferentes tasas de succión, el comportamiento parabólico de las mismas, es muy parecido, tanto en su forma como en su magnitud. Inclusive, no se observa diferencias significativas, por lo que se pudiera intuir que el parámetro caudal de succión no tiene un efecto tan dominante en los resultados, como pudiera tenerlo el cambio de relación de boquillas. Las curvas para los caudales de succión (250, 350, y 450) mantienen reciprocidad entre una y otra, desplazándose hacia arriba para caudales más bajos, se esperaría lo mismo para el caudal de succión de 150 BPD, sin embargo, no se observó esa correspondencia.

Fig. 41 Caída de presión vs Flujo de inyección (R = 0,170, Q_{succ} = 150-450 BPD, P_d = 100 Psig)

En la **Fig. 42** se muestra la Caída de presión vs Flujo de inyección para un equipo Jet de Relación de Area **R =0,170** y una Longitud de Mezcla **L = 7,5D** cada curva corresponde a una tasa de succión de crudo fija de 150 BPD, 250 BPD y 350 BPD, variándose el caudal de inyección de crudo para obtener cada curva.

La diferencia de esta gráfica con la anterior se deriva en que en esta ocasión se fija la presión en la descarga a 200 Psig. Se observa el mismo comportamiento y tendencia que

en la curva anterior (**Fig. 41**), sin embargo, los niveles alcanzados de la caída de presión cuando la presión en la descarga es mayor (200 Psig), es más bajo, comparado con los niveles alcanzados cuando la presión de la descarga corresponde a 100 Psig, véase con más detalles en las comparaciones realizadas en las curvas presentadas en la **Fig. 43**.

Fig. 42 Caída de presión vs Flujo de inyección (R = 0,170, Q_{succ} = 150-350 BPD, P_d = 200 Psig)

En la **Fig. 43** se muestra un conjunto de tres gráficas cuya correspondencia esta asociada a la variable fija tasa de succión de crudo (valores de 150 BPD, 250 BPD y 350 BPD). En la misma se presenta la Caída de presión vs Flujo de inyección para un equipo Jet de Relación de Area **R =0,170** y una Longitud de Mezcla **L = 7,5D** comparándose los valores de la presión en la descarga (100 y 200 Psig).

En la **Fig. 43** y tal como se mencionó anteriormente se observa que a medida que el caudal de succión aumenta desfavorece la relación de compresión del dispositivo, comparece gráficas **a**), **b**) y **c**), sin embargo, este comportamiento se invierte a medida que la presión en la descarga aumenta, véase gráficas **b**) y **c**) de la **Fig. 43**.

Fig. 43 Caída de presión vs Flujo de inyección (R = 0,170, P_d = 100 y 200 Psig)

Configuración geométrica Relación de áreas R = 0,280:

En la **Fig. 44** se muestra la Caída de presión vs Flujo de inyección para un equipo Jet de Relación de Area **R** = 0,280 y una Longitud de Mezcla divergente, manteniendo una tasa de succión de crudo fija en 150 BPD y una presión de descarga de $P_d = 100$ Psig. De esta figura se observa que la tendencia corresponde a la encontrada para las boquillas y longitud de mezcla anteriores.

Fig. 44 Caída de presión vs Flujo de inyección (R = 0,280, Q_{succ} = 150 BPD, P_d = 100 Psig)

Comparación configuración geométrica (relación de áreas):

La Fig. 45 muestra el efecto del área de flujo de las boquillas (R = 0,132, R = 0,170 y R = 0,280) sobre la caída de presión en el dispositivo, utilizando un equipo Jet de Longitud de Mezcla L = 7,5D y además una longitud divergente, evaluada a una tasa de succión de crudo de 150 BPD y una presión de descarga de $P_d = 100$ Psig, variándose la tasa de inyección.

Se observa que a medida que la relación de áreas es menor el impacto en el funcionamiento del equipo es superior obteniéndose mayor diferencial de presión en el dispositivo, es decir, la boquilla R = 0,132, se comporta mejor que R = 0,170 y a su vez las anteriores mejores que R = 0,280.

En base a estos resultados se deduce que para instalaciones de superficie es más atractivo emplear la boquilla con la relación de área más pequeñas (R = 0,132).

Nótese que la boquilla R = 0,280 a pesar de tener una longitud de mezcla diferente (convergente -divergente) se amoldó a la tendencia de las boquillas R = 0,170 y R = 0,132, para bajos caudales (<700 BPD), sin embargo, para altos caudales tiende a acoplarse con la boquilla de R = 0,170.

Con estos resultados, se pudiera diagnosticar que los efectos de fricción ocasionados por las altas tasas de flujo manejadas (> 700 BPD) contrarrestaron el impacto del parámetro evaluado (relación de áreas), es decir, que se pudiera intuir que la longitud de mezcla tiene un efecto predominante ante la boquilla (relación de áreas) para las condiciones operacionales evaluadas. Por esta razón se acercan las curvas, en caso contrario, puede suponerse que si la boquilla evaluada R = 0,280 hubiese sido de L = 7,5D las curvas no se acercarían. Es interesante mencionar que para la aplicación de fondo de pozo, en la literatura se encuentra que el efecto de las boquillas es el mismo, es decir, la boquilla de menor relación de áreas es la que mejor resultado aportó a las investigaciones consultadas [**Ref. 35**].

Fig. 45 Caída de presión vs Flujo de inyección (R = 0,132, R = 0,170 y R = 0,280, Q_{succ} = 150 BPD, P_d = 100 Psig)

Tal y como se había propuesto como objetivo de la evaluación Crudo-Crudo, se realizó la comparación entre los resultados de los modelos teóricos (Jiao y Petrie), la simulación numérica (éstos se encuentran resumidos en la Matriz experimental y están determinados bajo condiciones operacionales supuestas); y los resultados experimentales encontrados en el **CEPRO**.

La comparación se hizo posible calculando el valor de N con los datos experimentales, y utilizando este valor para calcular el valor de M (relación de flujo másico) mediante las curvas generadas en la simulación y teóricas, posteriormente con N y M se calcula entonces el valor de la eficiencia. Se puede observar que la diferencia entre las

comparaciones es apreciable y se incrementa a medida que en las pruebas se evaluaba un flujo de inyección de crudo mayor, el rango de error encontrado se estima desde el orden del 350% y varía hasta en mas de 1000%.

Se repitió el cálculo de la eficiencia pero esta vez, se utilizó el valor de **M** calculado con los datos experimentales, por lo que se utilizó este valor para calcular el valor de **N**, mediante las curvas generadas en la simulación y teóricas, con **N** y **M** se calcula entonces el valor de la eficiencia.

Se encontró que los porcentajes de error de la eficiencia entre los datos experimentales y la simulación y modelos teóricos son menores cuando se utiliza el parámetro **M** para el cálculo de eficiencia, en vez del parámetro **N**, por lo cual a la hora de un diseño se debería utilizar el parámetro **M** para iniciar los cálculos.

Adicionalmente se debería estudiar con más profundidad un desarrollo que se ajuste a las condiciones experimentales, debido a que a pesar de que los resultados de la simulación son los que se acercan más a los resultados experimentales, existe una diferencia apreciable entre ambos. En el **Anexo 7** se muestra la matriz experimental, y al final del **Anexo 11** las tablas con los resultados y las comparaciones.

8.2. Resultados Aplicación Recuperación de Vapores:

8.2.1. Resultados Proceso 1 (compresión de gas con crudo)

Se realizó un diseño experimental para la ejecución de las pruebas, tratando de reproducir lo más cercano posible los vapores liberados desde los tanques de almacenamiento en las estaciones de flujo, ésta acción es necesaria debido a que el crudo presente en el **CEPRO** es un crudo muerto, es decir, no tiene gas disuelto, por lo que la cantidad de gas emanada desde los tanques es irrisoria. Para reproducir las condiciones del gas liberado, se sugirió que se inyectara gas controlado en el anular conformado por los dos revestidores que presenta el pozo experimental, de esta manera este espacio funcionaría como un pulmón de gas para la succión del Jet. Sin embargo, cuando se iniciaron las pruebas, la presión en esta configuración era superior a la presión característica de los tanques de almacenamiento (\approx 1 atmósfera), y aunado a esto, ésta variable no se mantenía constante, criterio importante a la hora de catalogar un punto como estable.

Por lo anteriormente citado, hubo que establecer pruebas adicionales que aseguraran la confiabilidad y veracidad de las mismas. En este aspecto, se formularon una nueva serie de ensayos cuya descripción se introducirá seguidamente.

A los fines de diferenciar esta metodología con la que se propondrá, se ha definido ésta como: Prueba Convencional de compresión de gas con crudo, (véase **Sección 8.2.1.1.**), lo cual corresponde a tomar el gas que se comprimirá en el dispositivo proveniente del pulmón formado en el pozo, y la opción adicional que tomará el gas del Sistema de instrumentación y que se planteará en la **Sección 8.2.1.2**.

Es importante mencionar que el criterio de evaluación de las pruebas era medir la cantidad de gas succionado para diferentes cambios, dentro de los que se consideraron de mayor impacto las variaciones en los parámetros: Caudal de inyección y tipo de fluido impulsor. Se esperaba que se pudiera succionar alrededor de 1000 Mscfd, cuya medición - cantidad de flujo succionado- se realizaría la medida con un instrumento Vortex.

La calibración dependería de la presión de trabajo, y el caudal que se estimaba succionar. Bajo estas premisas se tomó el Vortex de 2", para una presión de trabajo de 50 Psig, cuyo rango mínimo y máximo era de 86, 28 y 2077 Mscfd respectivamente.

112

8.2.1.1. Gas del pulmón del pozo (prueba convencional de la metodología de trabajo):

En la **Fig. 46** se muestra el Flujo de succión del gas vs Presión de succión del gas para un equipo Jet de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, manteniendo una tasa de inyección de crudo fija en 1400 BPD y adaptándose al sistema, la presión del separador y la presión en la descarga.

De esta figura se observa que cuando el pulmón del pozo se calibró a la presión atmosférica, el registro de succión del gas era inapreciable (Por debajo del rango mínimo del instrumento), además la presión del pulmón no se mantenía estable.

Por esta razón se decidió ir aumentando la presión del pulmón del pozo cada 5 Psig para observar la capacidad de respuesta del sistema y descartar lecturas erróneas debido a inestabilidad del sistema, inadecuada calibración de los instrumentos, o instrumentación incompatible.

Obsérvese de la **Fig. 46** que sólo cuando la presión del pulmón alcanzó un valor superior a 50 Psig fue cuando se estimó una cantidad apreciable de flujo volumétrico de succión (85 Mscfd para una presión 10 veces superior a la condición de succión real).

Con la respuesta que aportó el Sistema se puede ratificar que en la experiencia anterior el instrumento utilizado estaba registrando el flujo succionado, debido a que a mayor presión de succión mayor deberá ser el caudal succionado, por lo que se pudiera intuir que la instrumentación para la medición del gas de succión se encuentra operativa.

Debido a la respuesta del Sistema (**Fig. 46**), se procedió a aumentar el caudal de inyección de 1400 BPD a 1700 BPD y se repitieron los experimentos, a los fines de observar si mejoraba la capacidad de succión del equipo.

113

Fig. 46 Flujo de succión vs presión de succión (R = 0,132, Q_{iny} = 1400 BPD)

En la **Fig. 47** se muestra la gráfica con los resultados, mediante la representación del Flujo de succión vs presión de succión del gas para un equipo Jet de Relación de Area **R =0,132** y una Longitud de Mezcla L **= 7,5D**, esta vez, manteniéndose la tasa de inyección de crudo en 1700 BPD y adaptándose al sistema, la presión del separador y la presión en la descarga.

La presión del pulmón en este caso hubo que incrementarse paulatinamente (cada 5 Psig) igual que en el caso anterior, debido a la inestabilidad del sistema. El caudal de gas registrado en este caso, fue menor que en la evaluación anterior. Nótese, que el rango mínimo de medida corresponde a 86,28 Mscfd por lo que la medición a partir de estos resultados esta también fuera de rango.

Posterior a estos ensayos y para determinar si utilizando el conjunto (**Jet 1** y **Jet 2**), se incrementaban los niveles de succión, se ejecutaron una nueva serie de ensayos, en las mismas se varió el fluido impulsor cada 200 BPD en cada Jet.

Fig. 47 Flujo de succión vs presión de succión (R = 0,132, Q_{iny} = 1700 BPD)

Los resultados se muestran en la **Fig. 48** mediante la curva de Flujo de succión del gas vs Flujo de inyección del crudo para un arreglo **Jet 1** y **Jet 2** de Relación de Area **R =0,132** ambos, y una Longitud de Mezcla de **L = 7,5D** para ambos, manteniendo una presión en el pozo fija en 15 Psi.

Se observa que a estas condiciones los niveles de succión están por debajo del rango mínimo del instrumento. Sin embargo, en la **Fig. 48** se puede observar que a través del equipo existe una caída de presión positiva para el proceso, es decir, el fluido impulsor genera el efecto de compresión esperado, no obstante, al no estar presente la cantidad de flujo másico de succión en el dispositivo, no se puede realizar la transferencia de energía.

Es posible que a pesar de alcanzar niveles de diferencial de presión positivo, no sean los adecuados para succionar el gas del sistema.

Fig. 48 Flujo de succ. y ΔP vs Flujo de inyecc. (R = 0,132, P_{pozo} = P_{atm}, Arreglo Jet 1 y 2)

Los puntos experimentales presentados en la **Fig. 49** corresponden a un equipo Jet de 3 ^{1/2}". Es decir, en esta prueba la variante es la geometría interna del equipo, relacionándose un equipo de mayores dimensiones internas, con el equipo que se había utilizado en todas las series anteriores y cuya dimensión corresponde a una nomenclatura de Jet de 2 ^{7/8}".

Para el Jet de 3^{1/2}" se utilizó una boquilla de **R** = 0,080. El área de la sección transversal por donde pasa el fluido impulsor (anular) para esta boquilla es la misma que posee el Jet de 2^{7/8}" con la boquilla de **R** = 0,132.

Los resultados para estos puntos continúan todavía por debajo del rango mínimo del instrumento de medición, a pesar de que se presumía que las pérdidas serían menores cuando se utilizara un equipo de mayores dimensiones, esperándose por lo tanto que la capacidad de succión superara la mínima exigida por el instrumento de medición.

Fig. 49 Caída de presión vs Flujo de inyección (R = 0,080, P_{pozo} = P_{atm}, Arreglo Jet 1 y 2)

8.2.1.2. Gas de Instrumento (prueba adicional):

Considerándose que los resultados obtenidos en la sección 8.2.1.1. no fueron los más satisfactorios debido a que mantener la presión del pulmón estable fue alcanzado a condiciones operacionales diferentes a las requeridas, surgió como propuesta adicional estos nuevos ensayos.

En la prueba anterior se instaló en el banco de pruebas los dos equipos Jet en la línea de flujo, por lo que se dejó esta configuración. Para iniciar las pruebas era inyectado crudo motriz sólo al segundo Jet, y el gas a comprimir provenía del sistema de gas de instrumentos.

Se inyecto 1300 BPD utilizando la boquilla $\mathbf{R} = 0,132$. Para este caso se genera el punto experimental 73. La prueba se inicia succionando gas de la línea de instrumentos a una condición de 80 Psig, muy por encima de la presión requerida, por lo que se instala en el circuito una válvula reguladora de presión (válvula de aguja) para bajar la presión del gas de instrumento hasta la presión atmosférica. No se observa succión de gas ya que el caudal no supera el rango mínimo del instrumento.

Es importante mencionar que estos ensayos fueron ejecutados utilizando para la medición del flujo de gas a succionar el Vortex de 2". Además, así como en las pruebas anteriores, la presión de separación y la presión en la descarga se adaptaron a las condiciones del sistema. Se observa un incremento del gas succionado comparado con el punto 74 y 75 por efecto de una presión mayor en la corriente de suministro de gas.

En la **Fig. 50** se muestra el Flujo de succión de gas vs flujo de inyección de crudo para un equipo Jet de Relación de Area **R** =0,132 y una Longitud de Mezcla **L** = 7,5D, esta vez, manteniendo una presión proveniente del sistema de instrumentos de 15 Psi, como ya estaba la configuración instalada de los dos Jet, se ejecutaron las pruebas con el segundo, el medidor del flujo de succión correspondía al Vortex de 2". En esta gráfica no se observa succión de gas ya que el caudal esta por debajo del rango mínimo del instrumento.

Fig. 50 Flujo de succión vs Flujo de inyección (R = 0,132, P_{instr} = P_{atm}, Arreglo Jet 2)

En la **Fig. 51** se muestra el Flujo de succión de gas vs flujo de inyección de crudo para dos equipos Jet de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D cada

uno, esta vez, manteniendo una presión proveniente del sistema de instrumentos de 15 Psi, el medidor del flujo de succión era con el Vortex de 2". En esta gráfica no se observa mejoras en la succión con los equipos en serie.

Fig. 51 Flujo de succión vs Flujo de inyecc. (R = 0,132, P_{instr} = P_{atm}, Arreglo Jet 1 y 2)

8.2.2. Resultados Proceso 2 (compresión de gas con agua)

Cuando se realizó el pronostico de los ensayos a realizar para este proceso (matriz experimental), no se consideró que los resultados para gas - agua eran poco probables de realizar, pues la separación de los mismos no podía ser efectiva en el **CEPRO**, no obstante, y con la finalidad de cumplir con este objetivo, se considero reemplazar el fluido de succión de gas por aire, de esta manera se evaluarían una serie de experimentos aire - agua, en reemplazo de los experimentos gas - agua. Para tal fin se trató de utilizar el mínimo número de cambios, con lo cual se estableció el siguiente procedimiento:

Del circuito experimental se desconectó una brida de la línea de succión de gas, para proveer con Aire la alimentación al Jet, obsérvese de la **Fig. 52** el círculo remarcado de

color amarillo que identifica la brida. El caudal de inyección (agua), tal y como se había planificado se desplazó desde los tanques de almacenamiento por medio de las bombas P002A/B para la inyección del mismo al Jet.

Fig. 52 Esquemático de la compresión de gas con agua

En la **Fig. 53** se muestra el Flujo de succión (aire) y la caída de presión vs flujo de inyección (agua) utilizando el segundo equipo Jet de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, succionando del ambiente directamente a la presión atmosférica, la medición es realizada con el Vortex de 2".

De ésta figura se observa que el caudal succionado por el equipo, es inferior al rango mínimo del instrumento (Vortex 2", Presión de trabajo 50 Psig, rango mínimo 86,28 Mscfd – rango máximo 2077 Mscfd).

En la **Fig. 54** se muestra el Flujo de succión (aire) y la caída de presión vs flujo de inyección (agua) utilizando el segundo equipo Jet de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, succionando del ambiente directamente a la presión atmosférica, la medición es realizada con el Vortex de 2".

Esta serie de experimentos se repiten con las mismas condiciones de las pruebas mostradas en la **Fig. 53**, con la diferencia que se ajusta el rango mínimo del instrumento Vortex 2", a una presión de trabajo de 0 Psig, cuyo rango de flujo corresponde a un mínimo de 41,03 Mscfd y un rango máximo de 472,55 Mscfd. No obstante, el rango mínimo del equipo esta por encima del caudal mínimo del proceso.

Fig. 53 Flujo de succión (aire) y Caída de presión vs caudal de inyección (agua), R = 0,132, $P_{succ} = P_{atm}$, Vortex 2", Arreglo Jet 2

Fig. 54 Flujo de succión (aire) y caída de presión vs caudal de inyección (agua), R = 0,132, $P_{succ} = P_{atm}$, Vortex 2", Arreglo Jet 2, repetidas

En la **Fig. 55** se muestra el Flujo de succión (aire) vs flujo de inyección (agua) utilizando el arreglo completo (Jet 1 y Jet 2) de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, succionando del ambiente directamente a la presión atmosférica, la medición es realizada con el Vortex de 2", se decide trabajar con el conjunto (Jet 1 y Jet 2) para verificar posible incremento del caudal de succión, sin embargo, el comportamiento fue el mismo.

Fig. 55 Flujo de succión (aire) y caída de presión vs caudal de inyección (agua), R = 0,132, $P_{succ} = P_{atm}$, Vortex 2", Arreglo Jet 1 y Jet 2

En la **Fig. 56** se muestra el Flujo de succión (aire) vs flujo de inyección (agua) utilizando el arreglo completo (Jet 1 y Jet 2) de Relación de Area $\mathbf{R} = 0,132$ y una Longitud de Mezcla $\mathbf{L} = 7,5\mathbf{D}$, succionando del ambiente directamente a la presión atmosférica, la medición es realizada con el Vortex de 1", se decide cambiar el instrumento Vortex de 2" a 1" para verificar posible incremento del caudal de succión.

Las características del nuevo instrumento, Vortex 1", corresponden a una Presión de trabajo de 0 Psig, rango mínimo 10,58 Mscfd – rango máximo 107,56 Mscfd. Obsérvese que sólo los puntos de 11 y 13 Mscfd son confiables de acuerdo a la tabla de calibración del instrumento.

Fig. 56 Flujo de succión (aire) y caída de presión vs caudal de inyección (agua), R = 0,132, $P_{succ} = P_{atm}$, Vortex 1", Arreglo Jet 1 y Jet 2

En la **Fig. 57** se muestra el Flujo de succión (aire) vs flujo de inyección (agua) utilizando el Jet 1 de Relación de Area **R** = 0,132 y una Longitud de Mezcla **L** = 7,5**D**, succionando del ambiente directamente a la presión atmosférica, la medición es realizada con el Vortex de 1". Esta prueba se realiza para cuantificar la succión del Jet 1 y ver la diferencia cuando se trabaja sólo con el Jet dos, es posible que los accesorios de la línea (colocar dos Jet y trabajar sólo con uno) disminuyan la capacidad de compresión del equipo.

En la **Fig. 58** se muestra el Flujo de succión (aire) vs flujo de inyección (agua) utilizando un equipo cuya relación de áreas corresponde a la de un Jet de 3^{1/2}", de Relación de Area **R** = 0,080 y una Longitud de Mezcla **L** = 7,5D, succionando del ambiente directamente a la presión atmosférica, la medición es realizada con el Vortex 1".

Sólo dos de los puntos experimentales reportan caudales de gas succionados dentro del rango de apreciación del instrumento (Vortex 1").

Fig. 57 Flujo de succión (aire) y caída de presión vs caudal de inyección (agua), R = 0,132, $P_{succ} = P_{atm}$, Vortex 1", Arreglo Jet 1

Fig. 58 Flujo de succión (aire) y caída de presión vs caudal de inyección (agua), R = 0,132, $P_{succ} = P_{atm}$, Vortex 1", Jet de 3 ^{1/2}".

8.2.3. Resultados Proceso 3 (compresión de gas con gas de LAG)

En la **Fig. 59** se muestra el Flujo de succión (gas) vs flujo de inyección (gas) utilizando el **Jet 1** de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, succionando del sistema de instrumentación a 15 Psi, la medición es realizada con el Vortex de 1".

Fig. 59 Flujo de succión (gas) y vs caudal de inyección (gas), R = 0,132, $P_{instrum} = P_{atm}$, Vortex 1", Jet 1

En la **Fig. 60** se muestra el Flujo de succión (gas) vs flujo de inyección (gas) utilizando el **Jet 2** de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, succionando del sistema de instrumentación a 15 Psi, la medición es realizada con el Vortex de 1". No se observa incremento de gas succionado asociado a la inyección de gas motriz.

Fig. 60 Flujo de succión (gas) y vs caudal de inyección (gas), R = 0,132, $P_{instrum} = P_{atm}$, Vortex 1", Jet 2

En la **Fig. 61** se muestra el Flujo de succión (gas) vs flujo de inyección (gas) utilizando el **Jet 2** de Relación de Area R = 0,132 y una Longitud de Mezcla L = 7,5D, succionando del pozo a aproximadamente 15 Psi, la medición es realizada con el Vortex de 1".

Se observa un decremento lineal del caudal de gas succionado, contrario a lo esperado, el incremento ΔP positivo del equipo esta asociado con una merma en la capacidad de succión del mismo, e incremento en el caudal del gas inyectado. Pareciera que el gas inyectado a medida que se incrementa, bloquea la succión del equipo. La presión en la garganta del Jet puede disminuir a un valor mínimo, dado por el cambio de áreas que experimenta el conducto del fluido motriz, pero éste valor debe ser superior a la presión del fluido a succionar, por lo que no es capaz de mezclarse las corrientes.

Fig. 61 Flujo de succión (gas) y vs caudal de inyección (gas), R = 0,132, P_{pozo} = P_{atm}, Vortex 1", Jet 2

En la **Fig. 62** se muestra el Flujo de succión (gas) vs flujo de inyección (gas) utilizando el arreglo **Jet 1** y **Jet 2** de Relación de Area $\mathbf{R} = \mathbf{0},\mathbf{132}$ y una Longitud de Mezcla $\mathbf{L} = \mathbf{7},\mathbf{5D}$,

succionando del pozo a aproximadamente 15 Psi, la medición es realizada con el Vortex

de 1".

Fig. 62 Flujo de succión (gas) y vs caudal de inyección (gas), R = 0,132, P_{pozo} = P_{atm}, Vortex 1", Jet 1 y 2

Durante la fase de planificación y estimación de los beneficios de la recuperación de vapores en tanques de almacenamiento, utilizando la tecnología Jet como método de extracción, se estimó que las emanaciones recuperadas estarían por el orden de los 800 - 1000 Mscfd, sin embargo, se muestra en este capítulo que de todas las pruebas realizadas, la cantidad de as que se pudo succionar, no superó los 100 Mscfd. De esta manera se concluye que no es económicamente factible instalar **RVTA** con Jet hasta no conseguir condiciones geométricas con resultados más atractivos que los obtenidos en este estudio.

CONCLUSIONES Y RECOMENDACIONES

- Se diseño, construyó y evaluó un sistema de succión de gas tipo Jet de carácter anular objeto de patente americana (otorgada en el mes de Abril bajo el número US Patente 654-75-32) y se probó utilizando fluidos reales a condiciones reales de campo que exceden el ámbito analizado por otros investigadores. Los resultados confirman la necesidad de obtener modelos basados en estudios con fluidos reales que permitan un diseño más cercano a las variables operacionales de un campo real.
- Los beneficios observados en esta aplicación (RVTA) resultaron ser notablemente inferiores a la aplicación de fondo de pozo.
- Las curvas de eficiencia obtenidas con el modelo analítico-numérico (2D), mostraron un comportamiento parabólico similar al de los modelos unidireccionales y monofásicos de Jets (Bijoa Jiao, **Ref. 1**); sin embargo, los valores de eficiencia fueron inferiores a los esperados y la envolvente de los puntos de máxima eficiencia mostraron una tendencia decreciente y no plana como la diagnosticada por Bijoa Jiao. Esto es un punto novedoso de atención con valor agregado al conocimiento de la tecnología Jet.
- Se presenta una metodología de trabajo para realizar la caracterización del Jet de Superficie, que simula las condiciones bajo las cuales operará el equipo en campo, y toma en consideración las limitaciones propias del Centro Experimental de Producción.
- Se diseñó un circuito de prueba que permite la caracterización del Jet de Superficie para dos aplicaciones (bombeo y compresión hidráulica) en campo, empleando fluidos y condiciones operacionales reales.
- Con los datos recopilados durante las pruebas se estableció el comportamiento del equipo, empleando como fluido motriz diferentes corrientes correspondientes a: crudo, agua y gas a alta presión con lo cual se recopilaron un total de 143 puntos experimentales.
- Los modelos de predicción y diseño que existen en la literatura, sobrestiman el comportamiento de los equipos.
- El modelo de predicción propuesto en este trabajo es más conservador y permite predecir con mejor aproximación el comportamiento de los equipos.
- Se recomienda utilizar el parámetro M como parámetro predictivo y representativo en lugar del parámetro N.
- Se caracterizó el comportamiento del Jet para la recuperación de vapores en tanques de almacenamiento, en las instalaciones de superficie del Centro Experimental de Producción CEPRO para diferentes configuraciones geométricas y operacionales, y flujo bifásico.
- Los resultados de las pruebas en el CEPRO permiten concluir que el diseño de estos equipos es fundamentalmente sensible a la alteración en las condiciones operacionales encontradas y que no pueden ser realizados basados, únicamente, en los resultados de laboratorio o en los modelos presentados por otros investigadores del área, sin que se enriquezcan estos con evaluaciones y correcciones derivadas de estudios como el aquí realizado.
- Los resultados de las pruebas en el CEPRO permitieron determinar el grado de precisión de los modelos monofásicos, aplicados al proceso de bombeo o de compresión de fluidos.

- Se encontró para el caso Crudo-Crudo que la boquilla más pequeña R = 0,132, presentó mayor caída de presión con menor flujo de inyección, comparada con las boquillas R = 0,170 y R = 0,280. En base a estos resultados se deduce que para instalaciones de superficie es más atractivo emplear la boquilla con la relación de área más pequeña (R = 0,132).
- La presencia de gas en el equipo, desmejora el desempeño del mismo, en todos los casos.
- El uso del gas para succionar gas es mejor para bajos caudales, donde se estima permanece el rango subsónico. Para grandes caudales el efecto es negativo.
- A pesar de haber realizado la simulación numérica y tener también como base el modelo teórico, quedan muchas incógnitas por despejar con respecto al funcionamiento de tales equipos, siendo la principal determinar la Eficiencia del mismo. Adicionalmente, por el hecho de proponerse el equipo diseñado para una aplicación distinta a la convencional, requiere que la ventana de aplicación del mismo se establezca experimentalmente.
- Los resultados de las pruebas en el **CEPRO** permitirán mejorar el diseño de estos equipos para que se adecuen a las condiciones operacionales encontradas en campo.
- Comparando las curvas de eficiencia y recuperación de presión entre los resultados de las simulaciones y los resultados del modelo teórico, bajo las mismas condiciones operacionales y geométricas, se concluye que los resultados de las simulaciones son más confiables que los obtenidos con los modelos teóricos.
- Al realizar un estudio de modelado y simulación con el programa CFX[®], se puede conocer los gradientes de velocidades, presiones, viscosidad, etc., a lo largo del

dispositivo, de esta manera se podrá realizar una mejor selección del material a emplearse y un acertado diseño mecánico del equipo.

- Los resultados de las pruebas en el CEPRO permitieron determinar el grado de precisión de los modelos monofásicos, encontrándose un %error entre 350 y 1100%.
- Se recomienda un estudio analítico de la eficiencia del equipo para caso bifásico, tomándose en cuenta las ecuaciones aquí presentadas y que incluyen la compresibilidad del gas, así como la verificación con la data experimental.
- Finalmente, las pruebas de laboratorio (CEPRO-PDVSA), utilizando gas y crudo de producción, demuestran que el dispositivo Jet puede succionar gas a presión atmosférica y comprimirlo hasta 70 Psi, no obstante, la relación de energía requerida y consumida por volumen de gas succionado resultó ser del orden 100:1. Los costos de instalación, operación y mantenimiento de esta alternativa son inferiores a los de la alternativa conceptualizada por PDVSA que contempla el uso de compresores comerciales de gas. Sin embargo, la cantidad de gas recuperado por volumen de fluido requerido es tan baja que no permite justificar el uso de jets para este fin.

REFERENCIAS BIBLIOGRAFICAS

- **Ref. 1** Jiao, B., Schmidt Z., and Blais R.N. "Efficiency and Pressure Recovery in Hydraulic Jet Pumping of Two-Phase Gas/Liquid Mixture", SPEPE (Nov. 1990) 361-364.
- **Ref. 2** Cunningham, R. G.: "Gas compression with the liquid jet pump", J. Fluid. Eng. (1974) 203-15; Trans., ASME, Serie I, 196.
- Ref. 3 Urrutia Patricia. Trabajo Especial de Grado "Evaluación De Las Emisiones De Hidrocarburos Gaseosos De Baja Presión De Los Tanques De Compensación De La Unidad de Explotación Lagocinco, PDVSA E&P Occidente". Ciudad Ojeda 2001.
- Ref. 4 CFX 4.2. Solver Manual, AEA Technology, UK, 1997.
- Ref. 5 González, José Rafael; Urbina, Maricé y Casique, Luis. US Patente 654-75-32
 "Válvula de Succión Anular". Commissioner of Patent and Trademarks Office Washington D.C., . April, 2003.
- Ref. 6 Granados, A. "Modelaje y simulación de facilidades de producción para el manejo de crudos: Recolección de vapores de crudos generados en los tanques de compensación de las estaciones de flujo de Maraven sobre el lago de Maracaibo empleando un Sistema eyector. Estudio Conceptual". Informe Técnico N° INT-EPPR 00002, 92, PDVSA-Intevep, Los Teques 1992.
- Ref. 7 Urbina, M., Uzcátegui, P., González, J. "Evaluación de la Válvula de Succión en la Unidad de Explotación y Producción Lagomar". Informe Técnico N° INT-9059, 2001, PDVSA-Intevep, Los Teques.
- Ref. 8 Intevep, Informe Técnico N° INT-6655 "Evaluación Hidráulica de las Estaciones de Flujo de la U.E. Lagocinco. Reingeniería de Estaciones de Flujo. Los Teques 1999.

- Ref. 9 González, J, Urbina, M., Casique, L. "Conceptualización de una válvula generadora de succión insertable en manguitas y/o mandriles de L.A.G.". Informe Técnico N° INT-6375, 1999, PDVSA-Intevep, Los Teques. 1999.
- **Ref. 10** Cunningham, R.G. "Jet Pump Theory and Performance with Fluids of High Viscosity", 1956. Proc. Of ASME, Paper No. 56-A-58.
- Ref. 11 Thomson, James, 1852. Rep. Brit. Ass'n., 1853 Rep. Brit. Ass'n.
- Ref. 12 Rankine, J.M., 1870 Proc. Roy. Soc. N°.123.
- Ref. 13 Lorenz, H., Technische Hydromechanik, 1910.
- Ref. 14 Gosline, J.E. and. O'Brian, M.P., " The Water Jet Pump". U. of CA. Pub. in Ingineering, (1942) 3, No 3, 167-190.
- **Ref. 15** O'Brian, M.P. and Gosline, J.E., "Aplication of the Jet Pump to oil-well pumping", API Third Mid-Year Meeting, Tulsa, (May 19, 1933).
- Ref. 16 Wilson, P.M. "Jet free pump" A progress report on two years of field performance",Proceedings of Southwestern Petroleum Short Course, (April 1973), pg. 165.
- **Ref. 17** Cunningham, R. G., "The jet pump as a lubrication oil scanvenge pump for aircraft Wright Air Development Center technical Report 55-143 (1955).
- Ref. 18 Petrie, H.L., Wilson, P.M., and Smart, E.E.: "Jet Pumping Oil Wells", World Oil (November 1983) 51-56.
- Ref. 19 Choi, M.S. "API Tank Vapors Project". SPE 26588. Octubre 1993. 791-798.
- Ref. 20 Donald, L. "The Heavy Oil Storage tank Project". SPE 37886. Marzo, 1997.
- **Ref. 21** Weldon R.E. Jr. "When does vapor recovery pay off". The Oil and Gas Journal. Septiembre 11, 1961.
- Ref. 22 PDVSA CIED. "Curso de Ingeniería de Producción", Segundo Modulo. Sistemas de Producción. 1997.
- Ref. 23 El pozo ilustrado. "Producción". Capítulo 4. Págs. 149-202.

- **Ref. 24** PDVSA CIED. "Curso de diseño mecánico por Internet", Modulo Equipos y servicios auxiliares, capítulo III.
- **Ref. 25** API Publication **2518**, Capítulo 19, Evaporative Loss from Fixed Roof Tanks. Seccion 1, segunda edición, 1991.
- Ref. 26 Normas PDVSA, Especificación de Ingeniería. Tanques de almacenamiento PDVSA F-201
- **Ref. 27** API Standard 2000, "Venting Atmosferic and low pressure storage tanks". Quinta Edición, 1988.
- Ref. 28 Ley Penal del Ambiente, Decreto No 638, 1991.
- **Ref. 29** W. G Webb. "Vapor Jet System: An Alternative Vapor Recovery Method". SPE 25942. Marzo ,1993.
- **Ref. 30** Diabin Liu. "The use of Vapor Recovery Units in the Austin Chalk Field". SPE 26595. Octubre ,1993.
- Ref. 31 G. B. Evans y Ralph Nelson. "Applications of vapors Recovery to Crude Oil Production". SPE 2089. 1968
- **Ref. 32** Fortunati F. "Two-Phase Flow through Wellhead Chokes", paper SPE 3742 presented at the 1972 SPE European Spring Meeting, May 16-18.
- Ref. 33 Shapiro A.H. "The Dynamics and Thermodynamics of Compressible Fluid Flow". Volumen I. Pág. 48-50. 1953.
- Ref. 34 Urbina, M., González, J. Uzcátegui, P. "Metodología para la selección, instalación y evaluación de la Válvula de Succión". Informe Técnico N° INT-8566, 2001, PDVSA-Intevep, Los Teques. 2001.
- Ref. 35 Urbina, M., Uzcátegui, P. "Caracterización de la Válvula de Succión en el Centro Experimental de Producción (CEPRO)". Informe Técnico Nº INT-7619, 2000, PDVSA-Intevep, Los Teques. 2000.

Ref. 36 Shohjan, O. "Curso Flujo Multifásico". Octubre ,1999.

- Ref. 37 Streeter Victor y Wyle Benjamin. Fluids Mechanics. Págs. 98-103.
- Ref. 38 Merle Potter y David Wigget. . Mecánica de Fluidos. Págs. 100-102.
- **Ref. 39** Contreras María Eugenia. Trabajo Especial de Postgrado "Evaluación del Jet supersónico". Universidad Simón Bolívar. 2003.
- **Ref. 40** GPSA, "Engineering Data Book". Décima Primera Edición, 1998.
- **Ref. 41** Wichert, E. y Aziz, K,: "Calculate Z's for Sour Gases", Hydrocarbon Processing, Mayo de 1972.
- Ref. 42 Giorgio Soave. "Equilibrium constants from a modified Redlich-Kwong equation of State". Chemical Engineerring Science, 1972. Vol.27. pp. 1197-1203.
- **Ref. 43** Ding-Yu Peng and Donald B. Robinson. "A New Two-Constant Equation of State". Ind. Eng. Chem., Fundam., Vol. 15, No 1, 1976.
- Ref. 44 Donal B. Robinson. "A Rigorous Method for Predicting the Critical Propierties of Multicomponent System from a Equation of State". AIChE Journal (Vol. 23, No. 2), March, 1977, Page 137.
- Ref. 45 P.M. Dranchuk and J. H. Abou-Kassem. "Calculation of Z Factors For Natural Gases Using Equations of State". The Journal of Canadian Petroleum. Tecchnology, July-Semtember. 1975. Montreal.
- **Ref. 46** L. Mattar, G. S. Brar y Khalid Aziz. "Compresibility of Natural Gases". The Journal of Canadian Petroleum. Tecchnology, October-December. 1975. Montreal.
- Ref. 47 Barrios M: "Manual de trabajos de grado de especialización y maestría y tesis doctorales". Universidad Pedagógica Experimental Libertador. Vicerrectorado de Investigación y Postgrado.
- **Ref. 48** Méndez A., Carlos A. "Metodología. Diseño y Desarrollo del proceso de investigación". Editorial Mc Graw Hill. Tercera edición, 2001.

Ref. 49 Sampieri Hernández, Roberto. "Metodología de la investigación". Editorial Mc Graw Hill. Segunda edición, 1999.

Consulta Internet: http://www.pdvsa.pdv.com.

Consulta Internet: http://www.mem.gob.pe/wmem/legisla/aa/guiaquemadogas.pdf - Similar pages 27-05-2002.

Consulta Internet: <u>http://web.mit.edu/2.25/www/5_08/5_08_a_h1.html</u> 29-05-2002 Consulta Internet: <u>http://www.asme.org/pubs/authors/Fluids03_papers.html</u> 10-06-2002

APENDICES

PDVSA INGENIERIA Y PROYECTOS Objetivo Informar los resultados obtenidos en la evaluación preliminar de un nuevo esquema de proceso para la recuperación de vapores en TK's y optimización de la producción en las EF's.	 Compresores con impulsores tipo paletas. Compresores con impulsores tipo paletas. Altos requerimientos de mantenimientos. Baja confiabilidad de operación. Operación muy sensible. Altos costos de inversión Equipos instalados en el Lago, actualmente fuera de servicio.

Anexo 1: Costos de Instalación y operación RVTA

W PDVSA	A Y PROYECTO	S	Res	ultados	PDVSA INGENIERIA Y PROYECTOS	Estud	lios R	ealizados
ALTERN EN EF's	IATIVAS EVAL (EJ. BARUA)	UADAS DE E V):	SQUEMAS DE	PROCESOS	• USO DE GAS DE LEV MOTRIZ	/ANTAMI	ENTO CO	OMO FLUIDO
 ESQUEA SITUAC ESQUEA RECUPF SEPARA ESQUEA RECUPF CRUDO ESQUEA RECUPF CRUDO 	A DE PROCE: IÓN ACTUAL A DE PROCE ERACIÓN DE CIÓN INDEPEN A DE PROCE CRACIÓN DE VI A DE PROCE PROCE PROCE PROCE V PROVECTOS MEN DE R D: EF-BARUA V	SO No. 1: SO No. 2: VAPOR CON DIENTE DE LA SO No. 3: VAPOR CON A LA DE PRODU SO No. 4: PROR CON CON I COMÚN A LA 3: ESULTADE	RECICLO E PRODUCCIÓN. RECICLO E ICCIÓN. MPRESIÓN MAS DE PRODUCCIÓ GERENCI ILIOS FELO DS	DE CRUDO Y DE CRUDO Y RECICLO DE N. A DE APOYO TECNICO	REQUIERE APROX. 5 MMPCED REQUIERE RECOMPRIMIR EL C POTENCIAL PROBLEMAS DE H REQUIERE DE TENDIDOS DE LI REQUIERE MAYOR CAPACIDAD REQUIERE LÍNEAS DE ALTA PR REQUIERE LÍNEAS DE ALTA PR	DE GAS DE LE LAS MOTRIZ CO IDRATOS POR I NEAS SUBLACI D DEL SISTEMA RESIÓN DE GAS ESTUDÍAS S: SLVULAS DE E	VANTAMIENT IN UN CONSU EXPANSIÓN E USTRES. DE TRANSFE GERENC GERENC SLOQUEO Y	ro. MO DE 1000 HP. DEL GAS. ERENCIA. A LA DE APOYO TECNICO
					 VALVULAS DE CONTROL (3) EN GENERAL. TAPAS DE EMERGENCIA PAR 	A VENTEO DE	TANQUES.	RUMENTACION
ESQUEMA No.1 (ACTUAL)	0.016	32680	0.00	3.70	• OTROS REQUERIMIENTOS	ESQUEMA No. 2	ESQUEMA No. 3	ESQUEMA No. 4
ESQUEMA No.2	0.018 (+0.002)	32780 (+100)	1.11	3.90 (+0.20)	POTENCIA DE BOMBEO: 10 HP (**) POTENCIA DE COMPRESION: 175 HI	,		
ESQUEMA No. 3	0.017 (+0.001)	32720 (+40)	1.20	3.96 (+0.26)	RECIPIENTE A PRESION 30" x 10' SISTEMA VENTURI / "JET POINT"			
ESQUEMA NO. 4	0.017 (+0.001)	32720 (+40)	1.20 GERENCIA DI	3.96 (+0.26) E APOYO TECNICO	NOTA: (*): EXISTE EN ALGUNAS INSTALACIONES RE ESTABILIZAR NIVEL EN EL TANQUE Y MAN OLEODUCTOS.	CICLO DE CRUDO P. ITENER PRESIÓN EN	ARA LOS GERENCIA I	DE APOYO TECNICO

(CLASE V)	(CLASE V)	(CLASE V)	(CLASE V) ESQUEMA No. 2 ESQUEMA No.3 ESQUEMA No.4 175.20 133.00 181.00 33.10 21.50 66.50 330.70 200.50 620.50 308.70 200.50 620.50 308.70 200.50 620.50 3366.00 251.00 775.50 CEENCLA DE APOND TECNCO	(CLASE V) ESQUEMA No. 2 ESQUEMA No. 2
ESQUEMA No. 2 ESQUEMA No.3 ESQUEMA No.4 175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 308.70 200.50 620.50 77.30 50.50 155.00 3386.00 251.00 775.50 CERENCIA DE APOYD TECNICO CERENCIA DE APOYD TECNICO CERENCIA DE APOYD TECNICO CERENCIA DE APOYD TECNICO CONCLUSIÓN LA INSTALACIÓN DE EVICTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUJO, UTILIZANDO CONCOLICIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMPORIZANIA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIÓN DE P	ESQUEMA No. 2 ESQUEMA No. 3 ESQUEMA No. 4 175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50	ESQUEMA No. 2 ESQUEMA No. 3 ESQUEMA No. 4 175.20 133.00 181.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50	ESQUEMA No. 2 ESQUEMA No. 3 ESQUEMA No. 4 175.20 133.00 181.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50	ESQUEMA No. 2 ESQUEMA No. 3 ESQUEMA No. 4 175.20 133.00 181.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50
175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 306.70 200.50 620.50 1546.75 1226.11 766.0 386.00 251.00 775.50 CEEENCLA DE APOVO TECNICO CONCLUSIÓN CONCLUSIÓN LA INSTALACIÓN DE EXECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FILUIO, UTILIZANDO COMPORIZAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FILUIO, UTILIZANDO COMPORIZANTE NO RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FILUIO, UTILIZANDO	175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 3387.0 200.50 620.50 777.30 50.50 155.00 386.00 251.00 775.50 GEENCLA DE APONO TECNICO CONCLUSIÓN VSA ENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 CEENCLA DE APOND TECNICO	175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 DEFENCIA DE APOVO TECNICO	175.20 133.00 181.00 100.40 46.00 373.00 33.10 21.50 66.50 308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 CEENCLA DE APONO TECNICO
100.40 46.00 373.00 33.10 21.50 66.50 306.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APOYO TÉCNICO GERENCIA DE APOYO TÉCNICO OVSA GENIERIA Y PROYECTOS CONCLUSIÓN LA INSTALACIÓN DE EXECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN DOVSA GENIERIA Y PROYECTOS CONCLUSIÓN LA INSTALACIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	100.40 46.00 373.00 33.10 21.50 66.50 308.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50	100.40 46.00 373.00 33.10 21.50 66.50 306.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50	100.40 46.00 373.00 33.10 21.50 66.50 306.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 DEFENCIA DE APONO TECNICO	100.40 46.00 373.00 33.10 21.50 66.50 33.10 21.50 66.50 306.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50
33.10 21.50 66.50 308.70 200.50 620.50 308.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 CEENCLA DE APOVO TECNICO CONCLUSIÓN LA INSTALACIÓN DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN DESARROLLAR PROVECTO PILOTO CON LA FINALIDAD DE PRECES COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VA COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACI	33.10 21.50 66.50 308.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 GENERIA DE APONO TECNICO VSA ENIERIA Y PROYECTOS	33.10 21.50 66.50 306.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APONO TECNICO	33.10 21.50 66.50 33.10 21.50 66.50 33.0 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 Defencia de aporo tecnico VSA Conclusión ENIERIA Y PROYECTOS Conclusión A INSTALACIÓN DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN	33.10 21.50 66.50 306.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 CERENCIA DE APOYO TECNICO
308.70 200.50 620.50 77.30 50.50 155.00 386.00 251.00 775.50 NOTA: BENEFICIOS PARA UNA ESTACIÓN DE FLUJO. CERENCIA DE ADOVO TECNICO OVSA GENIERIA Y PROYECTOS CONCLUSIÓN LA INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APOYO TECNICO MISA ENIGERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 GENERIA DE APONO TECNICO GENERIA DE APONO TECNICO GENERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 CEEENCIA DE APOVO TECNICO	308.70 200.50 620.50 177.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APOYO TECNICO CERENCIA DE APOYO TECNICO CERENCIA DE APOYO TECNICO VSA SENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN
77.30 50.50 155.00 386.00 251.00 775.50 CERENCIA DE APOYO TECNCO CERENCIA DE APOYO TECNCO CERENCIA DE APOYO TECNCO CERENCIA DE APOYO TECNCO OVSA GENIERIA Y PROYECTOS CONCLUSIÓN LA INSTALACIÓN DE EXECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ: LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	77.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO VSA EXENTIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	77.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO VSA SENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	77.30 50.50 155.00 386.00 251.00 775.50 CEEENCIA DE APOVO TECNICO CEEENCIA DE APOVO TECNICO CEEENCIA DE APOVO TECNICO VSA VEALERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN	77.30 50.50 155.00 386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO CONCLUSIÓN SA SENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN
386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO OUSA GENIERIA Y PROYECTOS CONCLUSIÓN LA INSTALACIÓN DE EXECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO COMO ENERGÍA MOTRIZ. LA ENPANSIÓN DEL FLEIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO WSA EENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO WSA SENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	386.00 251.00 775.50 CEEENCIA DE APOVO TECNICO CEEENCIA DE APOVO TECNICO CEEENCIA DE APOVO TECNICO VSA PENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	386.00 251.00 775.50 GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO CONCLUSIÓN SA SENIERIA Y PROYECTOS CONCLUSIÓN A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN
OVSA GENERIA Y PROYECTOS Conclusión La INSTALACIÓN DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO COMO ENERGÍA MOTRIZ. LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO.SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	GERENCIA DE APOVO TECNICO NOTA: BENEFICIOS PARA UNA ESTACIÓN DE FLUJO. GERENCIA DE APOVO TECNICO GERENCIA DE APOVO TECNICO VSA VENIERIA Y PROYECTOS Conclusión A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN	OBJECTION DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN	OBJECTION DE APOYO TECNICO NOTA: BENEFICIOS PARA UNA ESTACIÓN DE FLUJO. GERENCIA DE APOYO TECNICO GERENCIA DE APOYO TECNICO VISA REDIERIA Y PROYECTOS Conclusión A INSTALACIÓN DE EVECTORES PARA LA RECUPERACIÓN DE VAPORES EN	OBERNICIA DE APOVO TECNICO NOTA: BENEFICIOS PARA UNA ESTACIÓN DE FLUJO. VISA GERENCIA DE APOVO TECNICO VENIERIA Y PROYECTOS Conclusión A INSTALACIÓN DE EYECTORES PARA LA RECUPERACIÓN DE VAPORES EN
TANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO DE DENARROLLAR PROVECTO PILOTO CON LA FINALIDAD DE PRECIS COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA				
COMO ENERGÍA MOTRIZ - LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO
BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENS	DESARROLLAR PROTECTO FILOTO CON LA FINALIDAD DE PRECISAR I	DESARROLLAR PROTECTO PLOTO CON LA FINALIDAD DE PRECISAR I		DESARROLLAR PROTECTO PILOTO CON LA FINALIDAD DE PRECISAR E
	OMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EYECTORES PARA LA RECUPERACIÓN DE VAPORI	OMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPORI	OMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE ESCIORES PARA LA RECIPERACIÓN DE VARORI	IOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPORE
MUY RENTABLE CON LOS SIGUENTES BENEFICIOS:	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EYECTORES PARA LA RECUPERACIÓN DE VAPOR OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ESQUEMA PROPUESTO Y SOPORTAR U APLICACIÓN ENTENSIVA.	IOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR IOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA.	TOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPENANCIAL EN PRODUCTIÓN DE VECTORES PARA LA RECUPERACIÓN DE VAPORE ROMERADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA DANO EL ENQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA.	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR IOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y SOPORTAR NU APLICACIÓN ENTENSIVA.
1. POTENCIAL DE GAS A RECUPERAR: 35 MMPCED DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PA	OMO ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ENQUEMA PROPUENTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. ALV RENTABLE CON LOS SIGUIENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - JAPOR	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FILIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR DOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BALO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. IL Y RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - LEP	COMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPORI ROMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA IL Y RENTABLE CON LOS MIGUIENTES BENEFICIOS:	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BALO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. IUV RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - LAP
	COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR DAMO EL ENQUENA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. ACCIÓN: DEFINICIÓN Y DESARROLLO - IAP POTENCIAL DE GAS A RECUPERAR: SÓMMPCED POTENCIAL DE GAS A RECUPERAR: SÓMMPCED	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA IL Y RENTABLE CON LOS SIGUENTES BENEFICIOS: POTENCIAL DE GAS A RECUPERAR: 35 MMPCED 2 DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PARA L	OMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA ICV RENTABLE CON LOS NIGUENTES BENEFICIOS: - POTENCIAL DE GAS A RECUPERAR: 35MMPCED - DISARROLLO - IAP	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA IL Y RENTABLE CON LOS NIGUENTES BENEFICIOS: - POTENCIAL DE GAS A RECUPERAR: 35 NMPCED - DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PARA LA
2- POTENCIAL DE CRUDO A RECUPERAR: 3000 BNPD RECUPERACIÓN DE VAPORES EN LA DIVISIÓN DE OR	20000 ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR 20010 ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN DANO EL ENQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. 20011 A RECUPERACIÓN DE VAPOR DANO EL ENQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. 20012 A RECUPERAR: SÓMBRED ACCIÓN: DEFINICIÓN Y DESARROLLO - IAP 20012 A RECUPERAR: SÓMBRED POTENCIAL DE CRUDO A RECUPERAR: SÓM BIND 20012 A RECUPERAR: SÓM BIND DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PARA LA RECUPERACIÓN DE CORIENT	COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE FLUTDO DE PRODUCCIÓN COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA AUY RENTABLE CON LOS MIGUENTES BENEFICIOS: - FOTENCIAL DE GAS A RECUPERAR: 35MMPCED - POTENCIAL DE CRUDO	COMO ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN DISARROLLAR PROTUCIO PLUIDO CON LA FINALIDAD DE PREDINCIÓN E APORE COMO ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECUTA PROPUESTO Y SUPORTAR SU APLICACIÓN EXTENSIVA COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA COMPORTAMIENTO DE EXECUTA PROPUESTO Y SUPORTAR SU APLICACIÓN EXTENSIVA ILV RENTABLE CON LOS NIGUENTES BENEFICIOS: POTENCIAL DE GAS A RECUPERAR: SUMPCED DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PARA I POTENCIAL DE GAS A RECUPERAR: SUM DEDD POTENCIAL DE CUDO A RECUPERAR: SUM DEDD DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PARA I	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA AUY RENTABLE CON LOS SIGUENTES BENEFICIOS: - POTENCIAL DE GAS A RECUPERAR: 35 MMPCED - POTENCIAL DE CRUDO A RECUPERAR: 36 MMPCD - POTENCIAL DE CRUDO A RECUPERAR: 36 MMPCD
2- POTENCIAL DE CRUDO A RECUPERALIÓN DE LA DIVISIÓN DE OB 3. ENRIQUECIMIENTO DEL GAS DE RECOLECCIÓN (APROX. 0.2 GPM) ESPECIFICAMENTE EN EL DITIO, PUNTA DE MATA.	20000 ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR 20010 ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN BAIO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. 20011 RENTABLE CON LOS SIGUENTES BENEFICIOS: - ACCIÓN: DEFINICIÓN Y DESARROLLO - IAP 20012 POTENCIAL DE GAS A RECUPERAR: 35 MIPCED > DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PARA LA RECUPERAR: 360 END 20012 FOTENCIAL DE CRUDO A RECUPERAR: 360 END RECUPERAR: 360 END RECUPERAR: 360 END 20012 FOTENCIAL DE CRUDO A RECUPERAR: 360 END RECUPERACIÓN DE VAPORES EN LA DIVISIÓN DE ORIENT 20012 FOTENCIAL DE RECOLECCIÓN (APROX. 62 GPM) ESPECIFICAMENTE EN EL DITIO. PUNTA DE MATA.	COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR ROMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA ALTO EL ESQUEMA PROPUESTO Y NOPORTAR SU APLICACIÓN ENTENSIVA ACCIÓN: DEFINICIÓN V DESARROLLO - LAP - FOTENCIAL DE GAS A RECUPERAR: 35MMPCED - FOTENCIAL DE CRUDO A RECUPERAR: 360 BNPD - FOTENCIAL DE CRUDO A RECUPERAR: 360 BNPD - ENRIQUECIMIENTO DEL GAS DE RECOLECCIÓN (APROX. 0.2 GPM)	COMO ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUTDO DE PRODUCCIÓN COMO ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUTDO DE PRODUCCIÓN ROMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA RUY RENTABLE CON LOS NIGUENTES BENEFICIOS: - POTENCIAL DE GAS A RECUPERAR: 35 MMPCED - POTENCIAL DE CRUDO A RECUPERAR: 35 MMPCED - POTENCIAL DE CRUDO A RECUPERAR: 36 MBPD - POTENCIAL DE CRUDO A RECUPERAR: 36 MBPD - ENRIQUECTMIENTO DEL GAS DE RECOLECCIÓN (APROX. 62 GPM)	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLIDIO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR DOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BATO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. AUV RENTABLE CON LOS SIGUIENTES BENEFICION: - - POTENCIAL DE GAS A RECUPERAR: 350 MINOCED - - POTENCIAL DE CRUDO A RECUPERAR: 350 MINOCED - - POTENCIAL DE CRUDO A RECUPERAR: 360 BINDD RECUPERAR: 360 BINDD - ENRIQUECIMIENTO DEL GAS DE RECOLECCIÓN (APROX, 6.2 GPAD) ESPECIFICAMENTE NEL EL DETILO PUENTA DE MATA.
BOARDEADO, SE FRESENTA COARO UNA ALTERNATIVA TECNICO ECONOSIICA	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO DESARROLLAR PROYECTO PLOTO CON LA FINALIDAD DE PRECIS.	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO
	COMO ENERGÍA MOTRIZ LA ENPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR OMEEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSIVA. ILV RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR ROMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BALO EL ESQUEMA PROPUESTO Y SUPORTAR SU APLICACIÓN ENTENSIVA. RUY RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. ICV RENTABLE CON LOS NIGUENTES BENEFICIOS:	xomo energía motriz la expansión del filido de producción comportamiento de efectores para la recuperación de vapor xomo energía motriz la expansión del filido de producción comportamiento de efectores para la recuperación de vapor xombeado, se presenta como una alternativa técnico económica balio el esquema propuesto y soportar su aplicación entensiva ruy rentable con los siguientes beneficios: acción: definición y desarrollo - isp
CREATABLE CON LOS NIGUENTES BENEFICIOS:	IO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR IBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA. ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	IO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN IBEADO, SE PRESENTA COMO ENA ALTERNATIVA TÉCNICO ECONÓMICA ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	IO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN. IDEARDO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA IBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	IO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN IBEADO, SE PRESENTA COMO ENA ALTERNATIVA TÉCNICO ECONÓMICA ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P
- POTENCIAL DE GAS A RECUPERAR: 35 MMPCED DIVELGAR POTENCIAL APLICACIÓN DEL ESOTEMA PROPIESTO PA	COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR DAMO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. CUY RENTABLE CON LOS SIGUENTES BENEFICIOS:	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUTDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BALIO EL ENQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. REV RENTABLE CON LOS NIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - IAP	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECIPERACIÓN DE VAPOR COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BANO EL ESQUENA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. RUY RUNTABLE CON LOS SIGUIENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR ROMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ENQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. RUY RUNIABLE CON LOS NIGUIENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - IAP
1. POTENCIAL DE GAS A RECUPERAR: 35 MMPCED 7 DIVULGAR POTENCIAL APLICACIÓN DEL ESQUEMA PROPUESTO PA	20M0 ENERGÍA MOTRIZ LA EXPANSIÓN DEL FILIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VAPOR 20MBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ENQUEMA PROPUENTO Y SOPORTAR SU APLICACIÓN EXTENSIVA 20M RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - IRP	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR COMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ISQUENA PROPUESTO Y SOPORTARSU APLICACIÓN EXTENSIVA DU RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - IRP	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA ACCIÓN: DEFINICIÓN Y DESARROLLO - I&P	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR ROMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ISQUENA PROPUESTO Y SOPORTARSU APLICACIÓN EXTENSIVA RUY RENT ABLE CON LOS SIGUENTES BENEFICIOS: ACCIÓN: DEFINICIÓN Y DESARROLLO - IAP
MUY RENTABLE CON LOS SIGUENTES BENEFICIOS: ACCION: DEFINICION Y DESARROLLO - 1&P	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPO OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESIO Y SOPORTARSU APLICACIÓN EXTENSIV	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPO OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO A SOPORTARIST APLICACIÓN ENTENSIV	TOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN TOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA.	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPO OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y SOPORTARSU APLICACIÓN ENTENSIV
ACCION: DEFINICION Y DESARROLLO - I&P	OMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA.	YOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BAJO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA	OMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BAJO EL LEQUENA PROPUESTO X SOPORTAR SI APLICACIÓN EN VAPOR BAJO EL LEQUENA PROPUESTO Y SOPORTAR SI APLICACIÓN ENTENSINA	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR BAJO EL ESQUEMA PROPUENTO Y SOPORTAR SU APLICACIÓN EXTENSIVA. BAJO EL ESQUEMA PROPUENTO Y SOPORTAR SU APLICACIÓN EXTENSIVA.
ACCION: DEFINICION Y DESARROLLO - I&P	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAJO EL ENQUEMA PROPUESTO Y SOPORTAR SU APLICAUÓN EXTENSIVA.	IOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR IOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA.	TOMO ENERGÍA MOTRIZ LA EXPANSION DEL FLUIDO DE PRODUCCIÓN ROMEEMO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA RAJO EL ESQUEMA PROPUESTO Y SOPORTARSU APLICACIÓN EXTENSIVA.	COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR IOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENSIVA.
, , ,	IOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EYECTORES PARA LA RECUPERACIÓN DE VAPOR	TOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EFECTORES PARA LA RECUPERACIÓN DE VAPOR	OMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VAPOR	TOMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EYECTORES PARA LA RECUPERACIÓN DE VAPOR
BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN EXTENS			DESARROLLAR PROTECTO PILOTO CON LA FINALIDAD DE PRECISAR	
COMO ENERGÍA MOTRIZ. LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BALO EL ESQUEMA PROPUESTO Y NOPORTAR SU APLICACIÓN EXTENSI	DESARROLLAR PROJECCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR	→ DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR I	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO
COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EYECTORES PARA LA RECUPERACIÓN DE VA OMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BALO EL ESQUEMA PROPUESTO Y NOPORTAR NU APLICACIÓN EXTENSI	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR I	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO DE DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR I
COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO
COMO ENERGIA MOTRIZ. LA EXPANSION DEL FILIDO DE PRODUCCION SOMBOADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL ESQUEMA PROPUESTO Y NOPORTAR SU APLICACIÓN EXTENS	DESARROLLAR PROJECCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR	→ DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR I	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO → DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR I
COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EXECTORES PARA LA RECUPERACIÓN DE VA BOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA PARIO EL ESQUEMA PROPUESTO Y SOPORTAR SU APLICACIÓN ENTENSE	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO DESARROLLAR PROYECTO PILOTO CON LA FINALIDAD DE PRECISAR	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO. UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO. UTILIZANDO
COMO ENERGÍA MOTRIZ LA EXPANSIÓN DEL FLUIDO DE PRODUCCIÓN COMPORTAMIENTO DE EVECTORES PARA LA RECUPERACIÓN DE VA SOMBEADO, SE PRESENTA COMO UNA ALTERNATIVA TÉCNICO ECONÓMICA BAIO EL EQUEMA PROPUESTO Y NOPORTARIA APLICACIÓN EXTENSI	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUIO, UTILIZANDO	ANQUES DE PRODUCCIÓN DE LAS ESTACIONES DE FLUJO, UTILIZANDO

Anexo 2 Parámetros de Turbulencia

$$\varepsilon = \frac{K_{\text{int}}^{1.5}}{0.3 \times D}$$

$$K_{\rm int} = 1.5 \times (i \times U_{\rm int})^2$$

$$D = \frac{4 \times A}{P}$$

Donde:

- *U_{in}:* velocidad de entrada promedio.
- *i:* Intensidad de turbulencia (i=0,037).
- D: Diámetro de entrada
- A: Area de entrada
- P: Perímetro

Anexo 3: Modelo Numérico CFX®

Se utilizó un modelo multifásico multi-fluido que consiste en resolver las ecuaciones de conservación de cada fase por separado y considerar interacción entre las fases mediante términos de transferencia independientes, $c_{\alpha\beta}$ ó "Relaciones de clausura".

Las ecuaciones de conservación de masa y momento son respectivamente:

$$\nabla \cdot \left(\mathbf{r}_{\alpha} \boldsymbol{\rho}_{\alpha} \mathbf{U}_{\alpha} \right) = \sum_{\beta=1}^{Np} \left(\dot{\mathbf{m}}_{\alpha\beta} - \dot{\mathbf{m}}_{\beta\alpha} \right), \tag{1}$$

$$\rho_{\alpha}\mathbf{U}_{\alpha}\cdot\nabla(\mathbf{r}_{\alpha}\mathbf{U}_{\alpha})-\nabla\cdot\left[\mu_{\alpha,\text{eff}}\left(\nabla\mathbf{U}_{\alpha}+(\nabla\mathbf{U}_{\alpha})^{\mathrm{T}}\right)\right]=\mathbf{r}_{\alpha}\left(\mathbf{B}-\nabla p\right)+\mathbf{F}_{\alpha}+\sum_{\beta=1}^{Np}c_{\alpha\beta}^{(d)}\left(\mathbf{U}_{\beta}-\mathbf{U}_{\alpha}\right).$$
 (2)

donde,

 α y β : fases presentes,

U: Vector velocidad,

B: fuerzas volumétricas,

F: fuerzas distintas a las de fuerzas de arrastre,

 ρ : densidad,

p: presión,

 $\mu_{\alpha,\text{eff}}$: viscosidad del gas

r: fracción volumétrica de la fase correspondiente.

El último término del lado derecho de la ecuación (2) determina la fuerza de arrastre entre las fases.

Las ecuaciones (1) y (2) están promediadas en el tiempo para utilizar un modelo turbulento de dos ecuaciones (modelo k- ε). Sin embargo, la notación adicional que implica este promedio fue omitida para no sobrecargar las ecuaciones. La viscosidad efectiva es,

$$\mu_{\alpha,\text{eff}} = \mu_{\alpha} + \mu_{\alpha,\text{T}} \tag{3}$$

Donde μ_{α} es la viscosidad molecular y $\mu_{\alpha,T}$ es la viscosidad turbulenta,

$$\mu_{\alpha,T} = C_{\mu} \rho_{\alpha} \frac{k_{\alpha}^2}{\varepsilon_{\alpha}}$$
(4)

La constante C_{μ} es determinada de forma empírica mientras que la energía cinética, k y la disipación, ϵ se determinan con dos ecuaciones adicionales que tienen la misma forma que una ecuación escalar genérica de convección-difusión,

$$\nabla \cdot \left(r_{\alpha} \left(\rho_{\alpha} \mathbf{U}_{\alpha} \mathbf{k}_{\alpha} - \left(\mu + \frac{\mu_{\alpha, T}}{\sigma_{k}} \right) \nabla \mathbf{k}_{\alpha} \right) \right) = r_{\alpha} S_{k, \alpha} + \sum_{\beta=1}^{Np} c_{\alpha\beta}^{(k)} \left(\mathbf{k}_{\beta} - \mathbf{k}_{\alpha} \right)$$
(5)

$$\nabla \cdot \left(r_{\alpha} \left(\rho_{\alpha} \mathbf{U}_{\alpha} \varepsilon_{\alpha} - \left(\mu + \frac{\mu_{\alpha, T}}{\sigma_{\varepsilon}} \right) \nabla \varepsilon_{\alpha} \right) \right) = r_{\alpha} S_{\varepsilon \alpha} + \sum_{\beta=1}^{Np} c_{\alpha\beta}^{(\varepsilon)} \left(\varepsilon_{\beta} - \varepsilon_{\alpha} \right)$$
(6)

donde S es el término "fuente" [**Ref. 4**]. En ambas fases el flujo se considera incompresible, isotérmico y con propiedades constantes. Los términos convectivos de las ecuaciones (1)-(2) y (5)-(6) fueron discretizados utilizando un esquema híbrido de primer orden para mantener la estabilidad. El resto de los términos se discretizaron con diferencias centrales. Se seleccionó un factor de relajación de 0,1 para todas las variables.

Las ecuaciones (1)-(2) son aplicadas para flujo bifásico. Sin embargo, la versión monofásica se obtiene eliminando los últimos términos del lado derecho de la ecuación (1) y (2), así como el subíndice α que representa la fase.

Las simulaciones para flujo bifásico fueron realizadas especificando el gas como la fase dispersa con diámetro medio d \cong D/20, donde D es el diámetro interno más pequeño de la válvula. Se utilizó una densidad promedio del líquido de 848 kg / m³ correspondiente a 27,5 °API y una viscosidad del gas constante $\mu_g = 0,01$ cP (10⁻⁵ Pa•s). Sin embargo, no se encontró la convergencia de los mismos. Los detalles del modelo y el dominio computacional se presentan en la Fig. A1.

Fig A1. Detalles dominio Computacional.

Anexo 4 Resultados Simulación Numérica Caso Monofásico

Relación de área	R ₅	0,360
Relación longitud de la zona de mezcla	l_2	2,5
Caso evaluado		Monofásico

Condic	Condiciones de borde			esultados	del simula	dor	Cálc	ulo de efic	ciencia
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	2.841	3.764	-6.605	0.0E+00	1.325	0.000	0.0
105000	101325	202650	2.643	3.316	-5.96	-1.0E-03	1.255	0.038	4.7
110000	101325	202650	2.32	2.511	-4.831	0.0E+00	1.082	0.094	10.1
115000	101325	202650	2.054	1.704	-3.758	0.0E+00	0.830	0.156	12.9
120000	101325	202650	1.925	1.187	-3.112	0.0E+00	0.617	0.226	13.9
125000	101325	202650	1.863	0.8485	-2.662	5.0E-02	0.455	0.305	13.9
130000	101325	202650	1.833	0.6153	-2.448	3.0E-04	0.336	0.395	13.2
135000	101325	202650	1.817	0.4305	-2.217	3.1E-02	0.237	0.498	11.8
140000	101325	202650	1.809	0.2578	-2.0661	7.0E-04	0.143	0.617	8.8

L2.5 / R036 / G1

Relación de área	\mathbf{R}_1	0,132
Relación longitud de la zona de mezcla	l_2	5
Caso evaluado		Monofá

Condic	iones de b	orde	Resultados del simulador			Cálc	ciencia		
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	0.774	3.100	-3.874	3.0E-04	4.004	0.000	0.0
105000	101325	202650	0.697	2.092	-2.789	2.0E-04	3.001	0.038	11.3
110000	101325	202650	0.646	1.107	-1.753	0.0E+00	1.713	0.094	16.0
115000	101325	202650	0.631	0.539	-1.170	1.0E-04	0.855	0.156	13.3
118000	101325	202650	0.628	0.133	-0.761	1.0E-04	0.212	0.197	4.2

L5 / R0132 / G1

Relacion de area	R ₂	0,170
Relación longitud de la zona de mezcla	\bot_2	5
Caso evaluado		Monofasico

Condic	ondiciones de borde			Resultados del simulador			Cálc	ulo de efic	ciencia
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	Ν	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	1.063	3.375	-4.438	0.0E+00	3.175	0.000	0.0
105000	101325	202650	0.969	2.584	-3.553	-3.0E-04	2.667	0.038	10.0
110000	101325	202650	0.867	1.443	-2.310	0.0E+00	1.664	0.094	15.6
115000	101325	202650	0.840	0.971	-1.811	-1.0E-04	1.157	0.156	18.0
120000	101325	202650	0.823	0.491	-1.314	1.0E-04	0.597	0.226	13.5
123000	101325	202650	0.820	0.176	-0.996	0.0E+00	0.215	0.272	5.8

0.3 T 20 - 18 0.25 16 -14 0.2 - 12 0 Eficiencia (%) **•** N **z** 0.15 Eficiencia - 8 0.1 - 6 - 4 0.05 - 2 0 -- 0

2

м

2.5

1.5

1

0

0.5

3

3.5

L5 / R017 / G1

Caso evaluado		Monofásico
Relación longitud de la zona de mezcla	l_2	5
Relación de área	\mathbf{R}_3	0,218

Condic	Condiciones de borde			esultados	del simula	dor	Cálc	ulo de efic	iencia
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
105000	101325	202650	1.317	2.852	-4.169	0.0E+00	2.166	0.038	8.1
110000	101325	202650	1.161	1.761	-2.922	0.0E+00	1.517	0.094	14.2
115000	101325	202650	1.108	1.237	-2.345	0.0E+00	1.116	0.156	17.4
120000	101325	202650	1.082	0.897	-1.979	2.0E-04	0.829	0.226	18.7
125000	101325	202650	1.063	0.514	-1.577	-4.0E-04	0.483	0.305	14.7
130000	101325	202650	1.060	0.106	-1.165	5.0E-04	0.100	0.395	3.9
133000	101325	202650	1.059	0.090	-1.150	-1.0E-03	0.085	0.455	3.9

L5 / R0218 / G1

Caso evaluado		Monofásico
Relación longitud de la zona de mezcla	l_2	5
Relación de área	R_4	0,280

Condiciones de borde Resultados del simulador Cálculo de eficiencia Pdescarga Pjet Mjet Balance Psucción Mcrudo Mmezcla Μ Ν Eff (Psig) succión succión (Psig) (Psig) descarga (Kg/seg) (Kg/seg) (Kg/seg) 101325 101325 202650 1.884 3.445 -5.329 1.829 0.000 0.000 0.0E+00 -4.700 -1.0E-03 105000 101325 202650 1.750 2.949 1.685 0.038 6.342 110000 101325 202650 1.539 2.046 -3.586 -1.0E-03 1.329 0.094 12.448 115000 101325 202650 1.434 1.466 -2.900 0.0E+00 1.022 0.156 15.950 120000 101325 202650 1.385 1.124 -2.509 0.0E+00 0.812 0.226 18.337 125000 101325 202650 1.357 0.869 -2.226 -3.0E-04 0.640 0.305 19.518 130000 101325 202650 1.335 -1.923 6.0E-04 17.411 0.589 0.441 0.395 135000 101325 202650 1.321 0.275 -1.596 -3.0E-04 0.208 0.498 10.348 -1.477 140000 202650 1.323 7.218 101325 0.155 4.0E-04 0.117 0.617 145000 101325 202650 1.328 0.096 -1.422 2.7E-03 0.073 0.758 5.498

L5 / R028 / G1

Caso evaluado		Monofásico
Relación longitud de la zona de mezcla	l_2	5
Relación de área	R_5	0,360

Resultados del simulador Condiciones de borde Cálculo de eficiencia Pjet Mjet Balance Pdescarga Psucción Mcrudo Mmezcla Μ Ν Eff succión succión (Psig) (Psig) (Psig) descarga (Kg/seg) (Kg/seg) (Kg/seg) 101325 101325 202650 2.684 3.440 -6.124 1.282 0.000 0.0 0.0E+00 105000 101325 202650 2.532 3.081 -5.613 0.0E+00 1.217 0.038 4.6 110000 101325 202650 2.278 2.430 -4.708 0.0E+00 1.067 0.094 10.0 115000 101325 202650 2.080 1.831 -3.911 0.0E+00 0.880 0.156 13.7 120000 101325 202650 1.968 1.421 -3.389 0.0E+00 0.722 0.226 16.3 125000 101325 202650 1.906 1.142 -3.048 0.0E+00 0.599 0.305 18.3 130000 202650 0.928 -2.794 101325 1.866 -1.0E-04 0.497 0.395 19.6 135000 101325 202650 1.834 0.710 -2.544 0.0E+00 0.387 0.498 19.3 202650 0.470 140000 101325 1.810 -2.279 6.0E-04 0.259 0.617 16.0 0.758 145000 101325 202650 1.800 0.222 -2.021 5.0E-04 0.123 9.3 147000 101325 202650 1.805 0.129 -1.934 3.0E-04 0.071 0.821 5.9

Caso evaluado		Monofásico
Relación longitud de la zona de mezcla	l_2	5
Relación de área	R_6	0,462

Condic	iones de b	orde	Resultados del simulador			Cálculo de eficiencia			
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	3.989	3.381	-7.280	9.0E-02	0.848	0.000	0.0
105000	101325	202650	3.711	3.124	-6.835	0.0E+00	0.842	0.038	3.2
110000	101325	202650	3.403	2.677	-6.080	0.0E+00	0.787	0.094	7.4
115000	101325	202650	3.074	2.159	-5.233	0.0E+00	0.702	0.156	11.0
120000	101325	202650	2.828	1.716	-4.544	0.0E+00	0.607	0.226	13.7
125000	101325	202650	2.669	1.384	-4.052	1.0E-03	0.519	0.305	15.8
130000	101325	202650	2.569	1.139	-3.708	0.0E+00	0.443	0.395	17.5
135000	101325	202650	2.505	0.957	-3.463	-6.0E-04	0.382	0.498	19.0
140000	101325	202650	2.459	0.801	-3.252	7.8E-03	0.326	0.617	20.1
145000	101325	202650	2.419	0.636	-3.055	4.0E-04	0.263	0.758	19.9
150000	101325	202650	2.386	0.456	-2.842	-1.0E-04	0.191	0.925	17.7
155000	101325	202650	2.366	0.265	-2.632	-6.0E-04	0.112	1.126	12.6
160000	101325	202650	2.376	0.087	-2.489	-2.6E-02	0.037	1.376	5.0

Relación de área	\mathbf{R}_1	0,132
Relación longitud de la zona de mezcla	l_3	10
Caso evaluado		Monofa

Condic	iones de b	orde	Resultados del simulador			Cálculo de eficiencia			
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	0.712	2.339	-3.051	-5.0E-04	3.287	0.000	0.0
105000	101325	202650	0.679	1.830	-2.508	8.0E-04	2.696	0.038	10.1
110000	101325	202650	0.645	1.128	-1.773	2.0E-04	1.748	0.094	16.4
115000	101325	202650	0.627	0.427	-1.054	0.0E+00	0.680	0.156	10.6

L10 / R0132 / G1

Relación de área	R_2	0,170
Relación longitud de la zona de mezcla	13	10
Caso evaluado		Monofa

Condic	iones de b	orde	Resultados del simulador			Cálculo de eficiencia			
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	Ν	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	0.954	2.557	-3.511	1.0E-04	2.680	0.000	0.0
105000	101325	202650	0.912	2.129	-3.040	6.0E-04	2.335	0.038	8.8
110000	101325	202650	0.862	1.521	-2.384	-8.0E-04	1.764	0.094	16.5
115000	101325	202650	0.828	0.924	-1.753	-1.0E-04	1.116	0.156	17.4
120000	101325	202650	0.812	0.357	-1.169	0.0E+00	0.440	0.226	9.9

L10/R017/G1

Relación de área	\mathbf{R}_3	0,218
Relación longitud de la zona de mezcla	l_3	10
Caso evaluado		Monofa

Condic	Condiciones de borde			esultados	del simula	Cálculo de eficiencia			
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	1.292	2.771	-4.064	-1.0E-03	2.145	0.000	0.0
105000	101325	202650	1.237	2.410	-3.647	0.0E+00	1.948	0.038	7.3
110000	101325	202650	1.161	1.844	-3.005	0.0E+00	1.588	0.094	14.9
115000	101325	202650	1.112	1.390	-2.502	0.0E+00	1.250	0.156	19.5
120000	101325	202650	1.075	0.920	-0.925	1.1E+00	0.856	0.226	19.3
125000	101325	202650	1.053	0.464	-1.517	0.0E+00	0.441	0.305	13.4
130000	101325	202650	1.055	0.064	-1.119	1.7E-04	0.061	0.395	2.4

L10/R0218/G1

Caso evaluado		Monofásico
Relación longitud de la zona de mezcla	l_3	10
Relación de área	\mathbf{R}_4	0,280

Condic	iones de b	orde	Resultados del simulador			Cálculo de eficiencia			
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	1.785	2.913	-4.697	1.0E-03	1.632	0.000	0.0
105000	101325	202650	1.713	2.619	-4.332	0.0E+00	1.529	0.038	5.8
110000	101325	202650	1.602	2.118	-3.720	0.0E+00	1.322	0.094	12.4
115000	101325	202650	1.526	1.717	-3.243	0.0E+00	1.125	0.156	17.6
120000	101325	202650	1.468	1.356	-2.824	0.0E+00	0.924	0.226	20.9
125000	101325	202650	1.421	0.976	-2.397	1.0E-04	0.687	0.305	20.9
130000	101325	202650	1.389	0.595	-1.985	-1.0E-04	0.429	0.395	16.9
135000	101325	202650	1.375	0.248	-1.620	3.2E-03	0.180	0.498	9.0

L10 / R028 / G1

	Monofásico
l_3	10
R_5	0,360
	R ₅ 1 ₃

Condiciones de borde			Resultados del simulador				Cálculo de eficiencia		
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	2.496	3.03	-5.527	-1.0E-03	1.214	0.000	0.0
105000	101325	202650	2.410	2.815	-5.225	0.0E+00	1.168	0.038	4.4
110000	101325	202650	2.261	2.417	-4.677	1.0E-03	1.069	0.094	10.0
115000	101325	202650	2.125	2.017	-4.143	-1.0E-03	0.949	0.156	14.8
120000	101325	202650	2.030	1.697	-3.727	0.0E+00	0.836	0.226	18.9
125000	101325	202650	1.953	1.404	-3.357	0.0E+00	0.719	0.305	21.9
130000	101325	202650	1.887	1.098	-2.985	0.0E+00	0.582	0.395	23.0
135000	101325	202650	1.834	0.779	-2.613	2.0E-04	0.425	0.498	21.1
140000	101325	202650	1.800	0.471	-2.272	-2.0E-04	0.262	0.617	16.2
145000	101325	202650	1.791	0.195	-1.986	2.0E-04	0.109	0.758	8.3

	Monofásico
l_3	10
R_6	0,462
	R ₆ 1 ₃

Condiciones de borde			Resultados del simulador				Cálculo de eficiencia		
Pdescarga	Psucción	Pjet	Mjet	Mcrudo	Mmezcla	Balance	М	N	Eff
(Psig)	(Psig)	(Psig)	succión	succión	descarga				
			(Kg/seg)	(Kg/seg)	(Kg/seg)				
101325	101325	202650	3.428	2.753	-6.186	-5.0E-03	0.803	0.000	0.0
105000	101325	202650	3.333	2.610	-5.942	1.0E-03	0.783	0.038	2.9
110000	101325	202650	3.177	2.366	-5.544	-1.0E-03	0.745	0.094	7.0
115000	101325	202650	3.014	2.096	-5.11	0.0E+00	0.695	0.156	10.8
120000	101325	202650	2.871	1.841	-4.712	0.0E+00	0.641	0.226	14.5
125000	101325	202650	2.751	1.607	-4.357	1.0E-03	0.584	0.305	17.8
130000	101325	202650	2.646	1.380	-4.026	0.0E+00	0.522	0.395	20.6
135000	101325	202650	2.552	1.147	-3.698	1.0E-03	0.449	0.498	22.4
140000	101325	202650	2.469	0.904	-3.374	-6.0E-04	0,3606	0.617	22.6
145000	101325	202650	2.405	0.659	-3.064	-5.0E-04	0.274	0.758	20.7
150000	101325	202650	2.363	0.420	-2.783	1.0E-04	0.178	0.925	16.4
155000	101325	202650	2.348	0.202	-2.55	2.0E-04	0.086	1.126	9.7
160000	101325	202650	2.369	0.017	-2.386	-2.0E-05	0.007	1.376	1.0

L10 / R0462 / G1

Anexo 5: Gradiente de presión y velocidad para L/D = 2,5; 5 y 10

La **Fig. A2** muestra los gradientes de velocidad y presión para **R** = 0,36, L/D = 5, para la presión de succión de 101325 Pa, presión del Jet 202650 Pa y presión de descarga de 130000 Pa. Obsérvese como a medida que aumenta "L/D", la velocidad máxima del dispositivo (boquilla anular de la Válvula de succión) aumenta. Esto puede atribuirse a una mejora en el comportamiento turbulento del fluido en esta zona. Nótese que en el modelo de L/D₁ existe recirculación del flujo al presentarse velocidades de -1.87 m/s (representado por el color azul indigo).

Gradiente de velocidades para R_5 , G_1 constantes.

Gradiente de presiones para R₅, G₁ constantes.

Fig. A2. Gradiente de velocidades y presiones para R = 0.36 y (L/D₁, L/D₂ y L/D₃).

Nótese en la **Fig. A2** cómo mejora el vacío local del dispositivo (presión en las zonas cercanas al anular del jet y boquilla) a medida que la longitud de la zona de mezcla es mayor, mejora la extracción del flujo bombeado (véase flujos másicos en **Anexo 4**).

Anexo 6: Equipos de medición y ensayo del circuito de superficie del CEPRO

Nombre	Unidades	Rango	Calibración	DESCRIPCION
	"H₂O	0-750	0-250	Nivel de líquido en el Tanque de alimentación de crudo TK-1
LT-610B	"H₂O	0-750	0-250	Nivel de líquido en el Tanque de alimentación de crudo TK-2
PT-520	Psig	0 –2000	0 –1000	Presión de descarga de la bomba de agua
FT-521V	lb/min	0-5000	0-5000	Medición de flujo másico de agua
TT-521	°F	(-400)-400	(-400)-400	Temperatura del Agua en el medidor de flujo másico
DT-521	g/cc	0-5	0-5	Densidad del Agua en el medidor de flujo másico
PT-620	Psig	0 –2000	0 –1000	Presión de descarga de la bomba de crudo
FT-621V	lb/min	0-5000	0-5000	Medición de flujo másico de crudo
TT-621	°F	(-400)-400	(-400)-400	Temperatura del crudo en el medidor de flujo másico
DT-621	g/cc	0-5	0-5	Densidad del crudo en el medidor de flujo másico
PT-660	Psig	0 –2000	0 –1000	Presión de entrada de Gas Pulmón
FT-660	APCM	9-349	9-349	Flujo de Gas del Pulmón
PT-665	Psig	0 –2000	0 –1000	Presión de Fluido de Proceso
TT-665	°F	32–232	32–232	Temperatura de Fluido de Proceso
PT-670	Psig	0 –2000	0 –1000	Presión de Fluido motriz Jet 1
TT-670	°F	32–232	32–232	Temperatura de Fluido motriz Jet 1
PT-675	Psig	0 –2000	0 –1000	Presión de salida del Jet 1
TT-675	°F	32–232	32–232	Temperatura de salida del Jet 1
PT-680	Psig	0 –2000	0 –1000	Presión de Fluido motriz Jet 2
TT-680	°F	32–232	32–232	Temperatura de Fluido motriz Jet 2
PT-685	Psig	0 –2000	0 –1000	Presión de salida del Jet 2
TT-685	°F	32–232	32–232	Temperatura de salida del Jet 2
PT-011	Psig	0 - 2000	0 - 1000	Presión de Gas Micro motion
FT-011	lb/min	0-40	0-40	Medición de flujo másico de Gas Bajo Caudal
TT-011	°F	(-400)400	(-400)–400	Temperatura de Gas Micro motion
DT-011	g/cc	0-5	0-5	Densidad de Gas Micro motion
FT-012	lb/min	0-500	0-500	Medición de flujo másico de Gas Alto Caudal
DT-012	g/cc	0-5	0-5	Densidad de Gas Alto Caudal
TT-012	°F	(-400)-400	(-400)–400	Temperatura de Gas Alto Caudal
FY-010	Mscfd	0 - 32767	0 - 32767	Caudal de gas de inyección
LT-211	"H2O	0 - 100	0 - 100	Nivel de líquido dentro del separador bifásico SB-1
PT-109	Psig	0 –1000	0 –1000	Presión de la producción a nivel del cabezal del pozo
TT-109	°F	32 - 232	32 - 232	Temperatura de la producción a nivel del cabezal del pozo

Tabla A1 Equipos de medición y ensayo del circuito de superficie del CEPRO.

Anexo 7: Matriz experimental de cada proceso

Prueba monofásica (bombeo de crudo con crudo):

La matriz experimental para caracterizar este proceso está definida por las **Tabla A1** y **Tabla A2**. Las variables fijas son la presión de descarga ($P_d = 100 Psig y P_d = 200 Psig$), y el caudal de succión, para estas condiciones se variará la presión de inyección y la boquilla utilizada. Para cada caudal de bombeo evaluado se considera suficiente analizar cinco presiones de inyección diferentes, se remarca de color amarillo los puntos a reproducir en el **CEPRO**, a fin de obtener la caracterización de cada experiencia. Nótese que algunos puntos no podrán ser obtenidos por limitaciones operacionales del **CEPRO**, los mismos se remarcan en color fucsia.

A continuación se define la nomenclatura empleada:

Proceso monofásica (bombeo de crudo con crudo):

Q: es el caudal a succionar del Sistema de bombeo (en BPD).

Piny_{crudo}: representa la presión a la que se debe inyectar el crudo impulsor (en Psig). **BPD**_{crudo}: representa la tasa de inyección del fluido impulsor (en BPD).

Procesos 1, 2 y 3 (compresión de gas):

Proceso 1 (compresión de gas con crudo):

Piny_{crudo}: representa la presión a la que se debe inyectar el crudo impulsor (en Psig).
 BPD_{crudo}: representa la tasa de inyección del fluido impulsor (en BPD).
 Proceso 2 (compresión de gas con agua):

Piny_{agua}: representa la presión a la que se debe inyectar el agua impulsora (en Psig).
 BPD_{agua}: representa la tasa de inyección del fluido impulsor (en BPD).
 Proceso 3 (compresión de gas con gas):

Piny_{gas}: representa la presión a la que se debe inyectar el gas impulsor (en Psig). Mscfd_{gas}: representa la tasa de inyección del fluido impulsor (en Mscfd).

Nota: En los procesos 1, 2 y 3 Q: es el caudal a succionar de los tanques de almacenamiento (en Mscfd).

Proceso monofásica (bombeo de crudo con crudo):

PROCESO 2		Boquilla R = 0,132		Boquilla R = 0,170		Boquilla R = 0,280	
	02001	Piny crudo	BPD crudo	Piny crudo	BPD crudo	Piny crudo	BPD crudo
	0 - 150	400 500 600	213 104 81	400 500 600	131 97 84	400 500 600	135 120 110
	(BPD)	700 800 900	71 65 62 59	700 800 900	77 73 70 68	700 800 900	107 104 102 101
		1200	56	1200	65	1200	99
THP = 100 (Psig)	Q = 300 (BPD)	400 500 700 800 900 1000 1200	426 210 160 130 125 120 110	400 500 700 800 900 1000 1200	260 195 170 155 145 140 135 130	400 500 700 800 900 1000 1200	265 240 225 215 210 205 200 195
	Q = 600 (BPD)	400 500 600 700 800 900 1000 1200	850 415 325 285 260 245 235 225	400 500 600 700 800 900 1000 1200	525 385 335 310 290 280 270 260	400 500 600 700 800 900 1000 1200	535 475 445 430 420 410 405 395
	Q = 900 (BPD)	400 500 600 700 800 900 1000 1200	1280 620 485 425 390 370 355 335	400 500 600 700 800 900 1000 1200	790 580 505 465 440 420 410 390	400 500 600 700 800 900 1000 1200	805 715 670 645 630 615 605 595
	Q = 1200 (BPD)	400 500 600 700 800 900 1000 1200	1705 830 645 565 520 495 475 450	400 500 600 700 800 900 1000 1200	1050 775 670 615 585 560 545 520	400 500 600 700 800 900 1000 1200	1070 955 895 860 835 820 810 790

Tabla A1 Matriz Experimental: Prueba bombeo de crudo con crudo, para presión en la
descarga de 100 Psig.

Tabla A2 Matriz Experimental: : Prueba bombeo de crudo con crudo, para presión de
cabezal de 200 Psig.

PROCESO 2		Boquilla R = 0,132		Boquilla	R = 0,170	Boquilla R = 0,280	
1100	0200 P	Piny crudo	BPD crudo	Piny crudo	BPD crudo	Piny crudo	BPD crudo
	Q = 150 (BPD)	475 500 600 700 800	364 213 104 81 71	400 500 600 700 800	513 132 97 84 77	400 500 600 700 800	180 133 119 112 108
	(,	900 1000 1200	65 62 58	900 1000 1200	73 70 66 1025	900 1000 1200	105 103 100 360
	Q = 300 (BPD)	500 600 700 800 900 1000 1200	425 210 160 140 130 125 115	500 600 700 800 900 1000 1200	265 195 170 155 145 140 135	500 600 700 800 900 1000 1200	270 240 225 215 210 205 200
THP = 200 (Psig)	Q = 600 (BPD)	500 600 700 800 900 1000 1200	855 415 325 285 260 245 230	400 500 600 700 800 900 1000 1200	2050 525 385 335 310 290 280 265	400 500 600 700 800 900 1000 1200	720 535 480 450 430 420 410 400
	Q = 900 (BPD)	500 600 700 800 900 1000 1200	1280 625 485 425 395 370 345	400 500 600 700 800 900 1000 1200	3075 790 580 505 460 435 420 340	400 500 600 700 800 900 1000 1200	1080 805 715 670 645 630 620 600
	Q = 1200 (BPD)	500 600 700 800 900 1000 1200	1710 830 645 565 525 495 460	400 500 600 700 800 900 1000 1200	4105 1050 775 670 615 585 560 540	400 500 600 700 800 900 1000 1200	1435 1070 955 895 860 840 820 800
PROCESO 4	Boquilla	R = 0,170	Boquilla	R = 0,218	Boquilla R = 0,360		
-----------	------------	-----------	------------	-----------	--------------------	-----------	--
	Piny crudo	BPD crudo	Piny crudo	BPD crudo	Piny crudo	BPD crudo	
	200	300	150	440	100	440	
	225	165	175	185	125	210	
0 - 500	250	120	200	135	150	160	
(Mscfd)	300	85	250	95	200	125	
(110010)	350	75	300	80	250	115	
	400	65	350	75	300	105	
	450	60	400	65	350	100	
	200	595	150	880	100	880	
	225	325	175	375	125	420	
0 - 1000	250	240	200	265	150	320	
(Meefd)	300	175	250	190	200	250	
(Misciu)	350	145	300	160	250	220	
	400	130	350	145	300	210	
	450	120	400	135	350	200	
	200	1190	150	1765	100	1765	
	225	655	175	750	125	840	
0 - 2000	250	485	200	530	150	645	
Q = 2000	300	350	250	385	200	510	
(WISCIU)	350	290	300	320	250	455	
	400	260	350	290	300	425	
	450	240	400	270	350	410	
	200	1785	150	2650	100	2640	
	225	980	175	1125	125	1265	
Q = 3000	250	725	200	795	150	960	
(Mscfd)	300	525	250	575	200	765	
	350	435	300	485	250	680	
	400	390	350	435	300	640	

Proceso 1 (compresión de gas con crudo): **Tabla A3** Matriz Experimental: Aplicación en estaciones de flujo, Proceso 1.

Proceso 2 (compresión de gas con agua):

Tabla A4 Matriz Experimental: Aplicación en estaciones de flujo, Proceso 2.

PROCESO 5	Boquilla	R = 0,170	Boquilla	R = 0,218	Boquilla	R = 0,360
TROOLEGO U	Piny agua	BPD agua	Piny agua	BPD agua	Piny agua	BPD agua
	200	275	150	405	100	405
	225	150	175	170	125	195
Q = 500	250	110	200	120	150	145
(Mscfd)	300	80	250	90	200	115
(moord)	350	65	300	75	250	105
	400	60	350	65	300	100
	450	55	400	60	350	95
	200	545	150	810	100	810
	225	300	175	345	125	385
0 - 1000	250	220	200	245	150	295
(Mscfd)	300	160	250	175	200	233
(macru)	350	134	300	150	250	210
	400	120	350	135	300	195
	450	110	400	125	350	190
	200	1090	150	1620	100	1620
	225	600	175	690	125	775
0 - 2000	250	445	200	490	150	595
(Meefd)	300	320	250	350	200	465
(Misciu)	350	270	300	300	250	420
	400	240	350	270	300	395
	450	220	400	250	350	375
	200	1640	150	2430	100	2430
	225	900	175	1035	125	1160
Q = 3000	250	665	200	730	150	885
(Mscfd)	300	480	250	525	200	700
	350	400	300	445	250	625
	400	360	350	400	300	585
	200	2730	150	4050	100	4050
	225	1500	175	1725	125	1935
0 - 5000	250	1100	200	1220	150	1480
Q = 5000	300	800	250	875	200	1170
(WISCID)	350	670	300	745	250	1050
	400	590	350	670	300	980
	450	550	400	685	350	940

PROCESO 6	Boquilla	R = 0,170	Boquilla	R = 0,218	Boquilla	R = 0,360
TROOLOG U	Piny _{gas}	Mscfd _{gas}	Piny _{gas}	Mscfd gas	Piny gas	Mscfd gas
	200	1445	150	2150	100	2150
	225	795	175	915	125	1025
0 - 500	250	590	200	645	150	785
(Mecfd)	300	425	250	465	200	620
(macru)	350	355	300	395	250	555
	400	320	350	355	300	520
	450	295	400	330	350	500
	200	2895	150	4295	100	4295
	225	1590	175	1825	125	2050
0 - 1000	250	1175	200	1295	150	1570
	300	850	250	930	200	1360
(MSCIU)	350	710	300	785	250	1240
	400	635	350	710	300	1040
	450	585	400	665	350	995
	200	5795	150	8595	100	8595
	225	3180	175	3655	125	4100
0 0000	250	2350	200	2590	150	3135
Q = 2000	300	1695	250	1860	200	2475
(MSCTO)	350	1420	300	1575	250	2220
	400	1270	350	1425	300	2080
	450	1170	400	1330	350	1995
	200	8690	150	12890	100	12890
	225	4775	175	5480	125	6150
Q = 3000	250	3525	200	3880	150	4705
(Mscfd)	300	2545	250	2790	200	3715
	350	2135	300	2365	250	3325
	400	1905	350	2135	300	3120
	200	14485	150	21485	100	21485
	225	7955	175	9135	125	10250
0 - 5000	250	5875	200	6470	150	7840
Q = 5000	300	4245	250	4650	200	6195
(ivisciu)	350	3555	300	3940	250	5550
	400	3175	350	3560	300	5200
	450	2930	400	3235	350	4990

Proceso 3 (compresión de gas con gas): **Tabla A5** Matriz Experimental: Aplicación en estaciones de flujo, Proceso 3.

Anexo 8: Lineamiento de arranque para cada proceso

A continuación se presenta una secuencia de operaciones que deben ejecutarse en cada uno de los procesos, para asegurar el correcto funcionamiento del equipo a evaluar, los instrumentos, la verificación de la estabilidad del Sistema, la adecuada adquisición de los datos y su validación.

Es importante visualizar en las primeras pruebas, el tiempo de respuesta del Sistema, es decir, en cuanto tiempo hace una descarga el separador, en los casos en que aplique. Así se tendrá el tiempo estimado de cada experiencia.

Para completar la Matriz Experimental deben realizarse los cambios de boquillas (evaluación de la configuración geométrica), así como los cambios operacionales propuestos, se recomienda ejecutar la matriz experimental con el menor número de cambios geométricos posibles.

Prueba Monofásica (bombeo de crudo con crudo):

- **1.** Instalar en el equipo la Relación de Área a evaluar. **Nota:** Asegúrese que este paso haya sido ejecutado.
- 2. Registrar la hora de inicio de la prueba y los parámetros de la y/o libro de laboratorio del CEPRO. Iniciar la adquisición de datos en el panel de control.
- Alinear el crudo a bombear hacia la succión del Jet de Superficie. La válvula de bloqueo que se encuentra en la tubería del fluido impulsor debe estar completamente cerrada.
- 4. Contabilizar la producción (FT-621) por espacio de una hora y media, si en este lapso de tiempo se observa periodicidad en las descargas del separador, pasar al siguiente paso, en caso contrario esperar la estabilización.
- **5.** Registrar la hora de inicio de la apertura de inyección del gas al Jet, y los demás parámetros en la **Tabla A11** y/o libro de laboratorio del **CEPRO**.
- Abrir lentamente la válvula de bloqueo del crudo de impulsión al Jet hasta lograr el caudal a evaluar (FT-521) Véase Matriz Experimental, Tabla A1 y Tabla A2. Nota: Evitar abrir la válvula de manera violenta.
- 7. Observar detalladamente el comportamiento del P_d.
- Mantener las condiciones (caudal y presión) de alimentación al Jet en los valores establecidos. Registrar cada 20 minutos los parámetros solicitados en la Tabla A11.

9. Repetir los pasos 5, 6, 7 y 8 aumentando el caudal de crudo de impulsión al Jet de manera de realizar la sensibilidad correspondiente.

Proceso 1 (compresión de gas con crudo):

- Instalar en el equipo la Relación de Área a evaluar. Nota: Asegúrese que este paso haya sido ejecutado.
- Registrar la hora de inicio de la prueba y los parámetros del la y/o libro de laboratorio del CEPRO. Iniciar la adquisición de datos en el panel de control.
- 3. Alinear el gas a comprimir hacia la succión del Jet de Superficie. Asegúrese que la presión y el caudal suministrados por el pozo experimental para simular las condiciones operacionales del fluido a comprimir sean las recomendadas en la matriz experimental. La válvula de bloqueo que se encuentra en la tubería del fluido impulsor debe estar completamente cerrada.
- **4.** Contabilizar el gas succionado (FY-660) por espacio de una hora y media, si en este lapso de tiempo se observa periodicidad en las descargas del separador, pasar al siguiente paso, en caso contrario esperar la estabilización.
- Registrar la hora de inicio de la apertura de inyección del gas al Jet, y los demás parámetros en la Tabla A11 y/o libro de laboratorio del CEPRO.
- 6. Abrir lentamente la válvula de bloqueo del crudo de inyección al Jet hasta llegar al caudal a evaluar (FT-621). Véase Matriz Experimental, Tabla A3. Nota: Evitar abrir la válvula de manera violenta.
- Observar detalladamente el comportamiento de la P_d y mantener la presión del pulmón de gas (Pozo).
- 8. Mantener las condiciones (caudal y presión) de alimentación al Jet en los valores establecidos. Registrar cada 20 minutos los parámetros solicitados en la Tabla A11.
- **9.** Repetir los pasos 5, 6, 7 y 8 aumentando el caudal de crudo de impulsión al Jet de manera de realizar la sensibilidad correspondiente.

Proceso 2 (compresión de gas con agua):

- Instalar en el equipo la Relación de Área a evaluar. Nota: Asegúrese que este paso haya sido ejecutado.
- 2. Registrar la hora de inicio de la prueba y los parámetros de la **Tabla A11** y/o libro de laboratorio del **CEPRO**. Iniciar la adquisición de datos en el panel de control.

- 3. Alinear el gas a comprimir hacia la succión del Jet de Superficie. Asegúrese que la presión y el caudal suministrados por el pozo experimental para simular las condiciones operacionales del fluido a bombear sean las recomendadas en la matriz experimental. La válvula de bloqueo que se encuentra en la tubería del fluido impulsor debe estar completamente cerrada.
- 4. Contabilizar el gas succionado (FY-660) por espacio de una hora y media, si en este lapso de tiempo se observa periodicidad en las descargas del separador, pasar al siguiente paso, en caso contrario esperar la estabilización.
- Registrar la hora de inicio de la apertura de inyección del gas al Jet, y los demás parámetros en la Tabla A11 y/o libro de laboratorio del CEPRO.
- Abrir lentamente la válvula de bloqueo del agua de inyección al Jet hasta llegar al caudal a evaluar (FT-521). Véase Matriz Experimental, Tabla A4. Nota: Evitar abrir la válvula de manera violenta.
- Observar detalladamente el comportamiento de la P_d y mantener la presión del pulmón de gas (Pozo).
- 1. Mantener las condiciones (caudal y presión) de alimentación al Jet en los valores establecidos. Registrar cada 20 minutos los parámetros solicitados en la **Tabla A11**.
- **8.** Repetir los pasos 5, 6, 7 y 8 aumentando el caudal de agua de impulsión al Jet de manera de realizar la sensibilidad correspondiente.

Proceso 3 (compresión de gas con gas):

- Instalar en el equipo la Relación de Área a evaluar. Nota: Asegúrese que este paso haya sido ejecutado.
- Registrar la hora de inicio de la prueba y los parámetros de la Tabla A11 y/o libro de laboratorio del CEPRO. Iniciar la adquisición de datos en el panel de control.
- 4. Alinear el gas a comprimir hacia la succión del Jet de Superficie. Asegúrese que la presión y el caudal suministrados por el pozo experimental para simular las condiciones operacionales del fluido a bombear sean las recomendadas en la matriz experimental. La válvula de bloqueo que se encuentra en la tubería del fluido impulsor debe estar completamente cerrada.
- 5. Contabilizar el gas succionado (FY-660) por espacio de una hora y media, si en este lapso de tiempo se observa periodicidad en las descargas del separador, pasar al siguiente paso, en caso contrario esperar la estabilización.

- Registrar la hora de inicio de la apertura de inyección del gas al Jet, y los demás parámetros en la Tabla A11 y/o libro de laboratorio del CEPRO.
- Abrir lentamente la válvula Merla del gas de inyección al Jet, en escalones de 50 Mscfd hasta llegar al caudal a evaluar. Véase Matriz Experimental, Tabla A5. Nota: Evitar abrir la Válvula Merla de manera violenta.
- Observar detalladamente el comportamiento de la P_d y mantener la presión del pulmón de gas (Pozo).
- **9.** Mantener las condiciones (caudal y presión) de alimentación al Jet en los valores establecidos. Registrar cada 20 minutos los parámetros solicitados en la **Tabla A11**.
- **10.** Repetir los pasos 5, 6, 7 y 8 aumentando el caudal de gas de impulsión al Jet de manera de realizar la sensibilidad correspondiente.

Anexo 9: Características del crudo y del gas

Durante las pruebas experimentales del dispositivo Jet, se tomó al iniciar las pruebas una muestra del crudo, cuyas propiedades fueron determinadas por el Laboratorio de Petróleo (Tía Juana), de la Gerencia de Almacenamiento, Tratamiento y Transporte de Crudo, las cuales se presentan en la **Tabla A6**.

 Tabla A6
 Propiedades del crudo Rosa Mediano

MUESTRA	Fecha de Hora muestreo		% AyS	Gravedad @ 60 °F	API Seco	Viscosidad Dinámica	
TK-2 Rosa Mediano	02/07/2002	N/d	0,1	22,3	22,7	96 @ 78°F	

Las propiedades del gas fueron evaluadas por el Instituto de Investigaciones Petroleras de la Universidad del Zulia (**INPELUZ**) en los laboratorios de Servicios Técnicos Petroleros, Departamento de Cromatografía el día 03 de junio del año 2002, los resultados se presentan desde la **Tabla A7** hasta a la **Tabla A9**.

Tabla A7 Datos de la muestra de gas de inyección del CEPRO.

UBICACIÓN MUESTRA	Entrada Estación de Gas
FECHA DE TOMA	03/06/2002
FECHA DE ANALISIS	04/06/2002
ESTADO	Zulia
COMPAÑÍA	Intevep PDVSA
CILINDRO	05EKO97
Presión Muestra (Ippca)	1420
Temperatura Muestra (°F)	96,64

Peso Molecular Promedio	19,632	lb/lbmol
Presión Seudocrítica	680,59	lppca
Temperatura Seudocrítica	380,97	°R
Gravedad Específica	0,6773	Aire = 1
Valor Calorífico Neto	999,9	BTU/PCN @ 60°F
Valor Calorífico Bruto	1105,6	BTU/PCN @ 60°F
Contenido líquido	1,1726	Gal/1000 P
Viscosidad del gas	0,0145	Centipoise @ P, T
Factor Z del gas	0,8015	adim

Tabla A8 Propiedades físicas del gas de inyección del CEPRO.

Tabla A9 Composición química de la muestra de gas de inyección del CEPRO.

Componentes	Mol %	% Vol/Vol	P_{c-} (Psig) (aire = 1)	T_c (°R) (BTU/PCN)	ω
Nitrógeno, N ₂	0,3693		1,820001264	0,84024	0,000137
Diox. de Carbono, CO ₂	3,6008		38,51032099	19,7225	0,009603
Metano, C1	84,2813		562,1563588	289,371	0,009102
Etano, C2	7,8665		55,67888661	43,2711	0,007646
Propano, C3	2,4978	0,6867	15,36156044	16,6334	0,003784
Iso-Butano, IC-4	0,3043	0,0990	1,601594712	2,22812	0,000562
N-Butano, NC4	0,5409	0,1701	2,968287411	4,1404	0,001071
Iso-Pentano, IC5	0,1911	0,0698	0,937286015	1,58437	0,000437
N-Pentano, NC5	0,1709	0,0618	0,834067626	1,44514	0,000429
Hexanos, C6	0,1006	0,0432	0,442259703	0,91753	0,000301
Heptanos, C7	0,0274	0,0126	0,108894523	0,26604	9,54E-05
Octanos, C8	0,0082	0,0042	0,029536246	0,08372	3,25E-05
Nonanos, C9	0,0093	0,0052	0,034590872	0,09089	4,11E-05
Decanos +, C10	0,0325	0,0199	0,107635679	0,34852	0,000159
Totales	100,0000	1,1726	680,59	380,94	0,03340

Anexo 10: Ecuaciones y cálculo

1. Caudal en el separador

$$Q_{crudo} = \left[\frac{\Delta Nivel \cdot 0,17938 + 0,2808}{\Delta tiempo}\right] \cdot 24 \cdot 60 \tag{1}$$

Donde:

△Nivel: Variación de nivel en el separador SB-1, en pulgadas de agua.

∆tiempo: Tiempo transcurrido entre dos lecturas de nivel consecutivas del separador SB-

1, en segundos.

Qcrudo: Barriles por día

2. Relación Gas Petróleo

Se define como el cociente entre el gas de levantamiento inyectado al pozo y el caudal de crudo registrado en el separador.

$$RGL = \frac{Q_{iny}}{Q_{crudo}} \cdot 1000$$
 (2)

Donde:

Q_{iny}: expresado en Mscfd.

Q_{crudo}: expresado en BPD.

RGL, expresado en Scfd/BPD.

3. Flujo másico de crudo

$$\dot{m}_{crudo} = 1,839930556E - 6 \cdot Q_{crudo} \cdot \rho_{crudo}$$
(3)

Donde:

*m*_{crudo}: Flujo másico de crudo en (Kg./s).

Q_{crudo}: Caudal de crudo en barriles por día.

 ρ_{crudo} : Densidad del crudo en (Kg/m³).

Para el cálculo de la densidad del crudo, se emplea la siguiente expresión:

$$\rho_{crudo} = \frac{141372,65}{131,5 + \circ API}$$
(4)

Donde:

 ρ_{crudo} : Densidad del crudo en (Kg/m³).

°API: Gravedad API del crudo.

4. Flujo másico de gas

$$m_{gas} = 1,388111546E - 5 \cdot Q_{gas} \cdot PM$$
 (5)

Donde:

*m*_{gas}: Flujo másico de gas en (Kg./s).

Q_{gas}: Caudal de inyección de gas en Mscfd.

PM: Peso molecular del gas, en (Lbm/Lbmol).

5. Relación de masa (M)

La relación de masa (M) representa la relación del flujo másico de crudo entre el flujo másico de gas.

$$M = \frac{\frac{m_{succión}}{m_{inyección}}}{(6)}$$

6. Factor de Compresibilidad (z)

Con la muestra del gas tomada, se realizó el análisis cromatográfico del gas (ver resultados desde la **Tabla A7** hasta la **Tabla A9** del **Anexo 9**). Con la finalidad de calcular el factor de compresibilidad, se investigaron las diferentes correlaciones que la literatura ofrecía para referido cálculo, en algunos casos fue necesario calcular parámetros de interés adicionales a los disponibles, como por ejemplo el Factor Acéntrico, requiriéndose para su evaluación la revisión del Manual de Ingeniería, GPSA [**Ref. 40**], en el mismo se encuentra que el factor acéntrico ω es calculado con la sumatoria del producto de los porcentajes molares y el factor acéntrico de la sustancia pura.

De esta manera para el cálculo del Factor de Compresibilidad (Z) se utilizó la correlación de Pitzer, la misma fue seleccionada por tener el menor porcentaje de error con respecto a nueve correlaciones más evaluadas.

Correlación de Pitzer (Véase mayor detalle en la Ref. 41.)

$$T_{cs} = Tc - 950 \cdot \omega \cdot (A - A^3) \tag{7}$$

$$P_{cs} = \frac{P_c \cdot T_{cs}}{T_C} \tag{8}$$

$$T_r = \frac{T}{T_{cs}} \qquad P_r = \frac{P}{P_{cs}}$$
(9)

$$B_1 = 0.139 - \frac{0.172}{T_r^{4.2}} \qquad B_0 = 0.083 - \frac{0.422}{T_r^{1.6}}$$
(10)

$$B = \frac{R \cdot T_C}{P_C} \cdot (B_0 + \omega \cdot B_1) \qquad D = \frac{B \cdot P_C}{R \cdot T_C}$$
(11)

$$Z = 1 + D \cdot \frac{P_r}{T_r} \tag{12}$$

Donde:

A: fracción molar (CO₂+H₂S)

R: constante del gas, R=10,7316 Psia.ft³/lbmole.

P: Presión del gas, en Psia.

T: Temperatura del gas, en °R.

P_c: Presión crítica del gas, en Psia.

T_c: Temperatura crítica del gas, en °R.

 ω : Factor acéntrico, $\omega = 0,04051^*$.

En la **Tabla A10** se presentan los resultados de las diferentes correlaciones y el porcentaje de error, calculado según la expresión:

$$Error_{z} = \frac{Z_{real} - Z_{calculado}}{Z_{calculado}} \cdot 100$$
(13)

Donde:

 Z_{real} : factor de compresibilidad real @ P, T de la muestra.

 $Z_{calculado}$: factor de compresibilidad calculado con las diferentes correlacines @ P, T de la muestra.

Error_z: error en porcentaje.

	Z	REAL	0,8015	ERROR (%)
S	Z1	CARNAHAM-STARLING	0,765600	4,6891
۳	Z2	DRANCHUK-KASSEM	0,824668	2,8094
0	Z3	DRANCHUK-PURVIS-ROBINSON	0,828521	3,2614
AC	Z4	PENG-ROBINSON	0,722871	10,8773
Ц.	Z5	PITZER	0,797572	0,4925
R	Z6	REDLICH-KWONG	0,763119	5,0295
Ь.	Z7	SOAVE REDLICH-KWONG	0,746315	7,3943
0	Z8	VAN DER WALLS	0,766149	4,6141

Tabla A10 Comparación del factor de compresibilidad para diferentes correlaciones.

7. Densidad del gas (ρgas):

$$\rho_{gas} = 1,496120038 \cdot \left(\frac{P_{gas} \cdot PM}{Z_{gas} \cdot T_{gas}}\right)$$
(14)

Donde:

P_{gas}: Presión absoluta del gas en (Psia).

PM: Peso molecular del gas en (Lbm/Lbmol).

T_{gas}: Temperatura absoluta del gas en (°R).

 Z_{gas} : Factor de compresibilidas gas @ P_{gas} y T_{gas}.

 ρ_{gas} : Densidad del gas @ P_{gas} y T_{gas} en (Kg/m³).

8. Caída de presión en el equipo

$$\Delta P = P_{desc\,\mathrm{arg}\,a} - P_{succión} \tag{16}$$

Donde:

 $P_{descarga}$: Presión de la mezcla en la descarga del equipo, en Psig. $P_{succión}$: Presión del flido a bombear en la succión del equipo, en Psig. ΔP : Caída de presión en el equipo, en Psi. Anexo 11 Datos Experimentales

Resultados Flujo Monofásico (bombeo de crudo con crudo)

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u>R = 0,132, $Q_{succ} = 150$ BPD, $P_d = 100$ Psig</u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	197,25	109,73	299,72	0,90	103,51	150,83	0,8850	122,24	
Mínimo	197,25	109,13	294,00	0,90	101,23	142,07	0,8845	120,83	
Máximo	197,26	110,37	304,00	0,90	105,20	157,93	0,8859	122,90	-
Desv. Estand	0,00	0,37	1,83	0,00	0,96	2,69	0,0003	0,51	
Promedio	197,26	109,10	502,38	0,91	95,84	155,42	0,8873	117,64	
Mínimo	197,26	109,07	501,00	0,91	94,60	151,00	0,8865	115,98	
Máximo	197,26	109,12	503,95	0,91	97,63	158,95	0,8882	119,53	10
Desv. Estand	0,00	0,01	0,67	0,00	0,88	1,31	0,0005	1,08	
Promedio	197,26	109,04	698,76	0,91	93,59	155,69	0,8889	114,01	
Mínimo	197,26	109,02	698,00	0,91	93,08	151,07	0,8883	112,97	
Máximo	197,27	109,06	699,92	0,91	94,30	159,80	0,8894	115,38	ω
Desv. Estand	0,00	0,01	0,42	0,00	0,36	1,41	0,0003	0,70	
Promedio	197,26	108,98	898,37	0,91	92,75	149,45	0,8899	111,65	
Mínimo	197,26	108,95	897,08	0,91	92,60	145,20	0,8895	111,20	
Máximo	197,26	109,00	899,00	0,91	93,00	152,85	0,8902	112,20	4
Desv. Estand	0,00	0,01	0,50	0,00	0,10	1,46	0,0002	0,27	

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	100,86	98,58	114,67	138,75	117,72	101,00	109,5070	2,42	
Mínimo	97,00	94,86	112,84	135,09	114,79	96,49	109,5067	1,28	
Máximo	105,97	103,81	116,93	142,58	120,63	107,45	109,5073	3,74	_
Desv. Estand	1,64	1,56	1,18	1,26	1,70	1,74	0,0002	0,51	
Promedio	93,85	91,47	106,97	211,55	110,11	98,25	109,5063	6,77	
Mínimo	93,00	90,95	103,64	195,06	108,86	96,99	109,5061	4,86	
Máximo	96,28	93,34	111,02	216,21	112,97	99,66	109,5066	8,09	N
Desv. Estand	0,69	0,64	2,28	4,67	1,01	0,59	0,0001	0,55	
Promedio	88,00	85,36	101,16	312,94	107,50	99,26	109,5061	13,90	
Mínimo	88,00	85,15	99,45	311,71	106,56	98,28	109,5059	12,80	~
Máximo	88,00	86,21	102,88	314,16	108,44	100,21	109,5063	14,70	~
Desv. Estand	0,00	0,22	1,00	0,62	0,55	0,30	0,0001	0,36	
Promedio	81,95	78,93	96,39	409,04	106,27	101,54	109,5067	22,61	
Mínimo	81,00	77,65	94,79	406,54	106,10	100,96	109,5065	21,91	
Máximo	82,00	79,22	98,00	444,54	106,45	102,00	109,5069	24,20	*
Desv. Estand	0,20	0,32	0,94	7,88	0,10	0,21	0,0001	0,43	

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(Psig)	
Promedio	197,25	108,80	307,90	0,91	95,98	149,72	0,8890	113,04	
Mínimo	197,24	108,78	305,00	0,91	93,23	146,18	0,8876	109,04	(5
Máximo	197,25	108,80	310,00	0,91	98,00	152,65	0,8909	116,17	01
Desv. Estand	0,00	0,01	1,30	0,00	1,32	1,32	0,0010	2,09	
Promedio	197,16	108,79	302,79	0,90	102,77	247,63	0,8874	118,47	
Mínimo	197,15	108,78	302,00	0,90	101,78	243,47	0,8870	117,81	•
Máximo	197,16	108,80	303,00	0,91	103,79	249,77	0,8877	119,20	0,
Desv. Estand	0,00	0,01	0,35	0,00	0,57	1,17	0,0002	0,42	
Promedio	197,18	108,83	298,04	0,90	102,99	354,02	0,8875	118,06	
Mínimo	197,17	108,82	297,00	0,90	102,21	351,30	0,8872	117,70	
Máximo	197,19	108,84	299,00	0,91	103,59	357,27	0,8879	118,42	
Desv. Estand	0,00	0,01	0,40	0,00	0,42	1,23	0,0002	0,23	
Promedio	197,22	108,88	297,90	0,91	102,19	447,64	0,8882	116,53	
Mínimo	197,21	108,87	297,00	0,90	102,10	444,30	0,8879	116,40	~
Máximo	197,23	108,90	298,88	0,91	102,30	449,85	0,8884	116,70	ű
Desv. Estand	0,01	0,01	0,37	0,00	0,06	1,04	0,0001	0,09	
Promedio	197,25	108,93	301,11	0,90	104,76	556,44	0,8886	115,01	
Mínimo	197,24	108,92	300,17	0,90	103,10	552,83	0,8879	114,32	
Máximo	197,26	108,95	302,00	0,90	106,20	560,50	0,8891	115,99	Ű
Desv. Estand	0,01	0,01	0,41	0,00	1,01	1,79	0,0003	0,55	
Promedio	197,28	109,02	298,63	0,90	107,45	648,03	0,8877	117,22	
Mínimo	197,27	108,96	296,25	0,90	106,90	646,00	0,8875	116,70	-
Máximo	197,28	109,30	299,00	0,90	107,90	650,00	0,8879	117,60	0
Desv. Estand	0,00	0,09	0,50	0,00	0,30	1,02	0,0001	0,26	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u>R = 0.132, $Q_{iny} = 300$ BPD, $P_d = 200$ Psig</u>

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	201,47	199,25	98,24	528,24	106,71	204,54	109,5111	5,28	
Mínimo	200,00	197,85	95,51	525,29	103,41	202,41	109,5109	3,70	
Máximo	203,00	200,27	100,96	531,18	109,37	206,70	109,5114	6,79	01
Desv. Estand	0,77	0,95	1,59	1,04	1,87	1,04	0,0002	0,48	
Promedio	200,16	197,84	105,20	446,50	115,54	202,50	109,5083	4,67	
Mínimo	200,00	197,72	104,54	445,66	114,81	201,94	109,5083	4,20	
Máximo	201,00	197,95	105,86	447,04	116,28	202,72	109,5083	4,86	0,
Desv. Estand	0,32	0,07	0,39	0,35	0,43	0,26	0,0000	0,21	
Promedio	200,93	197,89	104,64	437,89	117,13	201,98	109,5083	4,09	
Mínimo	200,13	197,87	103,78	435,88	117,02	201,15	109,5083	3,27	
Máximo	201,00	197,90	105,84	439,57	117,24	202,39	109,5083	4,50	
Desv. Estand	0,20	0,01	0,66	0,67	0,06	0,26	0,0000	0,26	
Promedio	202,00	198,37	102,77	440,27	116,65	201,89	109,5083	3,53	
Mínimo	202,00	198,30	102,60	438,72	116,50	200,82	109,5083	2,45	~
Máximo	202,00	198,43	102,98	441,27	116,80	203,43	109,5083	5,03	ű
Desv. Estand	0,00	0,04	0,10	0,52	0,09	0,42	0,0000	0,43	
Promedio	198,88	194,92	105,93	439,63	118,30	197,92	109,5083	3,01	
Mínimo	198,00	194,33	103,35	437,26	116,54	196,60	109,5083	1,96	<i>(</i> 0
Máximo	200,00	195,61	108,51	442,24	120,07	199,56	109,5083	4,17	Ū.
Desv. Estand	0,85	0,46	1,51	1,67	1,03	0,81	0,0000	0,50	
Promedio	201,09	197,03	109,24	437,03	122,18	199,29	109,5083	2,26	
Mínimo	201,00	196,53	109,09	435,95	121,97	197,95	109,5083	0,63	-
Máximo	202,00	197,76	109,30	438,85	122,38	200,35	109,5084	3,41	•
Desv. Estand	0,25	0,39	0,04	0,60	0,12	0,45	0,0000	0,44	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u>R = 0,132, $\mathbf{Q}_{succ} = 150 \text{ BPD}, \mathbf{Q}_{inv} = 500 \text{ BPD}, \mathbf{P}_{d} = 100 \text{ Psig}, \text{RGP} = variable$ </u>

Observación:

Punto 111: Q_{gas} = 300 Mscfd

Punto 112: Q_{gas} = 170 Mscfd

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	PT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Presión crudo	Punto
08/09/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(Psig)	(Psig)	
Promedio	197,28	110,21	483,52	0,91	100,44	154,77	0,8831	124,90	112,72	
Mínimo	197,28	109,83	318,00	0,90	98,90	44,40	0,8823	123,97	95,08	<u>د</u>
Máximo	197,28	111,00	529,97	0,91	104,42	218,63	0,8838	125,30	134,83	-
Desv. Estand	0,00	0,43	65,41	0,00	1,75	25,05	0,0004	0,42	10,29	
Promedio	197,28	110,71	498,17	0,91	98,88	150,40	0,8842	122,87	107,46	
Mínimo	197,28	110,03	494,43	0,91	98,40	145,35	0,8838	121,89	104,00	_
Máximo	197,28	111,51	501,93	0,91	99,30	157,70	0,8847	123,70	109,00	N
Desv. Estand	0,00	0,41	1,64	0,00	0,30	2,91	0,0003	0,53	1,41	

Tag	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	FY-010	ΔP	
Fecha	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	Caudal de gas	PT-675 -	Punto
08/09/2002	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	Estación	PT-665	Experimental
Unidades	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Mscfd)	(Psig)	
Promedio	106,30	105,71	481,07	114,78	103,40	109,51	267,2262	-2,90	
Mínimo	89,42	103,51	278,47	112,95	88,71	109,51	169,8580	-10,56	_
Máximo	132,39	107,69	530,14	117,37	130,38	109,51	307,8090	2,54	-
Desv. Estand	10,43	1,39	83,57	1,79	9,84	0,00	56,5862	2,35	
Promedio	101,27	103,09	530,63	112,78	101,69	109,51	173,9406	0,41	
Mínimo	96,51	102,75	526,59	112,64	95,17	109,51	170,8438	-2,63	_
Máximo	104,11	103,44	533,35	112,92	104,73	109,51	176,6839	3,21	2
Desv. Estand	1,78	0,20	1,50	0,08	2,07	0,00	1,5123	1,18	

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,59	117,37	297,84	0,91	95,02	152,48	0,89	108,88	
Mínimo	199,59	87,08	297,00	0,91	94,24	145,70	0,89	108,10	_
Máximo	199,59	124,06	298,97	0,91	95,89	156,73	0,89	109,69	ω
Desv. Estand	0,00	2,39	0,38	0,00	0,43	1,76	0,00	0,41	
Promedio	199,61	117,95	500,18	0,91	97,91	151,97	0,89	112,44	
Mínimo	199,61	116,95	499,03	0,90	96,56	147,08	0,89	110,90	_
Máximo	199,61	124,11	501,00	0,91	99,10	156,80	0,89	114,18	4
Desv. Estand	0,00	0,49	0,41	0,00	0,96	1,67	0,00	1,21	
Promedio	199,60	117,90	703,70	0,91	98,14	149,10	0,89	114,21	
Mínimo	199,60	116,94	702,00	0,91	97,30	143,33	0,89	113,10	د.
Máximo	199,60	117,99	705,00	0,91	99,60	153,93	0,89	115,70	5
Desv. Estand	0,00	0,19	0,69	0,00	0,61	1,87	0,00	0,70	
Promedio	199,60	117,87	898,30	0,91	99,00	151,74	0,89	115,27	
Mínimo	199,60	117,42	897,07	0,91	98,30	147,03	0,89	114,10	<u>د</u>
Máximo	199,60	123,54	899,00	0,91	99,39	155,90	0,89	115,90	6
Desv. Estand	0,00	0,54	0,52	0,00	0,24	1,63	0,00	0,51	
Promedio	199,59	107,39	1108,81	0,91	96,68	153,17	0,89	107,13	
Mínimo	199,59	12,13	1090,00	0,91	96,50	149,17	0,89	106,30	_
Máximo	199,59	134,72	1122,60	0,91	97,29	157,00	0,89	108,56	7
Desv. Estand	0,00	27,66	5,85	0,00	0,17	1,58	0,00	0,64	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 150 \text{ BPD}$, $\mathbf{P}_{d} = 100 \text{ Psig}$ </u>

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	101,47	99,70	101,88	180,79	108,23	102,31	109,51	2,60	
Mínimo	101,00	98,77	101,13	180,07	106,44	101,55	109,51	2,52	-
Máximo	103,00	100,71	102,76	181,94	109,24	103,38	109,51	2,81	ω
Desv. Estand	0,73	0,58	0,45	0,60	0,78	0,56	0,00	0,08	
Promedio	92,83	90,98	105,08	286,00	111,26	97,96	109,51	6,98	
Mínimo	92,00	90,86	102,21	284,89	110,56	97,54	109,51	6,45	-
Máximo	93,00	91,10	106,84	287,51	112,42	98,56	109,51	7,47	4
Desv. Estand	0,33	0,07	1,48	0,92	0,63	0,18	0,00	0,19	
Promedio	91,73	89,76	104,19	396,92	111,14	103,30	109,51	13,54	
Mínimo	91,00	89,52	102,77	395,17	110,61	102,77	109,51	13,25	-
Máximo	92,00	90,00	107,42	398,35	111,71	103,82	109,51	13,82	U1
Desv. Estand	0,42	0,14	1,53	0,84	0,32	0,30	0,00	0,17	
Promedio	83,02	81,32	108,06	422,81	111,05	99,62	109,51	18,30	
Mínimo	83,00	80,96	106,53	422,46	110,84	99,27	109,51	18,30	-
Máximo	83,85	81,67	108,34	424,13	111,26	99,96	109,51	18,31	6
Desv. Estand	0,11	0,20	0,34	0,31	0, 12	0,20	0,00	0,00	
Promedio	77,01	73,89	93,21	589,53	110,76	102,58	109,51	28,69	
Mínimo	76,00	72,88	92,09	570,52	109,50	99,87	109,51	26,22	_
Máximo	78,00	75,06	94,33	608,39	111,66	104,96	109,51	31,00	7
Desv. Estand	0,55	0,47	0,65	7,00	0,55	0,97	0,00	0,74	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 150$ BPD, $\mathbf{P}_{d} = 200$ Psig</u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,59	117,83	296,78	0,91	93,91	148,53	0,8941	106,70	
Mínimo	199,59	117,83	296,00	0,91	93,60	145,00	0,8939	106,40	<u>د</u>
Máximo	199,59	117,84	298,97	0,91	94,10	152,75	0,8942	106,80	8
Desv. Estand	0,00	0,00	0,58	0,00	0,13	1,70	0,0001	0, 12	
Promedio	199,57	117,66	496,67	0,91	88,18	148,06	0,8943	104,05	
Mínimo	199,56	117,65	494,10	0,91	84,73	143,05	0,8920	96,53	<u>د</u>
Máximo	199,58	117,66	498,00	0,91	90,25	154,97	0,8980	109,33	9
Desv. Estand	0,01	0,00	0,82	0,00	1,51	2,18	0,0020	4, 10	
Promedio	199,54	117,68	697,39	0,91	93,80	151,15	0,8904	113,48	
Mínimo	199,54	117,67	695,02	0,91	92,20	147,00	0,8899	111,76	N
Máximo	199,55	117,69	699,00	0,91	94,99	153,95	0,8910	114,60	0
Desv. Estand	0,00	0,00	0,94	0,00	0,89	1,54	0,0003	0,86	
Promedio	199,53	117,70	904,05	0,91	95,81	152,77	0,8910	113,51	
Mínimo	199,53	117,70	903,00	0,91	95,11	149,20	0,8906	113,00	N
Máximo	199,53	117,72	905,00	0,91	96,69	155,00	0,8912	114,30	-
Desv. Estand	0,00	0,01	0,37	0,00	0,43	1,07	0,0001	0,35	

Тад	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	200,98	198,67	90,44	248,24	105,41	200,78	109,51	2,11	
Mínimo	200,12	198,63	89,93	248,09	105,13	200,74	109,51	2,04	_
Máximo	201,00	198,70	90,96	248,39	105,69	200,81	109,51	2,18	œ
Desv. Estand	0,10	0,02	0,30	0,09	0,16	0,02	0,00	0,04	
Promedio	195,74	193,39	97,18	317,67	99,62	198,75	109,51	5,36	
Mínimo	194,00	192,29	90,43	315,85	95,39	197,29	109,51	4,55	<u>د</u>
Máximo	198,00	195,26	103,76	322,56	101,87	200,34	109,51	6,54	ø
Desv. Estand	0,77	0,74	4,19	1,70	1,83	0,78	0,00	0,57	
Promedio	191,95	190,57	109,21	410,50	105,23	201,06	109,51	10,49	
Mínimo	191,00	189,59	107,11	407,09	103,58	199,89	109,51	9,65	N
Máximo	193,00	191,51	109,84	413,73	106,89	202,52	109,51	11,77	0
Desv. Estand	0,79	0,52	0,82	2,04	0,96	0,66	0,00	0,34	
Promedio	180,82	179,36	110,74	521,11	109,66	197,26	109,51	17,89	
Mínimo	180,00	178,74	109,51	520,43	108,79	196,94	109,51	17,77	N
Máximo	181,00	179,99	112,55	522,25	110,52	198,05	109,51	18,20	
Desv. Estand	0,36	0,36	0,63	0,37	0,50	0,28	0,00	0,13	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 250 \text{ BPD}$, $\mathbf{P}_{d} = 100 \text{ Psig}$ </u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,60	117,78	301,08	0,9062	94,09	252,37	0,8927	108,72	
Mínimo	199,59	117,77	300,00	0,9059	93,80	248,10	0,8924	108,40	N
Máximo	199,60	117,79	302,00	0,9064	94,50	258,67	0,8930	109,25	2
Desv. Estand	0,00	0,00	0,45	0,0001	0,23	1,84	0,0001	0,24	
Promedio	199,61	117,62	497,39	0,9087	89,07	248,35	0,8949	103,28	
Mínimo	199,61	117,61	496,00	0,9080	86,64	241,67	0,8933	98,96	N
Máximo	199,61	117,63	499,00	0,9096	90,70	252,75	0,8965	106,73	ω
Desv. Estand	0,00	0,00	0,73	0,0004	1,15	2,11	0,0009	2,19	
Promedio	199,61	117,62	698,91	0,9073	93,51	250,64	0,8919	109,88	
Mínimo	199,61	117,61	697,00	0,9064	92,10	247,05	0,8914	108,80	2
Máximo	199,61	117,62	700,95	0,9078	95,31	253,90	0,8923	111,00	4
Desv. Estand	0,00	0,00	0,79	0,0004	1,02	1,28	0,0002	0,56	
Promedio	199,60	117,63	897,48	0,9065	97,21	250,88	0,8911	112,30	
Mínimo	199,60	117,62	896,13	0,9059	96,20	247,27	0,8908	111,40	N
Máximo	199,60	117,63	899,00	0,9069	98,24	254,47	0,8914	113,05	01
Desv. Estand	0,00	0,00	0,55	0,0003	0,53	1,29	0,0001	0,42	
Promedio	199,59	117,65	1069,57	0,9045	103,51	249,33	0,8904	113,87	
Mínimo	199,59	117,64	1061,00	0,9041	102,40	245,15	0,8900	112,70	N
Máximo	199,59	117,68	1077,40	0,9051	104,20	252,00	0,8911	114,76	5
Desv. Estand	0,00	0,02	4,15	0,0003	0,48	1,14	0,0002	0,56	

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	99,77	96,42	93,69	150,95	106,66	99,09	109,51	2,67	
Mínimo	98,23	95,19	92,56	149,84	105,72	97,75	109,51	1,21	N
Máximo	100,00	97,15	94,82	152,53	107,59	100,14	109,51	4,04	N
Desv. Estand	0,37	0,50	0,66	0,41	0,54	0,53	0,00	0,52	
Promedio	97,33	93,94	92,06	226,70	100,58	100,59	109,51	6,65	
Mínimo	96,03	93,55	89,29	224,96	97,01	99,35	109,51	5,72	N
Máximo	98,00	94,26	96,74	229,05	102,51	101,57	109,51	7,36	ω
Desv. Estand	0,46	0,22	2,39	1,12	1,50	0,43	0,00	0,29	
Promedio	90,93	88,44	102,53	327,49	105,35	100,68	109,51	12,24	
Mínimo	90,00	88,04	100,35	324,41	103,80	100,17	109,51	11,51	Ņ
Máximo	91,00	88,83	103,49	330,76	106,89	101,54	109,51	12,87	4
Desv. Estand	0,21	0,23	0,78	1,85	0,90	0,31	0,00	0,26	
Promedio	82,00	79,18	104,33	451,36	109,47	100,89	109,51	21,70	
Mínimo	82,00	78,97	104,01	449,41	107,92	100,63	109,51	21,44	N
Máximo	82,00	79,40	104,65	454,09	111,02	101,52	109,51	22,15	5
Desv. Estand	0,00	0,12	0,18	1,19	0,90	0,18	0,00	0,18	
Promedio	75,98	73,38	106,36	569,17	117,57	103,25	109,51	29,87	
Mínimo	75,02	73,36	104,06	558,83	116,79	102,40	109,51	29,00	2
Máximo	76,00	73,40	107,42	576,12	118,34	103,91	109,51	30,54	6
Desv. Estand	0,11	0,01	1,16	3,47	0,45	0,43	0,00	0,44	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 250 \text{ BPD}$, $\mathbf{P}_{d} = 200 \text{ Psig}$ </u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,58	117,80	298,61	0,91	96,72	250,97	0,8926	110,65	
Mínimo	199,58	117,79	297,00	0,91	96,20	247,30	0,8923	110,11	N
Máximo	199,59	117,80	299,87	0,91	97,40	255,00	0,8930	111,20	7
Desv. Estand	0,00	0,00	0,76	0,00	0,38	1,71	0,0002	0,32	
Promedio	199,57	117,80	507,10	0,90	98,90	252,55	0,8899	115,61	
Mínimo	199,56	117,79	507,00	0,90	97,40	249,17	0,8893	113,20	N
Máximo	199,57	117,82	508,00	0,91	99,70	254,92	0,8913	116,60	œ
Desv. Estand	0,00	0,01	0,26	0,00	0,73	1,16	0,0006	1,00	
Promedio	199,56	117,81	700,92	0,91	97,94	251,25	0,8911	113,14	
Mínimo	199,56	117,81	700,00	0,91	97,02	247,10	0,8905	111,80	N
Máximo	199,57	117,82	701,98	0,91	98,50	254,00	0,8920	114,00	9
Desv. Estand	0,00	0,00	0,32	0,00	0,52	1,41	0,0005	0,78	
Promedio	199,53	117,70	904,05	0,91	95,81	152,77	0,8910	113,51	
Mínimo	199,53	117,70	903,00	0,91	95,11	149,20	0,8906	113,00	ω
Máximo	199,53	117,72	905,00	0,91	96,69	155,00	0,8912	114,30	0
Desv. Estand	0,00	0,01	0,37	0,00	0,43	1,07	0,0001	0,35	

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔΡ	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	204,86	202,01	97,56	254,49	109,62	204,18	109,51	2,17	
Mínimo	203,00	200,94	96,14	253,20	108,68	203,02	109,51	1,03	N
Máximo	208,00	204,83	99,99	257,40	110,55	207,10	109,51	2,52	7
Desv. Estand	1,74	1,40	1,08	1,52	0,54	1,51	0,00	0,15	
Promedio	194,14	192,14	110,34	324,40	112,63	198,36	109,51	6,22	
Mínimo	194,00	191,76	105,19	323,98	111,54	198,13	109,51	5,96	N
Máximo	195,00	192,52	113,36	325,66	113,87	199,03	109,51	6,51	œ
Desv. Estand	0,34	0,22	2,60	0,45	0,72	0,30	0,00	0,16	
Promedio	189,10	186,27	105,08	426,46	111,46	199,10	109,51	12,83	
Mínimo	189,00	186,18	102,77	425,75	111,43	199,03	109,51	12,77	N
Máximo	190,00	186,31	107,18	427,18	111,49	199,20	109,51	12,89	g
Desv. Estand	0,27	0,03	1,43	0,50	0,02	0,05	0,00	0,03	
Promedio	180,82	179,36	110,74	521,11	109,66	197,26	109,51	17,89	
Mínimo	180,00	178,74	109,51	520,43	108,79	196,94	109,51	17,77	ω
Máximo	181,00	179,99	112,55	522,25	110,52	198,05	109,51	18,20	•
Desv. Estand	0,36	0,36	0,63	0,37	0,50	0,28	0,00	0,13	

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,62	117,79	203,55	0,90	107,88	350,06	0,8889	117,01	
Mínimo	199,62	117,76	203,00	0,90	106,40	342,00	0,8883	116,15	ω
Máximo	199,62	117,81	204,00	0,90	108,89	353,86	0,8895	117,88	7
Desv. Estand	0,00	0,01	0,40	0,00	0,55	1,85	0,0003	0,46	
Promedio	199,59	117,71	302,98	0,9059	95,38	352,07	0,89	109,17	
Mínimo	199,59	117,71	302,00	0,9056	95,10	347,50	0,89	108,81	ω
Máximo	199,59	117,72	304,00	0,9063	95,70	355,90	0,89	109,60	N
Desv. Estand	0,00	0,00	0,50	0,0001	0, 18	1,53	0,00	0,24	
Promedio	199,60	117,75	504,63	0,9060	96,11	350,36	0,89	110,53	
Mínimo	199,60	117,73	503,40	0,9057	95,60	348,00	0,89	110,00	ω
Máximo	199,60	117,77	505,00	0,9063	96,64	353,53	0,89	111,06	ω
Desv. Estand	0,00	0,01	0,42	0,0001	0,28	1,05	0,00	0,28	
Promedio	199,60	117,81	704,60	0,9054	98,10	352,16	0,89	112,02	
Mínimo	199,60	117,79	704,00	0,9051	97,64	345,45	0,89	111,56	ω
Máximo	199,60	117,83	706,00	0,9058	98,60	355,95	0,89	112,60	4
Desv. Estand	0,00	0,01	0,63	0,0002	0,30	1,72	0,00	0,33	
Promedio	199,60	117,80	897,95	0,9052	100,39	351,55	0,89	113,90	
Mínimo	199,59	117,77	897,00	0,9048	100,20	346,67	0,89	113,50	ω
Máximo	199,60	117,82	898,90	0,9054	100,90	354,83	0,89	114,69	5
Desv. Estand	0,00	0,01	0,28	0,0001	0,22	1,44	0,00	0,36	
Promedio	199,59	117,71	1073,28	0,9037	105,12	350,07	0,89	115,13	
Mínimo	199,59	117,69	1070,02	0,9035	104,70	344,10	0,89	114,90	ω
Máximo	199,59	117,74	1077,58	0,9038	105,69	358,92	0,89	115,40	6
Desv. Estand	0,00	0,01	1,52	0,0001	0,24	2,36	0,00	0,13	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 350$ BPD, $\mathbf{P}_{d} = 100$ Psig</u>

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet Nº 1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	101,07	98,56	108,63	122,76	120,05	99,50	109,51	0,94	
Mínimo	101,00	98,54	106,72	122,56	118,88	98,70	109,51	0,12	ω
Máximo	101,95	98,58	110,11	122,96	121,17	99,58	109,51	1,01	-
Desv. Estand	0,20	0,01	0,82	0, 12	0,67	0,10	0,00	0,10	
Promedio	100,98	97,45	91,43	149,84	107,67	99,59	109,51	2,14	
Mínimo	100,05	96,04	91,13	149,33	106,88	98,16	109,51	0,79	ω
Máximo	101,00	97,67	91,87	150,31	108,45	100,09	109,51	2,87	Ň
Desv. Estand	0,10	0,20	0,19	0,23	0,46	0,29	0,00	0,27	
Promedio	99,00	95,20	93,38	224,77	109,35	101,24	109,51	6,05	
Mínimo	99,00	94,92	92,63	224,06	108,91	101,22	109,51	5,83	ω
Máximo	99,00	95,47	94,14	225,48	109,84	101,39	109,51	6,30	ω
Desv. Estand	0,00	0,16	0,44	0,41	0,26	0,03	0,00	0,14	
Promedio	95,87	92,11	97,09	326,13	111,33	104,06	109,51	11,95	
Mínimo	95,00	91,85	95,41	325,06	110,74	103,97	109,51	11,81	ω
Máximo	96,00	92,37	98,77	327,19	111,93	104,37	109,51	12,20	4
Desv. Estand	0,30	0,15	0,98	0,62	0,35	0,09	0,00	0,11	
Promedio	83,00	79,95	103,20	442,51	113,63	99,90	109,51	19,95	
Mínimo	83,00	79,84	102,15	442,49	113,03	99,71	109,51	19,65	ω
Máximo	83,00	80,06	104,30	442,53	114,22	100,06	109,51	20,11	ΰı
Desv. Estand	0,00	0,06	0,64	0,01	0,35	0,09	0,00	0,13	
Promedio	74,00	71,26	107,12	568,50	118,36	99,91	109,51	28,66	
Mínimo	73,12	70,68	106,75	564,43	117,89	99,10	109,51	27,77	ω
Máximo	75,00	71,69	107,32	573,01	118,83	100,95	109,51	29,63	6
Desv. Estand	0,21	0,29	0,13	1,45	0,27	0,34	0,00	0,28	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 350$ BPD, $\mathbf{P}_{d} = 200$ Psig</u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,61	117,71	199,29	0,90	108,76	350,51	0,8896	116,93	
Mínimo	199,61	117,69	199,00	0,90	107,35	341,90	0,8888	115,70	ω
Máximo	199,62	117,73	200,00	0,90	110,10	355,30	0,8903	118,10	7
Desv. Estand	0,00	0,01	0,38	0,00	0,84	2,14	0,0004	0,78	
Promedio	199,58	117,64	298,46	0,91	90,62	348,89	0,8949	104,73	
Mínimo	199,57	117,64	298,00	0,91	87,48	344,36	0,8928	100,46	دى
Máximo	199,59	117,64	299,00	0,91	93,70	353,42	0,8968	108,63	8
Desv. Estand	0,00	0,00	0,47	0,00	1,85	1,55	0,0013	2,38	
Promedio	199,56	117,64	498,31	0,91	93,79	350,77	0,8923	110,11	
Mínimo	199,55	117,63	498,00	0,91	91,60	341,18	0,8918	108,40	3
Máximo	199,56	117,64	499,00	0,91	95,75	356,87	0,8930	111,20	9
Desv. Estand	0,00	0,00	0,41	0,00	1,16	1,85	0,0003	0,72	
Promedio	199,57	117,63	697,52	0,91	98,08	349,98	0,8912	113,05	
Mínimo	199,57	117,63	696,13	0,91	97,00	344,00	0,8909	112,10	4
Máximo	199,58	117,63	698,98	0,91	99,00	355,58	0,8916	113,79	õ
Desv. Estand	0,00	0,00	0,54	0,00	0,63	1,93	0,0002	0,50	
Promedio	199,59	117,63	899,97	0,91	101,07	351,67	0,8912	113,70	
Mínimo	199,59	117,62	899,00	0,91	100,70	349,10	0,8909	113,40	4
Máximo	199,60	117,64	901,85	0,91	101,39	354,00	0,8914	113,99	
Desv. Estand	0,00	0,00	0,64	0,00	0,22	1,15	0,0001	0,18	

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	204,28	202,13	108,97	224,98	122,11	202,34	109,51	0,21	
Mínimo	204,00	202,08	108,30	224,91	121,76	202,25	109,51	0,06	ω
Máximo	205,00	202,19	110,01	225,06	122,46	202,44	109,51	0,29	7
Desv. Estand	0,40	0,03	0,59	0,05	0,20	0,05	0,00	0,05	
Promedio	200,24	196,81	91,61	250,22	101,65	198,26	109,51	1,46	
Mínimo	199,00	196,01	87,51	248,30	97,63	197,44	109,51	1,25	ω
Máximo	202,00	197,76	98,82	253,29	104,51	199,42	109,51	1,73	õ
Desv. Estand	0,65	0,46	3,56	1,19	1,86	0,50	0,00	0,11	
Promedio	200,48	197,31	104,19	326,64	105,56	202,96	109,51	5,64	
Mínimo	200,00	197,08	100,36	324,49	103,70	202,09	109,51	4,94	ω
Máximo	201,00	197,55	105,94	328,27	107,42	203,96	109,51	6,67	9
Desv. Estand	0,46	0,14	1,76	1,02	1,08	0,44	0,00	0,36	
Promedio	190,17	188,01	106,54	417,75	110,83	198,81	109,51	10,80	
Mínimo	189,00	187,16	105,80	415,40	108,97	197,87	109,51	10,63	4
Máximo	192,00	189,39	107,23	420,93	112,59	200,10	109,51	11,00	õ
Desv. Estand	0,91	0,64	0,42	1,71	1,08	0,69	0,00	0,11	
Promedio	182,12	179,59	106,21	541,38	114,41	199,10	109,51	19,51	
Mínimo	182,00	179,21	105,73	540,40	113,50	198,50	109,51	18,89	4
Máximo	183,00	180,16	106,53	542,96	115,24	199,66	109,51	20,07	-
Desv. Estand	0,29	0,31	0,20	0,64	0,52	0,27	0,00	0,32	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u> $\mathbf{R} = 0.170$, $\mathbf{Q}_{succ} = 450$ BPD, $\mathbf{P}_{d} = 100$ Psig</u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/07/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	199,63	117,76	301,91	0,9041	99,82	450,35	0,89	112,77	
Mínimo	199,62	117,74	301,00	0,9033	98,04	446,15	0,89	111,70	4
Máximo	199,63	117,78	302,97	0,9050	101,75	454,90	0,89	114,00	Ň
Desv. Estand	0,00	0,01	0,28	0,0004	1,11	1,35	0,00	0,66	
Promedio	199,62	117,70	501,12	0,9059	96,30	451,87	0,89	110,22	
Mínimo	199,62	117,68	501,00	0,9055	95,80	448,33	0,89	109,81	4
Máximo	199,62	117,72	502,00	0,9063	96,90	455,44	0,89	110,76	ώ
Desv. Estand	0,00	0,01	0,26	0,0002	0,28	1,47	0,00	0,22	
Promedio	199,62	117,64	697,90	0,9065	95,63	449,42	0,89	109,18	
Mínimo	199,62	117,63	697,13	0,9064	95,40	445,40	0,89	108,91	4
Máximo	199,62	117,65	698,00	0,9067	95,80	452,90	0,89	109,45	4
Desv. Estand	0,00	0,01	0,23	0,0001	0,11	1,50	0,00	0, 12	
Promedio	199,56	117,51	895,19	0,9086	92,16	447,99	0,89	106,02	
Mínimo	199,56	117,49	893,08	0,9078	91,20	444,08	0,89	105,11	4
Máximo	199,57	117,52	897,00	0,9092	93,68	451,70	0,89	107,50	5
Desv. Estand	0,00	0,01	0,94	0,0003	0,80	1,30	0,00	0,76	
Promedio	199,57	117,46	1030,62	0,9065	98,41	446,06	0,89	109,78	
Mínimo	199,56	117,44	1026,33	0,9058	96,95	442,02	0,89	108,63	4
Máximo	199,58	117,48	1033,97	0,9073	100,26	451,75	0,89	111,50	6
Desv. Estand	0,00	0,01	1,96	0,0004	0,92	1,78	0,00	0,79	

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/07/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	105,73	101,61	99,50	152,43	113,78	103,39	109,51	1,78	
Mínimo	105,00	101,13	97,52	151,50	112,40	102,19	109,51	0,62	4
Máximo	106,00	102,14	101,48	153,47	115,60	104,33	109,51	2,71	Ň
Desv. Estand	0,35	0,21	1,15	0,42	0,83	0,34	0,00	0,32	
Promedio	100,20	96,55	93,65	223,99	109,97	101,52	109,51	4,97	
Mínimo	100,00	96,13	92,96	223,47	109,01	101,31	109,51	4,83	4
Máximo	101,00	96,96	95,42	224,53	111,27	101,86	109,51	5,18	ىن
Desv. Estand	0,33	0,24	0,70	0,31	0,71	0,15	0,00	0,10	
Promedio	95,00	90,87	92,13	322,45	108,05	101,65	109,51	10,79	
Mínimo	95,00	90,82	91,75	321,88	107,60	101,56	109,51	10,74	4
Máximo	95,00	90,94	92,51	323,22	108,49	101,75	109,51	10,84	4
Desv. Estand	0,00	0,03	0,22	0,56	0,26	0,05	0,00	0,03	
Promedio	86,45	82,32	94,36	452,13	105,11	101,12	109,51	18,80	
Mínimo	86,00	82,12	91,87	449,48	104,21	100,36	109,51	18,22	4
Máximo	87,00	82,52	97,90	453,61	106,01	101,34	109,52	19,10	ΰn
Desv. Estand	0,47	0, 12	1,87	1,32	0,52	0,18	0,00	0,12	
Promedio	80,00	76,04	102,06	544,41	111,25	101,61	109,51	25,57	
Mínimo	80,00	75,89	100,26	542,57	109,46	101,36	109,51	25,48	4
Máximo	80,00	76,19	104,18	547,07	113,03	101,82	109,52	25,65	õ
Desv. Estand	0,00	0,09	1,06	1,09	1,04	0,14	0,00	0,05	

<u>Fluido Impulsor: Crudo, Fluido succión: Crudo</u> <u>R = 0,280, \mathbf{Q}_{succ} = 150 BPD, \mathbf{P}_{d} = 100 Psig</u>

Tag	LT-610A	LT-610B	FT-521 V	DT-521	TT-521	FT-621V	DT-621	TT-621	
Fecha	Nivel Tanque	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Flujo crudo	Densidad crudo	Temp. crudo	Punto
15/7/2002	crudo TK-01	crudo TK-02	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	desc. bomba	desc. bomba	Experimental
Unidades	("H2O)	("H2O)	(BPD)	(gr/cc)	(°F)	(BPD)	(gr/cc)	(°F)	
Promedio	197,16	110,32	301,29	0,9059	92,51	153,88	0,8870	112,93	
Mínimo	197,15	110,01	301,00	0,9055	91,80	150,23	0,8868	112,60	4
Máximo	197,16	110,63	302,00	0,9063	93,28	156,60	0,8872	113,10	7
Desv. Estand	0,00	0,18	0,38	0,0002	0,37	1,33	0,0001	0, 12	
Promedio	197,16	109,62	498,95	0,9070	90,54	158,84	0,8874	112,16	
Mínimo	197,16	109,60	498,00	0,9066	90,30	156,00	0,8871	111,76	4
Máximo	197,17	109,71	499,97	0,9073	90,80	164,83	0,8878	112,50	ċo
Desv. Estand	0,00	0,02	0,28	0,0001	0,15	1,72	0,0001	0,20	
Promedio	197,17	109,58	697,59	0,9075	90,37	152,68	0,8878	111,27	
Mínimo	197,17	109,57	696,07	0,9071	90,20	149,20	0,8875	111,00	4
Máximo	197,17	109,59	698,00	0,9077	90,50	156,20	0,8879	111,50	9
Desv. Estand	0,00	0,01	0,47	0,0001	0,07	1,50	0,0001	0,13	
Promedio	197,18	109,55	895,82	0,9078	90,29	150,80	0,8880	110,56	
Mínimo	197,18	109,54	895,00	0,9075	90,11	147,20	0,8879	110,31	5
Máximo	197,18	109,56	897,00	0,9081	90,40	153,87	0,8882	110,79	0
Desv. Estand	0,00	0,01	0,51	0,0001	0,08	1,26	0,0001	0,09	
Promedio	197,18	109,52	1099,82	0,9084	90,36	150,54	0,8882	110,03	
Mínimo	197,18	109,51	1098,10	0,9081	90,30	140,93	0,8880	109,80	5
Máximo	197,18	109,53	1101,82	0,9088	90,40	154,73	0,8885	110,40	-
Desv. Estand	0,00	0,01	0,90	0,0001	0,04	1,82	0,0001	0,14	

Tag	PT-621	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presión crudo	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
15/7/2002	desc. bomba	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	99,98	96,49	94,10	129,27	105,60	98,79	109,51	2,31	
Mínimo	98,83	96,25	93,46	129,24	105,02	98,73	109,51	2,14	4
Máximo	100,00	96,72	94,73	129,29	106,65	98,86	109,51	2,47	7
Desv. Estand	0,13	0,14	0,37	0,01	0,42	0,04	0,00	0,10	
Promedio	95,43	92,58	92,24	167,59	104,06	97,41	109,51	4,84	
Mínimo	93,00	91,75	91,62	165,90	103,57	95,66	109,51	3,53	4
Máximo	96,00	93,41	92,86	169,11	104,55	99,33	109,51	6,80	œ
Desv. Estand	0,53	0,49	0,36	0,71	0,29	0,75	0,00	0,71	
Promedio	93,09	89,45	90,47	227,76	102,99	100,52	109,51	11,07	
Mínimo	93,00	88,61	89,85	225,58	102,84	99,26	109,51	10,03	4
Máximo	94,00	90,29	91,11	229,04	103,17	101,77	109,51	12,25	9
Desv. Estand	0,28	0,49	0,37	1,24	0,09	0,48	0,00	0,40	
Promedio	86,00	82,87	89,38	296,39	102,59	100,35	109,51	17,48	
Mínimo	86,00	82,72	89,13	291,29	102,46	99,98	109,51	17,26	сл
Máximo	86,00	83,01	89,64	297,90	102,72	100,68	109,51	17,77	0
Desv. Estand	0,00	0,09	0,15	2,29	0,08	0,20	0,00	0,13	
Promedio	77,45	73,71	88,71	407,10	102,23	102,16	109,51	28,45	
Mínimo	75,17	73,50	88,43	390,89	102,08	102,11	109,51	28,34	5
Máximo	78,00	73,86	88,99	422,75	102,38	102,20	109,51	28,61	-
Desv. Estand	0,54	0,10	0,16	13,90	0,09	0,03	0,00	0,08	

Resultados Proceso 1 (compresión de gas con crudo)

A-8.2.1.1. Gas del pulmón del pozo (prueba convencional de la metodología de trabajo):

Tag Fecha 26/8/2002 Unidades	LT-610A Nivel Tanque crudo TK-01 ("H2O)	LT-610B Nivel Tanque crudo TK-02 ("H2O)	PT-010 Presión de gas Estación (Psig)	TT-010 Temperatura de gas Est. (°F)	FY-010 Caudal de gas Estación (Mscfd)	PT-012 Presión de gas inyección (Psig)	FT-521 V Flujo crudo Motriz (bomba) (BPD)	DT-521 Densidad crudo Motriz (bomba) (gr/cc)	TT-521 Temp. crudo Motriz (bomba) (°F)	PT-521 Presión crudo desc. bomba (Psig)	PT-Succ1 Presión Fondo Pozo a 950 pies (Psig)	PIT-109 Presión en el cabezal pozo (Psig)	Punto Experimental
Promedio	197,11	109,81	1342,30	86,23	179,76	316,18	1437,56	0,9075	91,65	395,98	26,73	15,37	52
Mínimo	197,11	109,71	1338,34	84,15	151,17	30,88	1428,00	0,9066	88,53	377,67	25,83	14,29	
Máximo	197,12	109,91	1343,84	88,79	391,53	461,99	1454,40	0,9092	93,30	420,80	27,66	16,90	
<i>Desv. Estand</i>	<i>0,00</i>	<i>0,0</i> 6	1,51	1,25	66,12	157,50	6,16	<i>0,000</i> 6	1,14	14,68	0,53	<i>0</i> ,67	
Promedio	197,12	109,99	1346,58	87,54	157,76	496,33	1430,51	0,9071	92,89	405,77	30,02	19,83	53
Mínimo	197,12	109,94	1344,54	84,44	154,83	475,45	1427,00	0,9064	92,20	379,71	29,59	19,02	
Máximo	197,12	110,04	1347,92	90,30	163,90	515,29	1445,53	0,9076	93,68	419,02	30,37	20,06	
<i>Desv. Estand</i>	<i>0,00</i>	<i>0,0</i> 3	<i>1,17</i>	<i>1,8</i> 9	2,05	<i>11,06</i>	3,69	<i>0,0003</i>	<i>0,46</i>	13,07	<i>0,15</i>	<i>0,22</i>	
Promedio	197,10	110,13	1348,21	88,99	164,71	552,87	1430,34	0,9067	93,97	420,53	34,21	25,57	54
Mínimo	197,09	110,09	1347,74	85,69	160,34	532,94	1426,00	0,9061	92,74	418,10	33,90	25,17	
Máximo	197,11	110,18	1348,58	92,54	169,09	578,64	1437,73	0,9074	95,00	422,57	34,73	25,99	
<i>Desv. Estand</i>	<i>0,00</i>	<i>0,0</i> 3	0,25	<i>2,01</i>	1,46	14,40	<i>2,40</i>	<i>0,0004</i>	<i>0,70</i>	1,33	<i>0,24</i>	0,22	
Promedio	197,08	110,24	1347,41	93,73	169,59	966,39	1433,65	0,9063	94,84	433,68	38,45	30,98	55
Mínimo	197,07	110,19	1347,20	92,77	166,31	586,24	1428,48	0,9059	94,60	423,40	37,34	29,78	
Máximo	197,09	110,30	1348,04	94,79	177,34	1319,06	1435,85	0,9065	95,30	437,20	39,04	31,62	
<i>Desv. Estand</i>	<i>0,01</i>	<i>0,0</i> 3	<i>0</i> ,23	<i>0</i> ,63	1,45	231,29	<i>0,8</i> 2	<i>0,0002</i>	<i>0,24</i>	<i>4,08</i>	<i>0</i> ,35	<i>0,38</i>	
Promedio	197,06	110,38	1347,58	92,64	165,08	1353,39	1433,47	0,9068	94,56	463,69	42,15	36,00	56
Mínimo	197,05	110,32	1347,39	92,55	159,89	1349,71	1432,05	0,9064	94,40	440,79	41,49	35,32	
Máximo	197,07	110,43	1348,05	92,76	179,63	1354,96	1434,00	0,9070	94,90	468,34	43,00	36,89	
<i>Desv. Estand</i>	<i>0,01</i>	<i>0,0</i> 3	<i>0,17</i>	<i>0,0</i> 5	2,33	<i>1,61</i>	<i>0,47</i>	<i>0,0001</i>	<i>0,13</i>	6,92	<i>0,37</i>	<i>0,26</i>	
Promedio	197,04	110,49	1347,13	95,36	167,84	1350,53	1422,80	0,9065	95,39	465,50	45,13	40,13	57
Mínimo	197,03	110,44	1340,93	93,02	165,27	1343,56	1395,00	0,9061	94,90	451,16	44,46	39,50	
Máximo	197,05	110,53	1349,15	97,69	175,87	1353,25	1433,00	0,9068	95,98	471,69	45,40	40,54	
<i>Desv. Estand</i>	<i>0,01</i>	<i>0,0</i> 3	2,38	1,36	<i>1,84</i>	2,83	<i>9,61</i>	<i>0,0002</i>	<i>0,28</i>	<i>5,21</i>	<i>0,11</i>	<i>0,15</i>	
Promedio	197,02	110,51	1334,89	100,66	180,09	1336,13	1429,38	0,9058	97,21	472,80	49,25	45,31	58
Mínimo	197,02	110,50	1330,74	97,91	176,12	1332,22	1424,00	0,9056	96,13	470,48	48,67	44,54	
Máximo	197,03	110,52	1340,04	102,49	200,46	1338,75	1432,00	0,9063	97,80	475,58	49,33	45,33	
<i>Desv. Estand</i>	0,00	0,01	2,54	1,53	3,36	1,95	2,30	<i>0,000</i> 2	<i>0,49</i>	1,50	<i>0,07</i>	<i>0,07</i>	
Promedio	197,00	110,47	1325,90	100,19	188,12	1321,89	1381,22	0,9060	97,63	536,92	52,63	49,79	59
Mínimo	196,99	110,46	1322,66	97,83	181,61	1317,30	1342,32	0,9059	97,40	520,16	52,11	49,15	
Máximo	197,01	110,49	1327,73	102,55	191,99	1326,36	1438,00	0,9062	97,90	542,49	52,87	50,10	
<i>Desv. Estand</i>	<i>0,01</i>	<i>0,01</i>	1,63	1,37	2,76	3,05	23,40	0,0001	<i>0,13</i>	5,03	0,21	<i>0,30</i>	

Fluido Impulsor: Crudo, Fluido succión: Gas	
$\mathbf{R} = 0,132, \mathbf{Q}_{inv} = 1400 \text{ Mscfd}, \mathbf{P}_{nozo} = \text{variable}, \text{Vortex}$	x = 2"

	1			r		1			r		1	
Tag	FY-660A	PT-660	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	LT-211	PT-212	ΔP	
Fecha	Flujo de gas	Presió de gas	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	Nivel en el	Presión en el	PT-675 -	Punto
26/8/2002	Succión Pozo	Succión Pozo	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	Separador	Separador	PT-665	Experimental
Unidades	(Mscfd)	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(*H2O)	(Psig)	(Psig)	
Promedio	0,19	30,38	12,94	91,56	376,28	102,58	37,13	109,51	0,00	0,00	24,19	
Minimo	0,13	29,00	11,70	89,56	357,41	98,64	34,08	109,51	0,00	0,00	20,40	91
Máximo	1,64	32,00	14,51	94,27	400,76	104,86	39,08	109,51	0,00	0,00	26,83	N
Desv. Estand	0,19	0,63	0,61	1,18	14,63	1,41	0,76	0,00	0,00	0,00	1,01	
Promedio	0,23	35,40	17,76	92,93	386,32	105,13	37,93	109,51	4,31	4,89	20,17	
Mínimo	0,17	33,77	16,66	89,55	360,59	105,00	35,52	109,51	4,29	4,89	17,70	5
Máximo	0,29	36,43	18,28	96,02	398,31	105,27	40,95	109,51	4,33	4,90	24,15	ω
Desv. Estand	0,03	0,52	0,49	2,05	12,71	0,08	1,16	0,00	0,01	0,00	1,42	
Promedio	0,22	40,10	21,82	94,67	401,03	105,58	41,66	109,51	4,37	4,87	19,83	
Minimo	0,20	39,35	21,15	90,99	398,99	105,41	38,56	109,51	4,35	4,87	15,92	
Máximo	0,26	40,76	22,76	98,50	402,70	105,84	44,14	109,51	4,39	4,88	22,58	4
Desv. Estand	0,03	0,33	0,28	2,20	1,19	0,13	1,22	0,00	0,01	0,00	1,31	
Promedio	0,28	45,18	26,33	100,31	413,55	106,28	44,92	109,51	4,42	4,86	18,60	
Minimo	0,23	44,24	25,77	99,31	401,99	105,92	43,33	109,51	4,39	4,85	17,30	
Máximo	0,32	45,54	27,58	101,41	417,60	106,65	46,03	109,51	4,44	4,87	19,41	5
Desv. Estand	0,02	0,24	0,36	0,63	4,18	0,21	0,47	0,00	0,01	0,00	0,37	
Promedio	0,33	50,12	32,23	98,19	443,66	107,19	44,19	109,51	4,47	4,85	11,96	
Mínimo	0,32	49,64	31,21	97,57	420,51	106,83	40,76	109,51	4,45	4,84	8,29	5
Máximo	0,43	51,24	33,48	98,92	447,54	107,55	47,89	109,51	4,50	4,85	16,68	6
Desv. Estand	0,02	0,37	0,38	0,40	6,85	0,21	1,60	0,00	0,01	0,00	1,85	
Promedio	0,74	54,85	36,37	100,40	444,57	107,97	46,63	109,51	4,59	4,87	10,26	
Mínimo	0,31	53,82	35,51	98,29	273,68	107,59	37,01	109,51	4,51	4,83	0,69	
Máximo	5,23	55,59	36,87	102,52	451,25	108,36	49,83	109,51	4,66	5,00	13,28	~
Desv. Estand	0,85	0,42	0,29	1,23	13,36	0,22	1,43	0,00	0,05	0,05	1,49	
Promedio	17,99	59,25	40,38	105,79	452,94	108,65	51,20	109,51	4,73	5,16	10,81	
Mínimo	2,38	56,62	40,22	102,71	450,85	108,39	49,59	109,51	4,67	5,02	9,25	
Máximo	34,93	60,19	40,55	108,34	455,45	108,90	51,94	109,51	4,79	5,29	11,49	8
Desv. Estand	5,98	0,64	0,10	1,87	1,32	0,14	0,32	0,00	0,03	0,08	0,31	
Promedio	84,34	64,10	43,50	105,32	516,72	109,47	54,47	109,51	4,92	5,61	10,96	
Minimo	46,25	62,94	43,17	103,41	487,55	109,15	53,44	109,51	4,85	5,43	9,85	
Máximo	103,86	64,82	44,34	107,24	521,81	109,78	55,19	109,51	4,99	5,79	11,75	59
Desv. Estand	17,34	0,49	0,30	1,11	5,63	0,18	0,47	0,00	0,04	0,10	0,40	

<u>Fluido Impulsor: Crudo, Fluido succión: Gas</u> <u>R = 0,132</u>, \mathbf{Q}_{iny} = 1700 Mscfd, \mathbf{P}_{pozo} = variable, Vortex = 2"

1	1	1	1								1	
Тад	LT-610A	LT-610B	PT-010	TT-010	FY-010	PT-012	FT-521 V	DT-521	TT-521	PT-521	PT-Succ1	
Fecha	Nivel Tanque	Nivel Tanque	Presión de gas	Temperatura	Caudal de gas	Presión de	Flujo crudo	Densidad crudo	Temp. crudo	Presión crudo	Presión Fondo	Punto
26/8/2002	crudo TK-01	crudo TK-02	Estación	de gas Est.	Estación	gas inyección	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Pozo a 950 pies	Experimental
Unidades	("H2O)	("H2O)	(Psig)	(°F)	(Mscfd)	(Psig)	(BPD)	(gr/cc)	(°F)	(Psig)	(Psig)	
Promedio	197,16	110,18	1337,45	94,33	142,44	890,08	1598,31	0,906	98,73	584,21	29,58	
Mínimo	197,15	110,17	1336,53	92,54	115,83	687,33	1587,17	0,906	98,31	578,51	29,15	6
Máximo	197,17	110,19	1337,81	96,67	160,21	1014,59	1610,90	0,906	99,20	591,21	29,78	õ
Desv. Estand	0,01	0,01	0,41	1,23	19,33	92,81	5,22	0,000	0,25	2,87	0,14	
Promedio	197,13	110,22	1334,62	101,14	138,73	918,24	1710,25	0,905	101,05	587,43	33,95	
Mínimo	197,12	110,20	1330,40	98,17	121,35	754,99	1637,38	0,905	99,48	576,98	33,28	6
Máximo	197,14	110,23	1337,58	102,45	160,96	1049,41	1737,00	0,906	102,20	591,17	35,52	-
Desv. Estand	0,01	0,01	2,32	1,35	17,85	83,00	36, 12	0,000	0,90	2,48	0,61	
Promedio	197,11	110,25	1325,43	101,52	153,03	477,10	1726,25	0,905	101,89	588,08	37,73	
Mínimo	197,10	110,24	1321,11	101,07	131,07	297,36	1697,00	0,904	101,60	570,10	36,33	6
Máximo	197,12	110,27	1329,75	101,98	163,82	706,48	1735,92	0,905	102,20	590,90	38,34	2
Desv. Estand	0,01	0,01	2,51	0,27	13,24	115,04	5,50	0,000	0,20	2,97	0,48	
Promedio	197,09	110,29	1317,37	101,02	173,26	520,58	1723,18	0,905	101,44	587,47	41,09	
Mínimo	197,08	110,27	1315,27	100,50	133,28	148,51	1716,45	0,905	101,00	582,83	40,03	6
Máximo	197,10	110,31	1320,31	102,23	402,86	848,81	1726,80	0,905	101,80	590,08	42,72	8
Desv. Estand	0,01	0,01	1,34	0,47	89,86	207,84	1,87	0,000	0,26	1,25	0,60	
Promedio	197,07	110,32	1314,37	102,00	197,28	556,12	1722,13	0,904	102,95	584,16	45,12	
Mínimo	197,06	110,31	1314,30	101,63	194,07	231,78	1710,58	0,904	101,86	575,19	44,55	6
Máximo	197,08	110,33	1314,87	102,36	199,32	846,48	1776,92	0,905	105,08	588,22	45,90	4
Desv. Estand	0,00	0,01	0,13	0,21	1,45	174,85	14,30	0,000	0,77	2,98	0,39	

Tag Fecha 26/8/2002 Unidades Promedio	PIT-109 Presión en el cabezal pozo (Psig) 20,03	FY-660A Flujo de gas Succión Pozo Mscfd 0,19	PT-660 Presió de gas Succión Pozo (Psig) 34,81	PT-665 Presión entr. Jet N°1 (Psig) 18,21	TT-665 Temperatura entr. Jet N°1 (°F) 100,34	PT-670 Presión Jet N°1 Fluido motriz (Psig) 560,59	TT-670 Temp. Jet N°1 Fluido motriz (°F) 110,84	PT-675 Presión salida Jet N° 1 (Psig) 45,09	TT-675 Temperatura salida Jet N°1 (°F) 109,50	PT-212 Presión en el Separador (Psig) 1,41	▲P PT-675 - PT-665 (Psig) 26,89	Punto Experimental
Mínimo	19,21	0,14	34,13	17,60	98,15	554,12	110,25	41,16	109,50	1,33	22,52	60
Máximo	20,28	0,47	35,51	18,71	103,09	568,12	111,43	48,10	109,50	1,45	30,49	
<i>Desv. Estand</i>	<i>0,27</i>	<i>0,06</i>	<i>0,3</i> 5	<i>0,3</i> 9	<i>1,4</i> 5	3,20	<i>0,34</i>	<i>1,04</i>	<i>0,00</i>	<i>0,03</i>	1,24	
Promedio	25,26	0,27	40,00	23,09	108,10	562,92	111,91	49,75	109,50	1,49	26,66	61
Mínimo	24,54	0,16	38,46	22,05	104,86	549,99	111,75	45,72	109,50	1,46	21,17	
Máximo	27,64	2,32	42,43	25,39	109,37	568,92	112,07	53,79	109,50	1,52	30,78	
Desv. Estand	<i>0</i> ,92	<i>0,34</i>	1,07	1,01	<i>1,39</i>	2,75	<i>0,0</i> 9	1,77	<i>0,00</i>	0,02	2,52	
Promedio	30,46	1,31	44,89	27,59	108,36	563,64	112,26	52,81	109,50	1,55	25,22	62
Mínimo	28,69	0,21	42,98	25,81	107,86	547,47	112,10	48,65	109,50	1,52	20,74	
Máximo	31,05	6,63	46,26	28,39	108,83	566,16	112,42	55,85	109,50	1,58	28,15	
Desv. Estand	<i>0,54</i>	<i>1,38</i>	<i>0,71</i>	<i>0,56</i>	<i>0,28</i>	2,18	<i>0,0</i> 9	1,29	<i>0,00</i>	0,02	1,38	
Promedio	34,70	9,51	49,08	31,22	107,61	562,72	112,80	55,01	109,50	1,62	23,79	63
Mínimo	33,42	0,34	47,66	30,00	107,02	548,68	112,45	50,20	109,50	1,59	19,36	
Máximo	37,35	21,30	51,63	33,06	108,81	565,90	113,72	60,09	109,51	1,65	27,89	
Desv. Estand	<i>0</i> ,93	5,60	<i>0,98</i>	<i>0,73</i>	<i>0,4</i> 6	1,99	<i>0,38</i>	2,10	<i>0,00</i>	<i>0,02</i>	1,86	
Promedio	40,26	18,67	54,73	35,83	108,81	560,55	115,27	56,83	109,51	1,67	21,01	64
Mínimo	39,31	0,23	53,22	34,53	108,46	553,13	113,98	52,28	109,51	1,65	15,37	
Máximo	40,98	43,03	56,13	38,09	109,17	565,60	118,67	61,44	109,51	1,70	26,38	
Desv. Estand	<i>0,45</i>	12,30	<i>0,70</i>	<i>0,80</i>	<i>0,21</i>	2,73	<i>1,06</i>	2,29	<i>0,00</i>	<i>0,01</i>	2,62	

<u>Fluido Impulsor: Crudo, Fluido succión: Gas</u> <u>R = 0,132</u>, \mathbf{Q}_{iny} = variable, \mathbf{P}_{pozo} = P_{atm} , Vortex = 2" Jet 1 y 2 juntos

Tag	LT-610A	FT-521 V	DT-521	TT-521	PT-521	FT-660	FY-660	FY-660A	PT-660	PT-665	TT-665	PT-670	TT-670	
Fecha	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Presión crudo	Flujo de gas	Flujo de gas	Flujo de gas	Presió de gas	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Punto
30/09/2002	crudo TK-01	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión Pozo	Succión Pozo	Succión Pozo	Succión Pozo	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	ACFM	(Scfd)	(Mscfd)	(Psig)	(Psig)	(°F)	(Psig)	(°F)	
Promedio	181,18	597,38	0,9103	217,80	103,69	0,64	24,15	0,02	30,16	17,90	107,51	22,73	106,39	
Mínimo	181,17	597,00	0,9099	216,83	96,93	0,60	17,98	0,02	30,10	14,56	106,20	18,86	105,11	6
Máximo	181,19	608,60	0,9106	219,00	106,98	0,69	27,97	0,03	30,18	19,31	109,26	23,52	108,16	5
Desv. Estand	0,01	1,34	0,0001	0,61	2,03	0,02	2,56	0,00	0,02	1,20	0,91	1,40	0,91	
Promedio	181,22	1003,53	0,9100	220,97	161,89	0,50	17,65	0,02	30,11	15,67	110,95	33,97	109,89	
Mínimo	181,21	1003,00	0,9099	220,60	160,30	0,46	12,52	0,01	30,09	14,61	110,34	32,59	109,23	6
Máximo	181,23	1005,00	0,9102	221,40	163,67	0,54	22,57	0,02	30,12	16,73	111,56	35,34	110,54	6
Desv. Estand	0,01	0,60	0,0001	0,22	1,10	0,02	1,75	0,00	0,01	0,63	0,36	0,81	0,39	
Promedio	181,26	1394,03	0,9105	222,20	297,47	0,35	21,59	0,02	29,86	14,15	112,47	43,87	112,20	
Mínimo	181,24	1392,00	0,9102	221,63	277,68	0,27	17,12	0,02	29,70	14,09	112,00	43,04	111,01	
Máximo	181,28	1400,43	0,9108	222,80	302,29	0,44	27,51	0,03	30,03	14,22	112,65	44,83	112,90	7
Desv. Estand	0,01	2,07	0,0001	0,28	7,67	0,05	3,19	0,00	0,11	0,04	0,14	0,55	0,58	
Promedio	181,30	1790,69	0,9096	229,14	423,02	0,10	28,29	0,03	28,22	12,73	110,10	69,93	112,04	
Mínimo	181,29	1780,33	0,9094	228,80	421,32	0,01	16,38	0,01	15,62	7,00	109,68	63,53	111,54	
Máximo	181,31	1814,20	0,9099	229,79	426,44	0,75	111,08	0,25	29,50	13,28	110,65	71,58	112,40	œ
Desv. Estand	0,01	6,00	0,0001	0,23	1,11	0,08	15,03	0,03	3,32	1,66	0,27	1,95	0,28	
Promedio	181,28	2019,65	0,9110	224,25	536,79	0,08	28,71	0,03	28,80	13,13	109,01	82,86	110,99	
Mínimo	181,27	2013,33	0,9108	223,60	523,62	0,06	22,40	0,03	28,61	12,98	108,78	81,52	110,24	
Máximo	181,28	2022,00	0,9113	224,95	543,95	0,11	53,49	0,11	28,93	13,28	109,27	85,23	111,18	ő
Desv. Estand	0,00	1,63	0,0001	0,45	7,26	0,02	6,20	0,02	0,10	0,09	0,15	1,28	0,25	

Tag Fecha 30/09/2002 Unidades	PT-675 Presión salida Jet N° 1 (Psig)	TT-675 Temperatura salida Jet N°1 (°F)	FT-680 LIQ Flujo Motriz Jet N°2 (BPD)	PT-680 Presión Jet N°2 Fluido motriz (Psig)	TT-680 Temp. Jet N°2 Fluido motriz (°F)	PT-685 Presión salida Jet N°2 (Psig)	TT-685 Temperatura salida Jet N°2 (°F)	PT-Succ1 Presión Fondo Pozo a 950 pies (Psig)	PIT-109 Presión en el cabezal pozo (Psig)	ΔP ₁ PT-675 - PT-665 (Psig)	ΔP2 PT-685 - PT-675 (Psig)	Δ P _{total} PT-685 - PT-665 (Psig)	Punto Experimental
Promedio	32,67	102,32	355,17	90,32	93,34	21,37	116,72	68,40	15,48	14,77	-11,30	3,47	65
Minimo	29,49	101,41	345,20	84,11	92,73	15,37	115,80	68,35	15,38	14,93	-14,13	0,80	
Máximo	34,18	103,22	371,10	91,23	94,78	22,47	118,66	68,45	15,57	14,86	-11,71	3,16	
Desv. Estand	1,23	<i>0</i> ,53	<i>4</i> ,64	<i>1,81</i>	<i>0,54</i>	1,74	<i>0,8</i> 9	<i>0,0</i> 3	<i>0,0</i> 5	<i>0,0</i> 3	<i>0,51</i>	<i>0,54</i>	
Promedio	31,77	102,70	515,69	142,89	94,21	22,67	117,46	68,22	15,16	16,10	-9,10	7,00	66
Minimo	30,51	102,16	507,98	141,95	93,97	21,51	117,02	68,17	15,08	15,90	-9,00	6,90	
Máximo	33,03	103,24	520,82	144,01	94,42	23,83	117,90	68,26	15,24	16,30	-9,21	7,09	
Desv. Estand	<i>0,74</i>	<i>0,3</i> 2	3,39	<i>0</i> ,62	<i>0,12</i>	<i>0</i> ,68	<i>0,26</i>	<i>0,03</i>	<i>0,05</i>	<i>0,1</i> 2	-0,06	<i>0,06</i>	
Promedio	29,48	104,44	763,40	271,10	94,36	29,28	118,52	68,03	14,84	15,33	-0,20	15,13	67
Minimo	29,45	103,63	746,21	251,68	94,28	28,39	118,14	67,92	14,65	15,37	-1,06	14,30	
Máximo	29,59	105,07	775,83	275,90	94,43	30,17	118,90	68,14	15,02	15,37	0,58	15,95	
Desv. Estand	<i>0,0</i> 2	<i>0,3</i> 9	5,87	7,52	<i>0,04</i>	<i>0,5</i> 2	<i>0,</i> 22	<i>0,06</i>	<i>0,11</i>	-0,02	<i>0,50</i>	<i>0,48</i>	
Promedio	31,07	106,08	888,25	389,95	97,82	37,99	120,75	67,70	14,26	18,33	6,92	25,25	68
Mínimo	29,22	105,49	875,92	388,07	97,78	37,61	120,54	67,63	14,16	22,22	8,39	30,61	
Máximo	32,16	107,14	905,46	391,99	97,87	39,04	120,96	67,76	14,37	18,89	6,88	25,77	
Desv. Estand	0,62	<i>0,43</i>	6,58	<i>0,84</i>	<i>0,0</i> 2	<i>0,26</i>	<i>0,1</i> 2	<i>0,04</i>	<i>0,06</i>	-1,03	-0,36	-1,40	
Promedio	30,73	103,78	1023,99	497,00	94,99	45,30	119,86	67,53	13,97	17,60	14,58	32,17	69
Minimo	28,86	103,41	1000,83	483,32	94,77	44,95	119,56	67,48	13,90	15,87	16,09	31,96	
Máximo	32,75	104,34	1038,37	503,80	95,30	45,60	120,16	67,57	14,04	19,47	12,84	32,32	
Desv. Estand	1,06	<i>0,</i> 25	<i>11,21</i>	7,21	<i>0,16</i>	<i>0,19</i>	<i>0,18</i>	<i>0,02</i>	<i>0,04</i>	<i>0,9</i> 8	-0,87	<i>0,10</i>	
Jet de 3 1/2" <u>Fluido Impulsor</u>: Crudo, Fluido succión: Gas <u>R = 0,132</u>, $Q_{iny} = 1700$ Mscfd, $P_{pozo} = variable$, Vortex = 2"

Tag	LT-610A	FT-521 V	DT-521	TT-521	PT-521	FT-660	FY-660	FY-660A	
Fecha	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Presión crudo	Flujo de gas	Flujo de gas	Flujo de gas	Punto
10/03/2002	crudo TK-01	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión Pozo	Succión Pozo	Succión Pozo	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(ACFM)	(Scfd)	(Mscfd)	
Promedio	181,12	2315,84	0,9131	211,80	577,37	6,90	17463,20	17,42	
Mínimo	181,12	2230,03	0,9125	211,60	560,73	5,47	13823,77	13,33	7
Máximo	181,12	2392,00	0,9139	211,98	594,00	7,76	19191,76	19,41	0
Desv. Estand	0,00	51,15	0,0004	0,11	10,01	0,86	1961,41	2,20	
Promedio	181,13	1902,28	0,9118	212,14	440,38	3,12	7754,12	8,68	
Mínimo	181,13	1882,00	0,9117	211,60	428,15	1,86	5588,82	5,54	7
Máximo	181,13	1991,13	0,9121	212,40	472,04	5,26	12062,06	14,42	-
Desv. Estand	0,00	17,57	0,0001	0,22	8,92	0,70	1496,01	1,98	
Promedio	176,79	1485,34	0,9958	211,82	384,38	0,79	255,00	0,32	
Mínimo	176,78	1481,27	0,9954	210,85	383,01	0,76	44,32	0,04	7
Máximo	176,80	1490,00	0,9960	212,20	386,88	0,82	1201,95	1,23	2
Desv. Estand	0,01	2,95	0,0002	0,37	0,99	0,02	252,50	0,30	

Tag	PT-660	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP	
Fecha	Presió de gas	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
10/03/2002	Succión Pozo	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	
Promedio	26,77	10,37	90,81	534,76	89,70	58,97	96,92	48,60	
Mínimo	26,05	9,51	90,33	517,02	89,50	54,68	96,66	45,07	7
Máximo	27,65	11,24	91,30	550,76	89,89	61,68	96,96	50,50	0
Desv. Estand	0,52	0,53	0,29	10,90	0,12	1,85	0,07	1,40	
Promedio	26,44	9,62	89,36	407,92	89,11	45,55	96,92	35,93	
Mínimo	26,22	9,56	88,87	373,01	88,91	43,50	96,90	33,93	7
Máximo	26,81	9,68	89,84	440,18	89,31	48,89	96,93	39,33	-
Desv. Estand	0,15	0,03	0,29	11,10	0,12	0,83	0,01	0,85	
Promedio	15,91	0,48	89,70	369,48	86,70	35,85	95,29	34,94	
Mínimo	15,87	0,30	89,39	368,11	86,67	35,65	94,65	34,72	7
Máximo	15,93	0,65	90,00	372,23	86,72	36,05	95,93	35,17	2
Desv. Estand	0,02	0,11	0,18	0,97	0,02	0,12	0,38	0,13	

A-8.2.1.2. Gas de Instrumento:

Fluido Impulsor: Crudo, Fluido succión: Gas

<u>**R**</u> = 0,132, **Q**_{iny} = 1100 BPD, **P**_{instrumento} = P_{atm}, Vortex = 2"

Tag Fecha 30/09/2002 Unidades	LT-510 Nivel Tanque crudo TK-04 ("H2O)	FT-521 V Flujo crudo Motriz (bomba) (BPD)	DT-521 Densidad crudo Motriz (bomba)	TT-521 Temp. crudo Motriz (bomba) (°F)	PT-521 Presión crudo desc. bomba (Psig)	FT-660 Flujo de gas Succión Pozo	FY-660 Flujo de gas Succión Pozo	FY-660A Flujo de gas Succión Pozo	PT-660 Presió de gas Succión Pozo (Psig)	PT-665 Presión entr. Jet N°1 (Psig)	TT-665 Temperatura entr. Jet N°1 (°F)	Punto Experimental
Promedio	181,18	1041,33	0,9099	230,22	465,58	0,62	1241,56	1,11	23,13	0,69	114,81	73
Mínimo	181,17	1035,00	0,9097	229,80	457,23	0,12	158,25	0,30	23,02	0,67	114,41	
Máximo	181,18	1044,00	0,9100	230,80	467,89	1,48	2588,67	2,68	23,25	0,72	115,18	
<i>Desv. Estand</i>	<i>0,00</i>	2,58	<i>0,0001</i>	0,28	2,59	<i>0,28</i>	523,35	<i>0,54</i>	0,06	0,01	<i>0,22</i>	
Promedio	181,16	1220,88	0,9101	233,78	574,46	6,54	12152,26	12,16	21,20	0,74	114,87	74
Mínimo	181,16	1216,07	0,9094	232,40	571,62	6,33	11877,66	11,88	20,85	0,72	114,66	
Máximo	181,17	1227,43	0,9105	237,03	576,30	6,75	12408,75	12,44	21,40	0,75	115,07	
<i>Desv. Estand</i>	<i>0,00</i>	2,29	<i>0,0002</i>	1,27	<i>1,05</i>	<i>0,12</i>	<i>14</i> 0,70	<i>0,13</i>	<i>0,15</i>	<i>0,01</i>	<i>0,12</i>	
Promedio	181,17	1288,53	0,9127	225,41	562,79	10,93	37255,78	37,23	38,24	0,78	113,89	75
Mínimo	181,15	1236,80	0,9117	222,60	545,83	8,47	26332,27	27,35	32,53	0,60	112,83	
Máximo	181,19	1333,42	0,9143	227,90	575,04	12,09	39205,30	38,71	43,75	0,88	114,65	
<i>Desv. Estand</i>	<i>0,01</i>	37,57	<i>0,0007</i>	1,51	10,49	<i>0,90</i>	1552,75	1,39	3,04	<i>0,09</i>	<i>0</i> ,39	

Tag Fecha 30/09/2002 Unidades	PT-670 Presión Jet N°1 Fluido motriz (Psig)	TT-670 Temp. Jet N°1 Fluido motriz (°F)	PT-675 Presión salida Jet N°1 (Psig)	TT-675 Temperatura salida Jet N°1 (°F)	FT-680 LIQ Flujo Motriz Jet N°2 (BPD)	PT-680 Presión Jet N°2 Fluido motriz (Psig)	TT-680 Temp. Jet N°2 Fluido motriz (°F)	PT-685 Presión salida Jet N°2 (Psig)	TT-685 Temperatura salida Jet N°2 (°F)	PT-010 Presión de gas Estación (Psig)	PT-012 Presión de gas inyección (Psig)	Punto Experimental
Promedio	5,46	115,37	22,03	109,05	974,08	440,48	98,19	27,43	122,23	1449,83	57,75	73
Mínimo	5,38	114,90	21,92	108,70	958,83	433,25	98,10	26,45	121,64	1447,52	55,51	
Máximo	5,54	116,24	22,13	109,37	985,31	442,42	98,54	28,72	122,94	1452,55	59,75	
<i>Desv. Estand</i>	<i>0,05</i>	<i>0,39</i>	<i>0,0</i> 6	<i>0,19</i>	<i>5,43</i>	2,38	<i>0,07</i>	0,44	<i>0</i> ,37	<i>1,37</i>	1,24	
Promedio	3,44	114,62	19,88	108,36	1158,67	546,00	100,46	30,48	124,67	1445,41	53,02	74
Mínimo	3,15	114,43	19,60	108,14	1062,06	543,04	99,49	29,70	123,21	1443,72	51,45	
Máximo	3,73	114,81	20,16	108,59	1170,71	547,79	103,12	31,64	126,56	1446,43	54,66	
<i>Desv. Estand</i>	<i>0,17</i>	<i>0,11</i>	<i>0,1</i> 7	<i>0,1</i> 3	<i>14,4</i> 9	1,19	<i>0,9</i> 9	<i>0,4</i> 3	<i>1,07</i>	<i>0,</i> 83	<i>0,9</i> 5	
Promedio	20,10	113,55	36,61	108,47	1226,46	532,77	96,01	38,20	120,15	1412,95	33,46	75
Mínimo	14,54	112,93	31,32	105,98	1169,18	515,03	94,57	33,88	118,94	1405,01	25,53	
Máximo	24,67	114,60	41,08	109,39	1286,51	544,36	97,18	41,47	121,35	1424,00	41,03	
<i>Desv. Estand</i>	2,77	<i>0,50</i>	2,95	<i>0,82</i>	<i>37,90</i>	9,68	<i>0,7</i> 9	1,21	<i>0,70</i>	6,32	<i>4</i> ,54	

<u>Fluido Impulsor: Crudo, Fluido succión: Gas</u> <u>R = 0,132</u>, $\mathbf{Q}_{iny} = 1100 \text{ BPD}$, $\mathbf{P}_{instrmento} = P_{atm}$, Vortex = 2"

Тад	LT-510	FT-521 V	DT-521	TT-521	PT-521	FT-660	FY-660	FY-660A	PT-660	PT-665	TT-665	
Fecha	Nivel Tanque	Flujo crudo	Densidad crudo	Temp. crudo	Presión crudo	Flujo de gas	Flujo de gas	Flujo de gas	Presió de gas	Presión entr.	Temperatura	Punto
30/09/2002	crudo TK-04	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión Pozo	Succión Pozo	Succión Pozo	Succión Pozo	Jet N° 1	entr. Jet N°1	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(ACFM)	(Scfd)	(Mscfd)	(Psig)	(Psig)	(°F)	
Promedio	181,19	1985,68	0,9107	231,92	462,71	2,17	4589,36	4,09	22,76	0,63	112,52	
Mínimo	181,19	1901,00	0,9100	230,20	428,91	0,32	16,46	0,01	22,08	0,62	111,63	z
Máximo	181,19	2022,25	0,9131	235,41	546,18	4,36	9423,75	8,89	23,82	0,65	113,40	6
Desv. Estand	0,00	44,71	0,0006	1,51	43,38	1,23	2718,60	2,55	0,53	0,01	0,52	
Promedio	181,20	2315,47	0,9103	231,07	567,23	4,70	9299,92	9,61	21,85	0,59	106,44	
Mínimo	181,20	2300,00	0,9100	230,62	565,45	0,95	5011,82	3,66	20,88	0,57	106,17	7
Máximo	181,21	2333,00	0,9109	231,60	568,60	6,26	12043,97	12,08	22,49	0,60	107,59	7
Desv. Estand	0,00	11,43	0,0002	0,29	0,58	1, 11	2002,75	1,95	0,42	0,01	0,31	

Tag Fecha 30/09/2002 Unidades	PT-670 Presión Jet N°1 Fluido motriz (Psig)	TT-670 Temp. Jet N°1 Fluido motriz (°F)	PT-675 Presión salida Jet N°1 (Psig)	TT-675 Temperatura salida Jet N°1 (°F)	FT-680 LIQ Flujo Motriz Jet N°2 (BPD)	PT-680 Presión Jet N°2 Fluido motriz (Psig)	TT-680 Temp. Jet N°2 Fluido motriz (°F)	PT-685 Presión salida Jet N°2 (Psig)	TT-685 Temperatura salida Jet N°2 (°F)	PT-010 Presión de gas Estación (Psig)	PT-012 Presión de gas inyección (Psig)	Punto Experimental
Promedio	368,33	116,49	39,52	107,30	928,45	425,87	98,84	45,46	122,57	1459,26	62,26	76
Mínimo	240,72	115,69	26,83	105,86	879,10	392,58	97,91	42,81	121,30	1455,51	61,21	
Máximo	411,34	117,18	45,09	109,44	1050,28	510,96	101,24	47,74	124,33	1461,31	63,31	
<i>Desv. Estand</i>	68,60	<i>0,4</i> 6	<i>6,4</i> 6	<i>1,1</i> 2	62,87	<i>44,70</i>	<i>0</i> ,93	1,35	<i>0,99</i>	<i>1,55</i>	<i>0,56</i>	
Promedio	528,14	112,78	42,54	105,54	1046,15	523,77	98,24	54,18	121,03	1443,40	65,10	π
Mínimo	527,50	111,35	38,37	105,39	388,12	522,83	98,15	51,38	120,91	1437,70	64,35	
Máximo	529,02	114,20	55,74	105,68	1079,69	524,18	98,34	62,34	121,16	1451,05	65,67	
<i>Desv. Estand</i>	<i>0,43</i>	<i>0,84</i>	2,90	<i>0,09</i>	92,17	<i>0,41</i>	<i>0,0</i> 6	<i>1,90</i>	<i>0,07</i>	3,78	<i>0,43</i>	

Resultados Proceso 2 (compresión de aire con agua)

A-8.2.2. Resultados Proceso 2 (compresión de aire con agua)

Fluido Impulsor: Agua, Fluido succión: Aire	
R = 0,132, Q _{iny} = var, P _{atmosférica} = 14,7 Psi, Jet 2, Vortex 2"	,

Tag	LT-510	FT-521 V	DT-521	TT-521	PT-521	FY-660	FY-660A	PT-660	PT-665	TT-665	
Fecha	Nivel Tanque	Flujo agua	Densidad agua	Temp. agua	Presión agua	Flujo de aire	Flujo de aire	Presió de aire	Presión entr.	Temperatura	Punto
18/09/2002	crudo TK-04	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	
Promedio	186,4	299,6	0,9946	215,3	39,7	78,9	0,1	16,3	9,0	99,0	
Mínimo	186,3	298,0	0,9941	211,8	39,4	67,0	0,1	16,3	8,1	97,3	7
Máximo	186,4	301,0	0,9951	219,3	40,4	79,8	0,1	16,3	9,9	100,7	8
Desv. Estand	0,0	0,9	0,0003	2,3	0,3	2,7	0,0	0,0	0,5	1,0	
Promedio	186,5	500,7	0,9953	210,6	86,0	56,8	0,1	16,3	4,1	96,4	
Mínimo	186,5	499,0	0,9951	210,2	85,6	54,9	0,1	16,3	3,7	95,7	7
Máximo	186,5	501,0	0,9956	211,3	86,3	67,5	0,1	16,3	4,5	97,0	9
Desv. Estand	0,0	0,5	0,0001	0,3	0,2	3,6	0,0	0,0	0,2	0,4	
Promedio	186,6	699,8	0,9957	210,1	163,8	55,3	0,1	15,9	-0,9	94,6	
Mínimo	186,5	698,1	0,9955	210,0	163,4	42,0	0,1	15,8	-0,9	93,7	~
Máximo	186,6	700,9	0,9959	210,3	164,4	65,4	0,1	15,9	-0,8	95,5	õ
Desv. Estand	0,0	0,5	0,0001	0,1	0,3	4,2	0,0	0,0	0,0	0,5	
Promedio	186,7	901,9	0,9960	209,9	277,2	76,7	0,1	15,9	-0,9	92,9	
Mínimo	186,6	898,6	0,9959	209,8	276,1	66,5	0,1	15,8	-1,0	92,4	8
Máximo	186,7	903,9	0,9962	210,2	279,5	79,1	0,1	15,9	-0,9	93,5	-
Desv. Estand	0,0	1,1	0,0000	0,1	1,0	4,0	0,0	0,0	0,0	0,3	
Promedio	186,8	1099,7	0,9964	210,4	419,7	69,6	0,1	16,0	-1,0	91,6	
Mínimo	186,7	1096,3	0,9957	210,1	413,5	55,6	0,1	15,9	-1,1	90,8	~
Máximo	186,8	1102,0	0,9966	210,6	422,6	79,6	0,1	16,0	-1,0	92,3	2
Desv. Estand	0,0	1,0	0,0001	0,1	2,0	5,4	0,0	0,0	0,0	0,4	
Promedio	187,0	1288,3	0,9967	211,5	555,9	123,5	0,1	16,0	-1,0	88,5	
Mínimo	187,0	1279,6	0,9965	211,4	546,3	117,2	0,1	16,0	-1,1	88,5	
Máximo	187,1	1302,7	0,9969	211,8	561,6	130,0	0,1	16,0	-0,9	88,6	ü
Desv. Estand	0,0	6,4	0,0001	0,1	5,0	4,9	0,0	0,0	0,0	0,0	

Tag	PT-670	TT-670	PT-675	TT-675	FT-680 LIQ	PT-680	TT-680	PT-685	TT-685		
Fecha	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	Flujo Motriz	Presión Jet N°2	Temp. Jet N°2	Presión salida	Temperatura	P1-665 -	Punto
18/09/2002	Fluido motriz	Fluido motriz	Jet N-1	salida Jet N-1	Jet N-2	Fluido motriz	Fluido motriz	Jet N ⁻ ∠	salida Jet N-2	(Doin)	Experimental
Unidades	(Psig)	(°F)	(Psia)	(°F)	(BPD)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	ļ
Promedio	7,6	99,1	38,3	97,7	245,9	31,9	92,0	11,9	114,6	-11,3	1
Mínimo	6,8	96,8	37,5	96,5	224,7	31,4	90,1	11,3	113,6	-11,4	7
Máximo	8,4	101,4	39,0	99,0	263,7	32,4	94,2	12,6	115,5	-11,2	œ
Desv. Estand	0,4	1,3	0,4	0,7	10,1	0,3	1,2	0,4	0,6	0, 1	
Promedio	2,3	95,5	33,2	95,8	465,4	76,4	89,3	12,3	113,0	-5,9	
Mínimo	1,7	94,7	32,9	95,3	454,5	76,2	89,0	11,8	112,6	-6,6	7
Máximo	2,9	96,4	33,5	96,3	472,4	76,6	89,8	12,6	113,4	-5,8	9
Desv. Estand	0,4	0,5	0,2	0,3	4,4	0,1	0,2	0,2	0,3	0,2	
Promedio	-2,2	93,9	28,3	94,5	670,5	152,5	89,0	16,0	112,0	2,8	
Mínimo	-2,2	93,3	28,3	93,9	662,3	152,2	88,9	14,9	111,9	1,7	~
Máximo	-2,2	94,6	28,3	95,2	681,5	152,8	89,0	16,3	112,4	3,0	ö
Desv. Estand	0,0	0,4	0,0	0,4	5,0	0,2	0,0	0,3	0,2	0,3	
Promedio	-2,1	92,6	28,2	93,1	888,4	263,3	88,9	26,4	112,1	13,2	
Mínimo	-2,2	92,1	28,2	92,6	874,9	262,5	88,9	21,6	112,0	8,4	
Máximo	-2,0	93,2	28,2	93,7	901,4	265,6	88,9	27,7	112,1	14,6	
Desv. Estand	0,1	0,3	0,0	0,3	6,4	0,8	0,0	1,9	0,0	1,9	
Promedio	-1,8	91,2	28,2	91,7	1090,5	402,5	89,2	29,9	112,3	16,8	
Mínimo	-2,0	90,4	28,1	90,8	1052,0	395,5	88,9	28,1	112,1	15,0	~
Máximo	-1,7	92,0	28,2	92,5	1123,1	404,6	89,3	32,7	112,4	19,5	Ň
Desv. Estand	0,1	0,5	0,0	0,5	16,0	1,9	0,1	0,9	0,1	0,9	
Promedio	-2,4	88,3	28,1	88,5	1264,6	535,3	89,9	34,8	113,0	21,7	
Mínimo	-2,4	88,1	28,1	87,5	1233,1	525,7	89,8	32,3	112,9	19,3	~
Máximo	-2,3	88,5	28,1	89,4	1286,8	541,5	89,9	36,7	113,1	23,6	ដ
Desv. Estand	0,0	0,1	0,0	0,6	10,7	5,0	0,0	0,9	0,1	0,9	1

b									•		•
Тад	LT-510	FT-521 V	DT-521	TT-521	PT-521	FY-660	FY-660A	PT-660	PT-665	TT-665	
Fecha	Nivel Tanque	Flujo agua	Densidad agua	Temp. agua	Presión agua	Flujo de aire	Flujo de aire	Presió de aire	Presión entr.	Temperatura	Punto
19/09/2002	crudo TK-04	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	
Promedio	185,9	299,3	0,9955	209,7	51,7	45674,6	45,7	16,1	19,2	90,7	
Mínimo	185,9	284,2	0,9952	209,2	49,1	45609,2	45,6	16,1	18,7	90,4	œ
Máximo	185,9	301,0	0,9956	210,0	52,0	45715,3	45,7	16,1	19,6	91,0	-
Desv. Estand	0,0	2,9	0,0001	0,2	0,5	26,3	0,0	0,0	0,3	0,2	
Promedio	185,9	504,6	0,9954	210,3	101,9	45555,0	45,6	16,1	14,5	91,4	
Mínimo	185,9	500,1	0,9951	209,8	100,4	45454,3	45,5	16,1	14,3	91,1	
Máximo	186,0	509,0	0,9955	210,8	104,2	45595,9	45,6	16,1	14,7	91,6	U1
Desv. Estand	0,0	1,5	0,0001	0,3	0,5	40,9	0,0	0,0	0,1	0,2	
Promedio	186,0	707,4	0,9956	211,4	184,8	45363,8	45,4	16,0	6,9	91,9	
Mínimo	186,0	701,1	0,9955	211,0	181,0	45085,9	45,1	15,9	4,8	91,7	~
Máximo	186,1	711,8	0,9957	211,8	186,7	45457,2	45,5	16,1	7,3	92,2	6
Desv. Estand	0,0	2,8	0,0001	0,2	1,6	97,9	0,1	0,0	0,5	0,1	
Promedio	186,1	910,1	0,9960	211,9	305,7	44933,8	45,0	15,9	-0,3	92,5	
Mínimo	186,1	902,0	0,9958	211,6	299,6	44341,0	44,9	15,6	-0,4	92,3	~
Máximo	186,2	918,0	0,9961	212,0	311,9	45107,8	45,1	15,9	-0,1	92,8	7
Desv. Estand	0,0	5,4	0,0001	0,1	4,0	171,7	0,0	0,1	0,1	0,2	
Promedio	186,2	1103,0	0,9965	212,2	453,1	45047,6	44,9	15,9	-0,5	93,2	
Mínimo	186,2	1098,1	0,9963	212,0	448,9	44756,0	44,2	15,7	-0,6	92,9	~
Máximo	186,3	1108,6	0,9966	212,8	457,5	47403,4	46,0	15,9	-0,4	93,8	œ
Desv. Estand	0,0	2,8	0,0001	0,2	2,3	448,3	0,3	0,0	0,1	0,2	
Promedio	186,4	1219,7	0,9961	216,0	558,7	44463,0	44,5	15,8	-0,8	97,1	
Mínimo	186,3	1188,6	0,9930	213,0	534,0	43876,5	43,9	15,7	-1,0	94,0	~
Máximo	186,4	1247,9	0,9968	231,9	575,6	44820,3	45,3	15,9	-0,6	100,4	ő
Desv. Estand	0,1	8,9	0,0009	4,7	5,9	259,0	0,3	0,0	0,1	1,8	

Fluido Impulsor: Agua, Fluido succión: Aire	
R = 0,132, Q _{iny} = var, P _{atmosférica} = 14,7 Psi, Je	t 2, estos puntos se repiten con otra presión

Tag Fecha 19/09/2002 Unidades	PT-670 Presión Jet N°1 Fluido motriz (Psig)	TT-670 Temp. Jet N°1 Fluido motriz (°F)	PT-675 Presión salida Jet N°1 (Psia)	TT-675 Temperatura salida Jet N°1 (°F)	FT-680 LIQ Flujo Motriz Jet N°2 (BPD)	PT-680 Presión Jet N°2 Fluido motriz (Psig)	TT-680 Temp. Jet N°2 Fluido motriz (°F)	PT-685 Presión salida Jet N°2 (Psig)	TT-685 Temperatura salida Jet N°2 (°F)	ΔP2 PT-685 - PT-675 (Psig)	Punto Experimental
Promedio Mínimo Máximo <i>Desv. Estand</i>	19,2 19,1 19,3 <i>0,0</i>	88,9 88,4 89,5 <i>0,3</i>	34,6 34,2 35,1 <i>0,2</i>	91,6 91,0 92,2 <i>0</i> ,3	269,6 250,3 286,4 <i>8,4</i>	43,0 40,4 43,4 0,6	88,6 88,4 88,7 <i>0,1</i>	22,1 22,1 22,1 22,1 0,0	110,8 110,4 111,2 <i>0,2</i>	2,5 2,1 2,9 0,2	84
Promedio	14,1	90,1	29,8	92,9	483,3	91,9	89,1	22,7	111,7	7,9	85
Mínimo	13,9	89,6	29,6	92,4	460,3	91,6	88,9	22,3	111,3	7,3	
Máximo	14,3	90,6	30,0	93,4	491,8	93,1	89,4	23,2	112,0	8,6	
<i>Desv. Estand</i>	<i>0,1</i>	<i>0,3</i>	<i>0,1</i>	<i>0</i> ,3	<i>6</i> ,3	<i>0</i> ,2	<i>0,1</i>	0,3	<i>0</i> ,2	<i>0,4</i>	
Promedio	6,8	91,1	22,5	93,9	683,8	172,2	89,7	24,9	112,4	17,4	86
Mínimo	5,1	90,6	20,4	93,5	667,7	168,1	89,5	22,5	112,1	17,1	
Máximo	7,3	91,5	22,9	94,1	695,0	174,4	89,8	25,3	112,7	17,6	
<i>Desv. Estand</i>	<i>0,5</i>	<i>0</i> ,3	<i>0</i> ,6	<i>0,2</i>	<i>6,0</i>	<i>1,7</i>	<i>0,1</i>	<i>0</i> ,7	<i>0</i> ,2	<i>0,1</i>	
Promedio	-0,9	92,2	14,4	94,3	891,1	290,5	89,9	27,1	113,2	27,7	87
Mínimo	-1,0	91,7	14,3	94,2	872,6	283,9	89,9	23,1	112,8	23,8	
Máximo	-0,8	92,7	14,6	94,4	913,3	296,5	90,0	28,4	113,6	28,9	
<i>Desv. Estand</i>	<i>0,1</i>	<i>0</i> ,3	<i>0,1</i>	<i>0,1</i>	<i>9,9</i>	<i>3,8</i>	<i>0,0</i>	0,8	<i>0,2</i>	<i>0,8</i>	
Promedio	-1,1	93,2	14,2	93,9	1075,5	434,4	90,1	29,9	114,0	30,7	88
Mínimo	-1,2	92,8	14,2	93,6	1046,0	425,9	90,0	27,7	113,7	28,4	
Máximo	-1,0	93,6	14,3	94,3	1096,6	439,7	90,6	31,8	114,3	32,6	
<i>Desv. Estand</i>	0,0	<i>0,2</i>	<i>0,1</i>	<i>0,2</i>	<i>9,5</i>	<i>2,9</i>	<i>0,1</i>	<i>0,9</i>	<i>0,2</i>	0,9	
Promedio	-1,4	97,1	13,9	96,6	1200,8	537,7	92,0	32,7	115,9	33,7	89
Mínimo	-1,6	93,7	13,8	93,8	1029,2	511,3	90,6	30,5	114,3	31,8	
Máximo	-1,2	101,3	14,1	101,4	1230,6	553,6	99,5	36,0	120,8	37,3	
Desv. Estand	0,1	<i>2,4</i>	<i>0,1</i>	<i>2</i> ,5	<i>18,7</i>	5,8	<i>2,5</i>	1,0	<i>2,0</i>	1,0	

<u>Fluido Impulsor: Agua, Fluido succión: Aire</u> <u>R = 0,132</u>, \mathbf{Q}_{iny} = var, $\mathbf{P}_{atmosférica}$ = 14,7 Psi, Jet 1 y 2 alineados, Vortex 2"

Tag	LT-510	FT-521 V	DT-521	TT-521	PT-521	FY-660A	PT-660	PT-665	TT-665	PT-670	
Fecha	Nivel Tanque	Flujo agua	Densidad agua	Temp. agua	Presión agua	Flujo de aire	Presió de aire	Presión entr.	Temperatura	Presión Jet N°1	Punto
18/09/2002	crudo TK-04	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión	Succión	Jet N°1	entr. Jet N°1	Fluido motriz	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(Mscfd)	(Psia)	(Psig)	(°F)	(Psig)	
Promedio	180,1	205,5	0,9951	212,9	27,3	0,1	15,9	20,1	95,9	24,7	
Mínimo	180,1	200,1	0,9948	212,4	27,0	0,0	15,9	19,6	95,2	24,2	و
Máximo	180,1	212,9	0,9953	213,2	27,6	0,1	15,9	20,7	96,5	25,2	•
Desv. Estand	0,0	2,8	0,0001	0,2	0,1	0,0	0,0	0,3	0,4	0,3	
Promedio	180,1	404,7	0,9948	213,9	37,0	0,1	15,9	18,3	97,2	33,5	
Mínimo	180,1	403,3	0,9946	213,4	36,9	0,1	15,8	17,9	96,7	32,5	ې
Máximo	180,1	406,9	0,9951	214,4	37,3	0,1	15,9	18,4	97,7	33,6	-
Desv. Estand	0,0	0,5	0,0001	0,3	0,1	0,0	0,0	0,1	0,3	0,2	
Promedio	180,2	600,3	0,9948	214,6	53,6	0,1	15,8	16,7	98,4	49,3	
Mínimo	180,1	594,6	0,9946	214,2	53,1	0,1	15,8	16,6	97,9	48,3	و
Máximo	180,2	602,0	0,9949	215,0	53,9	0,1	15,8	16,8	98,9	49,5	2
Desv. Estand	0,0	1,0	0,0001	0,2	0,1	0,0	0,0	0,1	0,3	0,3	
Promedio	180,2	807,9	0,9949	215,2	78,2	0,1	15,8	12,5	99,6	72,6	
Mínimo	180,2	805,2	0,9948	214,8	77,7	0,1	15,8	11,7	99,1	72,3	ģ
Máximo	180,2	809,0	0,9950	215,4	78,5	0,1	15,8	12,5	100,1	72,9	ω
Desv. Estand	0,0	1,0	0,0000	0,2	0,2	0,0	0,0	0,1	0,3	0,2	
Promedio	180,2	1009,3	0,9948	216,2	109,9	0,1	15,7	8,0	100,7	102,6	
Mínimo	180,2	999,7	0,9945	215,4	108,1	0,1	15,7	7,9	100,2	102,2	ø
Máximo	180,2	1011,0	0,9950	216,8	110,2	0,1	15,8	8,1	101,1	103,0	4
Desv. Estand	0,0	1,6	0,0001	0,5	0,3	0,0	0,0	0,0	0,3	0,2	
Promedio	180,3	1206,3	0,9945	217,4	149,6	0,1	15,7	2,8	101,8	140,4	
Mínimo	180,2	1202,1	0,9943	216,8	148,4	0,1	15,7	2,1	101,4	139,1	ي
Máximo	180,3	1208,8	0,9946	217,8	153,2	0,1	15,7	3,5	102,3	140,9	5
Desv. Estand	0,0	1,9	0,0001	0,3	0,7	0,0	0,0	0,4	0,3	0,6	
Promedio	180,3	1406,7	0,9948	217,6	201,5	0,1	15,7	-0,5	102,8	190,6	
Mínimo	180,3	1396,3	0,9944	217,2	198,7	0,1	15,7	-0,5	102,4	187,4	ø
Máximo	180,3	1412,0	0,9951	218,8	203,3	0,1	15,7	-0,5	103,1	194,8	റ
Desv. Estand	0,0	3,4	0,0001	0,3	1,0	0,0	0,0	0,0	0,2	1,1	
Promedio	180,4	1600,0	0,9948	218,7	259,0	0,1	15,7	-0,4	104,3	245,3	
Mínimo	180,4	1592,8	0,9945	218,1	256,2	0,1	15,7	-0,4	103,9	243,2	<u>ب</u>
Máximo	180,5	1602,0	0,9950	218,8	260,6	0,1	15,7	-0,4	104,8	245,8	7
Desv. Estand	0,0	1,1	0,0001	0,1	0,7	0,0	0,0	0,0	0,3	0,3	
Promedio	180,5	1828,7	0,9951	218,5	338,3	0,1	15,7	-0,5	105,6	321,2	
Mínimo	180,5	1826,3	0,9949	218,2	336,6	0,1	15,7	-0,5	105,1	320,5	ø
Máximo	180,6	1830,8	0,9954	218,8	340,6	0,1	15,7	-0,5	106,1	322,1	8
Desv. Estand	0,0	0,8	0,0001	0,1	0,9	0,0	0,0	0,0	0,3	0,4	
Promedio	180,7	2037,9	0,9954	218,0	420,5	0,1	15,7	-0,6	105,2	400,4	
Mínimo	180,6	2033,1	0,9950	215,4	417,5	0,1	15,7	-0,6	103,4	398,0	و
Máximo	180,7	2041,9	0,9960	219,2	424,3	0,1	15,8	-0,5	106,6	403,6	9
Desv. Estand	0,0	2,5	0,0003	1,2	1,5	0,0	0,0	0,0	1,2	1,5	
Promedio	180,8	2195,8	0,9960	215,9	489,1	0,1	15,8	-0,7	102,2	466,1	
Mínimo	180,7	2186,0	0,9956	215,2	485,6	0,1	15,8	-0,7	101,3	463,0	±
Máximo	180,9	2208,0	0,9963	219,1	494,8	0,1	15,8	0,2	103,3	470,8	ĕ
Desv. Estand	0,0	6,2	0,0001	0,8	2,7	0,0	0,0	0,1	0,6	2,3	

Tag	TT-670	PT-675	TT-675	FT-680 LIQ	PT-680	TT-680	PT-685	TT-685	ΔP1	ΔP ₂	
Fecha	Temp. Jet N°1	Presión salida	Temperatura	Flujo Motriz	Presión Jet N°2	Temp. Jet N°2	Presión salida	Temperatura	PT-675 -	PT-685 -	Punto
18/09/2002	Fluido motriz	Jet N°1	salida Jet N°1	Jet N°2	Fluido motriz	Fluido motriz	Jet N°2	salida Jet N°2	PT-665	PT-675	Experimental
Unidades	(°F)	(Psia)	(°F)	(BPD)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(Psig)	
Promedio	93,4	35,7	94,5	0,0	20,2	90,1	21,2	112,3	0,6	0,5	
Mínimo	92,6	35,2	94,1	0,0	19,9	89,9	21,2	112,0	-0,4	0,0	
Máximo	94,1	36,2	94,8	0,0	20,5	90,4	21,2	112,5	1,2	1,0	90
Desv. Estand	0,4	0,3	0,2	0,0	0,2	0,1	0,0	0,1	0,5	0,3	
Promedio	94.9	34.8	95.2	154.5	28.9	90.8	21.2	112.8	1.4	1.4	
Mínimo	94,3	34,5	94,9	124,0	27,9	90,5	21,2	112,6	1,1	1,1	
Máximo	95.6	35.1	95.5	190.4	29.0	90.9	21.2	113.0	1.7	1.7	91
Desv. Estand	0,4	0,2	0,2	18,3	0,2	0,1	0,0	0,1	0,2	0,2	
Promedio	96.4	34.1	95.9	265.1	44.6	91.1	21.4	113.2	24	22	
Mínimo	95.7	33.8	95.6	252.9	43.6	91.0	21,2	113.0	2.2	1.8	
Máximo	97,1	34,4	96,2	279,7	44,8	91,2	21,5	113,4	2,6	2,7	92
Desv. Estand	0,4	0,2	0,2	7,5	0,2	0,1	0.1	0,1	0,1	0,3	
Promedic	98.5	33.5	96.7	381.1	67.8	91.3	23.3	113.7	60	4.8	
Minimo	97.3	33.2	96.3	369.2	67.6	91.2	23,0	113.5	5.7	4,0	
Máximo	99.8	33.8	97.1	404.4	68.1	91.4	24.1	113,9	6.5	5.9	93
Desv. Estand	0.7	0.2	0.3	7.3	0.1	0.1	0.2	0.1	0.2	0.4	
Bromodio	101.4	32.9	07.7	493.3	07.0	91.6	24.9	11/1	0.9	7.0	
Minimo	101,4	32,0	97.3	467.3	97.4	91.4	24,0	113.9	9,5	6.4	
Máximo	102,7	33.1	98.2	498.4	98.4	91.8	25.1	114.3	10.2	7.6	94
Desv. Estand	0.8	0.2	0.3	4.6	0.3	0.1	0.2	0.1	0.2	0.3	
Description	104.2	-,_	08.0	599.4	125.5	01.0	27.5	114.7	14.4	10.2	
Minimo	104,5	32,2	90,5	571.9	133,5	91,5	27,5	114,7	13.6	0.8	
Máximo	103,5	32,1	99.4	624.2	136.1	92.0	27,1	114,5	15,0	10.8	95
Decy Estand	03	0.1	03	82	0.6	0.1	0.2	0.1	0.5	0.3	
Desir. Estand	0,5	0, 7	0,5	0,2	405.7	03.4	0,2	445.0	48.4	0,0	
Promedio	103,2	32,7	00.5	670.8	183,7	92,1	32,1	113,3	17.4	14,4	
Máximo	104,0	32,0	101.1	721.0	102,0	91,5	32,8	117.0	17,4	15.2	96
Docy Estand	0.2	0.4	0.4	10.4	12	0.3	0.4	0.4	0.4	0.4	
Desv. Estand	0,2	0,4	0,4	70,47	1,2	0,5	0,4	0,4	0,4	10.5	
Promedio	106,1	32,9	99,4	794,7	241,0	92,5	36,5	116,2	18,3	18,5	
Mávimo	105,6	31,3	99,0	742,9 817.0	240,8	92,2	34,0	116,0	10,7	10,9	97
Docy Estand	0.4	0.7	0.2	12.2	241,2	32,5	0.6	0.1	0.7	13,0	
Dest. Estand	0,4	0,7	0,5	12,2	0, 1	0, 1	0,0	445.7	47.4	0,0	
Promedio	109,3	31,9	98,6	922,0	316,8	92,2	41,3	115,7	17,4	24,4	
Mávimo	107,8	28,8	98,5	882,5	316,0	92,1	38,2	115,6	14,3	22,1	98
Naximo	0.7	1.0	90,0	950,7	317,7	92,3	43,2	0.1	19,5	20,2	
Desv. Estand	0,7	1,0	0,1	14,0	0,4	0,0	0,0	0,1	1,0	0,7	
Promedio	108,4	30,7	98,4	1023,5	396,2	92,1	46,4	115,3	16,3	30,7	
Mínimo	104,4	25,8	98,2	985,6	393,9	91,1	43,4	115,0	11,4	27,3	99
Máximo	110,8	33,6	98,5	1066,5	398,7	92,4	47,9	115,5	19,2	33,2	
Desv. Estand	2,4	1,5	0,1	76,7	1,5	0,4	0,8	0,1	1,5	1,0	
Promedio	104,6	27,6	98,6	1102,0	462,4	91,3	50,0	115,4	13,2	37,4	
Mínimo	104,4	25,8	98,1	1052,3	458,9	91,0	47,2	114,9	11,5	32,5	10
Máximo	104,8	34,0	99,4	1142,1	467,4	93,0	56,9	116,2	19,4	39,7	
Desv. Estand	0,1	1,6	0,4	14,4	2,5	0,4	1,3	0,4	1,6	1,3	1

<u>Fluido Impulsor: Agua, Fluido succión: Aire</u> <u>R = 0,132</u>, <u>Q_{iny} = var</u>, <u>P_{atmosférica} = 14,7 Psi</u>, Jet 1 y 2 alineados, Vortex 1"

Tag Fecha 18/09/2002	LT-510 Nivel Tanque crudo TK-04	FT-521 V Flujo agua Motriz (bomba)	DT-521 Densidad agua Motriz (bomba)	TT-521 Temp. agua Motriz (bomba)	PT-521 Presión agua desc. bomba	FY-660 Flujo de aire Succión	PT-660 Presió de aire Succión	PT-665 Presión entr. Jet N°1	TT-665 Temperatura entr. Jet N°1	PT-670 Presión Jet N°1 Fluido motriz	Punto Experimental
Promedio Mínimo Máximo Desv. Estand	179,9 179,9 179,9 0,0	300,7 290,6 309,3 2,2	0,9949 0,9947 0,9950 <i>0,0001</i>	216,9 214,5 217,4 0,7	42,4 41,2 43,6 <i>0</i> ,3	8,8 6,7 9,5 1,0	(Fsia) 15,9 15,9 15,9 0,0	(F3lq) 18,9 19,7 <i>0,1</i>	92,6 92,2 92,9 <i>0</i> ,2	(Fsig) 18,2 18,0 19,1 <i>0</i> ,2	101
Promedio	179,9	503,9	0,9950	215,4	76,4	7,3	15,9	15,1	91,8	14,4	102
Mínimo	179,9	502,1	0,9948	215,2	75,9	6,7	15,9	14,1	91,5	13,2	
Máximo	179,9	513,2	0,9952	216,3	78,1	9,5	15,9	15,3	92,2	14,5	
<i>Desv. Estand</i>	<i>0,0</i>	1,5	<i>0,0001</i>	<i>0</i> ,2	<i>0</i> ,3	0,9	<i>0,0</i>	<i>0,2</i>	<i>0,2</i>	<i>0</i> ,3	
Promedio	179,9	701,3	0,9954	215,8	126,7	7,0	16,0	9,8	91,1	9,0	103
Mínimo	179,9	701,0	0,9953	215,6	126,4	4,4	15,9	9,8	90,8	9,0	
Máximo	179,9	702,9	0,9955	216,0	127,1	9,6	16,0	9,9	91,4	9,0	
<i>Desv. Estand</i>	<i>0,0</i>	<i>0</i> ,5	<i>0,0001</i>	<i>0,1</i>	<i>0,1</i>	1,2	<i>0,0</i>	<i>0,0</i>	<i>0,2</i>	<i>0,0</i>	
Promedio	179,8	1514,8	0,9952	218,2	162,6	12,2	15,9	3,2	93,5	113,9	104
Mínimo	179,8	1510,1	0,9950	218,0	161,6	9,5	15,9	2,5	93,2	113,7	
Máximo	179,8	1518,8	0,9955	218,4	163,4	15,1	15,9	4,1	93,9	114,1	
<i>Desv. Estand</i>	<i>0,0</i>	2,2	<i>0,0001</i>	<i>0,1</i>	<i>0</i> ,3	<i>1,2</i>	<i>0,0</i>	0,5	<i>0,2</i>	<i>0,1</i>	
Promedio	179,8	1702,6	0,9952	218,5	201,1	12,4	15,9	0,4	94,4	140,9	105
Mínimo	179,8	1699,0	0,9950	218,2	199,9	6,9	15,9	0,3	93,9	140,4	
Máximo	179,8	1705,9	0,9955	219,2	202,2	17,8	15,9	0,4	94,9	141,5	
<i>Desv. Estand</i>	<i>0,0</i>	<i>1,9</i>	<i>0,0001</i>	<i>0</i> ,2	<i>0</i> ,5	<i>3,4</i>	<i>0,0</i>	<i>0,0</i>	<i>0,3</i>	<i>0,3</i>	
Promedio	179,8	1904,8	0,9951	219,6	251,5	17,9	15,8	0,3	95,4	177,9	106
Mínimo	179,8	1902,0	0,9950	219,2	250,1	17,7	15,8	0,2	95,0	177,5	
Máximo	179,8	1907,9	0,9954	220,2	252,6	20,5	15,9	0,3	95,8	178,3	
<i>Desv. Estand</i>	<i>0,0</i>	<i>1,2</i>	<i>0,0001</i>	<i>0</i> ,3	<i>0</i> ,6	<i>0</i> ,6	<i>0,0</i>	<i>0,0</i>	<i>0,2</i>	<i>0,2</i>	
Promedio	179,8	2103,7	0,9953	220,2	305,8	2899,9	15,8	0,2	96,2	217,4	107
Mínimo	179,7	2102,1	0,9951	219,8	303,7	1131,8	15,8	0,1	95,8	217,3	
Máximo	179,8	2104,9	0,9955	220,5	308,2	3682,4	15,8	0,2	96,7	218,2	
<i>Desv. Estand</i>	<i>0,0</i>	<i>0</i> ,6	<i>0,0001</i>	<i>0</i> ,2	<i>0,8</i>	520,0	<i>0,0</i>	<i>0,0</i>	<i>0,2</i>	<i>0,1</i>	
Promedio	179,7	2295,6	0,9954	220,3	351,2	8769,1	15,8	0,1	97,1	258,8	108
Mínimo	179,7	2260,5	0,9953	219,6	309,4	8209,3	15,8	0,1	96,7	242,5	
Máximo	179,7	2307,0	0,9957	220,8	362,4	9353,8	15,8	0,1	97,5	290,6	
<i>Desv. Estand</i>	<i>0,0</i>	<i>10,0</i>	<i>0,0001</i>	<i>0,3</i>	<i>15,2</i>	258,6	<i>0,0</i>	<i>0,0</i>	<i>0,2</i>	<i>12,3</i>	
Promedio	180,2	2503,0	0,9949	222,3	367,4	11046,4	15,5	0,1	108,0	342,7	109
Mínimo	180,1	2501,1	0,9946	220,0	365,3	10781,4	15,5	0,1	107,4	341,4	
Máximo	180,3	2505,0	0,9955	223,6	369,5	11381,5	15,6	0,1	108,5	344,0	
<i>Desv. Estand</i>	<i>0,0</i>	0,6	<i>0,0002</i>	0,6	<i>0,7</i>	<i>75,0</i>	<i>0,0</i>	<i>0,0</i>	<i>0,4</i>	0,1	
Promedio	180,4	2698,6	0,9952	221,9	428,2	13621,8	15,5	0,0	109,4	400,7	110
Mínimo	180,3	2687,2	0,9951	221,4	425,0	12406,2	15,5	0,0	108,5	398,4	
Máximo	180,5	2711,9	0,9954	222,2	432,3	14516,0	15,5	0,1	109,9	403,4	
Desv. Estand	<i>0,1</i>	7,7	<i>0,0001</i>	0,3	1,5	666,4	<i>0,0</i>	<i>0,0</i>	<i>0,4</i>	1,5	

Тад	TT-670	PT-675	TT-675	ET-680110	PT-680	TT-680	PT-685	TT-685	AP،	∆ P₂	
Fecha	Temp let N°1	Presión salida	Temperatura	Eluio Motriz	Presión let Nº2	Temp let N°2	Presión salida	Temperatura	PT-675 -	PT-685 -	Punto
18/09/2002	Fluido motriz	Jet N°1	salida Jet N°1	Jet N°2	Fluido motriz	Fluido motriz	Jet N°2	salida Jet N°2	PT-665	PT-675	Experimental
Unidades	(°F)	(Psia)	(°E)	(BPD)	(Psia)	(°F)	(Psig)	(°F)	(Psig)	(Psig)	
Promedio	90.4	34.0	96.6	249.3	81.8	92.1	21.2	114.3	0.0	22	
Mínimo	90.1	33.9	95.9	230.8	81.1	91.4	20.4	114 1	-0.3	0.7	_
Máximo	90.7	34.7	97.2	267.4	82.5	92.4	21.3	114.5	0.1	2.4	101
Desv. Estand	0.2	0.1	0.4	10.3	0.5	0.3	0.2	0.1	0.1	0.3	
Dremedie	80.8	30.2	05.2	463.8	80.0	01.8	22.5	113.0	0,7	7.3	
Promedio	89,8	30,2	95,2	463,8	80,0	91,8	22,5	113,9	0,2	7,3	
Minimo	09,0	29,1	94,5	431,7	79,1	91,6	22,1	113,0	-0,3	0,9	102
	90,1	30,3	95,8	478,1	80,7	92,6	23,0	0.1	0,4	7,9	
Desv. Estand	0,1	0,2	0,4	4,3	0,5	0,3	0,3	0,1	0,2	0,3	
Promedio	89,3	24,8	93,7	665,2	78,2	91,9	23,6	113,6	0,0	13,9	
Mínimo	89,0	24,7	93,1	651,3	77,2	91,8	22,6	113,4	-0,1	12,8	10
Máximo	89,5	24,9	94,4	682,5	79,1	92,1	24,4	113,7	0,0	14,6	ω
Desv. Estand	0,2	0,0	0,4	6,9	0,5	0,1	0,3	0,1	0,0	0,3	
Promedio	91,8	33,9	97,7	743,3	84,0	93,3	32,5	114,8	15,7	13,7	
Mínimo	91,2	33,1	97,5	723,3	83,1	93,3	31,9	114,6	15,5	13,5	6
Máximo	92,4	34,8	98,0	765,2	85,0	93,4	33,4	114,9	15,7	14,1	4
Desv. Estand	0,4	0,5	0,2	9,6	0,5	0,0	0,5	0,1	0,0	0,1	
Promedio	93,4	34,1	98,5	836,7	86,2	93,5	37,1	115,2	18,7	18,0	
Mínimo	92,5	33,8	98,1	810,6	85,0	93,4	36,9	114,9	18,5	18,0	÷.
Máximo	94,2	34,3	98,9	857,6	87,6	93,7	37,3	115,4	18,9	18,1	5
Desv. Estand	0,5	0,1	0,3	9,8	0,7	0,1	0,1	0,1	0,1	0,0	
Promedio	95,0	35,5	99,1	950,7	88,5	93,8	42,8	115,6	20,3	22,3	
Mínimo	94,3	33,9	99,0	931,6	87,5	93,7	41,0	115,4	18,6	20,6	÷
Máximo	95,7	36,6	99,3	981,6	89,6	94,0	44,5	115,8	21,3	23,8	06
Desv. Estand	0,4	0,5	0,1	11,1	0,6	0,1	0,7	0,1	0,5	0,7	
Promedio	96,1	35,9	99,4	1048,7	90,6	94,0	48,3	115,9	20,7	27,4	
Mínimo	95,8	33,9	99,3	976,6	89,5	94,0	47,1	115,8	18,7	25,8	
Máximo	96,3	37,6	99,6	1088,8	91,5	94,2	49,0	116,1	22,4	29,1	07
Desv. Estand	0,1	0,7	0,1	16,1	0,6	0,0	0,5	0,1	0,7	0,7	
Promedio	95.9	36.8	99.7	1146.4	92.6	94.1	54.0	116.3	21.7	32.2	
Mínimo	95.8	33.6	98.9	1084.6	91.7	93.8	51.1	115.5	18.5	26.3	-
Máximo	96.1	43.7	99.9	1184.9	93.5	94.2	55.5	116.5	28.6	35.3	8
Desv. Estand	0,1	2.0	0.1	25,1	0,5	0,1	0,7	0,2	2,0	2,1	
Promedio	112.6	43.8	100.5	1201.1	100.9	94.3	61.3	116.7	28.7	32.4	
Mínimo	110.6	41.7	100,0	1155.5	99.4	93.6	60.2	116.4	26,6	30.4	
Máximo	114.0	41,7	100,2	1259.4	102.0	93,0	62.2	117.1	20,0	34.7	109
Docy Estand	10	40,0	0.0	15.7	0.3	0.2	02,5	0.1	11	1 1	
DUSV. EStand	110 7	1,1	0,0	100,1	0,0	0,2	0,0	447.5	,,,	.,.	
Promedio	112,7	45,8	101,2	1294,3	103,5	94,1	68,6	117,5	30,8	37,8	
Minimo	112,5	42,9	100,8	1252,2	102,4	94,0	67,1	117,2	27,9	35,0	11
Máximo	112,9	48,3	101,8	1344,8	104,9	94,2	69,9	117,8	33,3	39,7	Ŭ
Desv. Estand	0,1	1,0	0,3	20,6	0,7	0,1	0,6	0,2	1,0	0,9	

<u>Fluido Impulsor: Agua, Fluido succión: Aire</u> <u>R = 0,132, $\mathbf{Q}_{iny} = var$, $\mathbf{P}_{atmosférica} = 14,7$ Psi, Jet 2</u>

Tag Fecha	LT-510 Nivel Tangue	FT-521 V Fluio agua	DT-521 Densidad agua	TT-521 Temp, agua	PT-521 Presión agua	FY-660 Fluio de aire	FY-660A Fluio de aire	PT-660 Presió de aire	PT-665 Presión entr.	TT-665 Temperatura	Punto
18/09/2002	crudo TK-04	Motriz (bomba	Motriz (bomba	Motriz (bomba	desc. bomba	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	
Promedio	180,1	1107,2	0,9948	223,2	331,8	12247,5	12,3	15,7	0,6	106,5	
Mínimo	180,1	1103,0	0,9947	223,0	328,8	11366,9	11,6	15,7	0,5	106,3	_`
Máximo	180,1	1109,7	0,9949	223,6	333,6	12974,4	12,9	15,7	0,6	106,8	Ξ
Desv. Estand	0,0	1,8	0,0000	0,2	1,3	328,1	0,3	0,0	0,0	0,1	
Promedio	180,1	1329,0	0,9950	223,2	480,2	21066,2	21,0	15,6	0,4	105,5	
Mínimo	180,1	1321,9	0,9949	222,4	474,6	20336,9	20,3	15,5	0,4	104,9	<u>+</u>
Máximo	180,1	1337,0	0,9951	223,8	485,6	22009,4	21,6	15,6	0,5	105,8	12
Desv. Estand	0,0	4,4	0,0001	0,3	3,1	362,8	0,3	0,0	0,0	0,2	
Promedio	180,2	1440,0	0,9955	221,9	563,9	26066,8	26,3	15,5	0,3	101,7	
Mínimo	180,2	1439,0	0,9953	220,4	563,0	25428,2	25,4	15,5	0,3	100,5	
Máximo	180,2	1440,9	0,9958	223,4	565,2	27548,2	27,3	15,6	0,3	103,2	13
Desv. Estand	0,0	0,6	0,0001	1,0	0,5	462,1	0,5	0,0	0,0	0,9	
Promedio	180,2	1450,1	0,9954	221,5	559,8	27806,5	28,1	15,5	0,2	101,0	
Mínimo	180,2	1442,1	0,9953	220,3	556,8	25583,4	27,0	15,5	0,2	99,7	. ,
Máximo	180,2	1454,9	0,9958	222,0	561,9	29220,8	28,7	15,5	0,2	101,9	14
Desv. Estand	0,0	4,9	0,0001	0,5	1,2	857,6	0,5	0,0	0,0	0,7	

Tag Fecha 18/09/2002 Unidades	TT-670 Temp. Jet N°1 Fluido motriz (°F)	PT-675 Presión salida Jet N°1 (Psia)	TT-675 Temperatura salida Jet N°1 (°F)	FT-680 LIQ Flujo Motriz Jet N°2 (BPD)	PT-680 Presión Jet N°: Fluido motriz (Psig)	TT-680 Temp. Jet N°2 Fluido motriz (°F)	PT-685 Presión salida Jet N°2 (Psig)	TT-685 Temperatura salida Jet N°2 (°F)	ΔΡ ₁ PT-675 - PT-665 (Psia)	ΔP ₂ PT-685 - PT-675 (Psig)	Punto Experimental
Promedio	110,2	14,6	100,0	1069,4	45,1	95,3	30,9	118,6	14,1	31,0	11 11
Mínimo	110,1	14,6	98,9	1056,4	44,8	95,1	29,5	118,5	14,0	29,7	
Máximo	110,2	14,7	101,2	1080,0	45,4	95,4	32,3	118,7	14,1	32,4	
<i>Desv. Estand</i>	<i>0,0</i>	<i>0,0</i>	<i>0,7</i>	5,7	<i>0,2</i>	<i>0,1</i>	<i>0,7</i>	<i>0,1</i>	<i>0,0</i>	<i>0,7</i>	
Promedio	109,8	14,4	101,4	1299,5	46,1	94,8	37,6	118,1	14,0	37,9	112
Mínimo	109,0	14,3	100,7	1274,2	46,0	94,5	36,3	118,0	13,9	36,6	
Máximo	110,1	14,5	102,2	1327,8	46,4	95,0	39,0	118,2	14,0	39,2	
<i>Desv. Estand</i>	<i>0,4</i>	<i>0,0</i>	<i>0,4</i>	12,0	<i>0,1</i>	<i>0,1</i>	<i>0,7</i>	<i>0,1</i>	<i>0,0</i>	<i>0,7</i>	
Promedio	105,5	14,2	97,4	1408,7	47,0	94,2	42,4	117,4	13,9	42,9	113
Mínimo	104,1	14,1	96,7	1377,2	46,7	93,6	40,5	117,1	13,9	41,0	
Máximo	107,1	14,3	98,8	1437,8	47,3	94,6	44,4	117,7	13,9	44,8	
<i>Desv. Estand</i>	<i>0,9</i>	<i>0,0</i>	<i>0,7</i>	13,9	<i>0,2</i>	<i>0,3</i>	<i>0,8</i>	<i>0</i> ,2	<i>0,0</i>	<i>0,8</i>	
Promedio	104,9	14,7	96,9	1432,6	47,8	93,7	43,5	116,6	14,5	43,5	114
Mínimo	103,5	14,6	96,8	1407,2	47,3	93,5	41,6	116,3	14,5	41,6	
Máximo	105,8	14,9	98,2	1460,2	48,0	93,9	45,0	116,8	14,6	44,9	
<i>Desv. Estand</i>	<i>0,7</i>	<i>0,1</i>	<i>0,4</i>	<i>10,3</i>	<i>0,2</i>	<i>0,1</i>	<i>0,8</i>	<i>0,2</i>	<i>0,0</i>	<i>0,8</i>	

Тад	LT-510	FT-521 V	DT-521	TT-521	PT-521	FY-660A	FY-660	PT-660	PT-665	TT-665	PT-670	
Fecha	Nivel Tanque	Flujo agua	Densidad agua	Temp. agua	Presión agua	Flujo de aire	Flujo de aire	Presió de aire	Presión entr.	Temperatura	Presión Jet N°1	Punto
18/09/2002	crudo TK-04	Motriz (bomba)	Motriz (bomba)	Motriz (bomba)	desc. bomba	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Fluido motriz	Experimental
Unidades	(*H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	(Psig)	
Promedio	180,0	302,5	0,9945	220,8	42,7	17,4	0,0	15,8	0,2	96,8	39,2	
Mínimo	180,0	302,0	0,9943	220,1	42,6	15,4	0,0	15,8	0,2	96,7	39,2	=
Máximo	180,0	303,0	0,9947	221,0	42,9	17,7	0,0	15,8	0,2	96,9	39,3	Ch Ch
Desv. Estand	0,0	0,4	0,0001	0,3	0,1	0,6	0,0	0,0	0,0	0,1	0,0	
Promedio	180,0	501,7	0,9946	220,4	74,8	14,9	0,0	15,8	0,2	97,1	70,2	
Mínimo	180,0	501,0	0,9945	220,2	74,6	14,9	0,0	15,8	0,2	97,0	70,1	÷
Máximo	180,0	502,8	0,9947	220,6	74,9	14,9	0,0	15,8	0,2	97,3	70,2	16
Desv. Estand	0,0	0,5	0,0000	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,0	
Promedio	180,0	707,0	0,9946	220,6	126,4	13,5	0,0	15,8	0,3	97,6	119,5	
Mínimo	180,0	706,0	0,9945	220,4	125,9	12,1	0,0	15,8	0,3	97,4	118,6	÷
Máximo	180,0	708,0	0,9948	220,8	126,8	14,9	0,0	15,8	0,3	97,8	120,3	17
Desv. Estand	0,0	0,7	0,0001	0,1	0,2	1,2	0,0	0,0	0,0	0,1	0,5	
Promedio	180,1	910,3	0,9950	221,1	197,4	16,0	0,0	15,8	0,4	98,4	188,6	
Mínimo	180,1	908,7	0,9949	221,0	196,8	14,9	0,0	15,8	0,4	98,0	187,9	÷
Máximo	180,1	911,9	0,9951	221,2	198,0	17,6	0,0	15,8	0,4	99,2	188,8	18
Desv. Estand	0,0	0,8	0,0001	0,1	0,3	1,2	0,0	0,0	0,0	0,3	0,2	
Promedio	180,1	1108,2	0,9947	223,6	295,8	6333,2	6,3	15,7	0,5	102,0	284,4	
Mínimo	180,1	1106,0	0,9944	222,7	294,5	4317,1	4,6	15,7	0,5	100,9	283,5	-
Máximo	180,1	1113,0	0,9949	224,4	297,9	7966,5	7,9	15,8	0,6	103,1	286,9	19
Desv. Estand	0,0	1,4	0,0001	0,5	0,7	872,7	0,8	0,0	0,0	0,7	0,7	
Promedio	180,2	1315,1	0,9946	226,2	418,3	13151,0	13,3	15,5	0,7	106,7	403,4	
Mínimo	180,2	1308,6	0,9944	226,0	414,2	12643,2	12,7	15,5	0,7	105,8	398,6	-
Máximo	180,2	1319,9	0,9947	226,6	421,2	13685,5	13,8	15,6	0,7	107,1	406,5	20
Desv. Estand	0,0	3,2	0,0001	0,2	2,1	304,2	0,3	0,0	0,0	0,4	2,3	
Promedio	180,2	1494,6	0,9947	227,1	542,5	18418,2	18,4	15,4	0.8	107,7	524,8	
Mínimo	180,2	1491,0	0,9945	226,8	527,1	17995,3	18,1	15,4	0,8	107,4	515,5	-
Máximo	180,3	1497,0	0,9948	227,2	545,5	18821,2	18,8	15,4	0,8	108,0	526,7	21
Desv. Estand	0,0	1,8	0,0001	0,1	3,5	202,5	0,2	0,0	0,0	0,2	1,6	
Promedio	180,2	1517,7	0,9958	219,9	551,9	19162,7	19,0	15,7	0,1	97,5	533,2	
Mínimo	180,2	1508,3	0,9957	218,8	539,8	18258,1	12,1	15,6	0,1	96,0	521,4	
Máximo	180,2	1540,8	0,9961	220,8	556,7	20298,9	20,1	15,7	0,2	99,0	538,3	22
Desv. Estand	0,0	9,5	0,0001	0,6	5,3	498,3	1,1	0,0	0,0	0,9	5,3	

<u>Fluido Impulsor: Agua, Fluido succión: Aire</u> <u>**R** = 0,132, $\mathbf{Q}_{iny} = var$, $\mathbf{P}_{atmosferica} = 14,7$ Psi, Jet 1</u>

1					-						1
Tag	TT-670	PT-675	TT-675	FT-680 LIQ	PT-680	TT-680	PT-685	TT-685	ΔP ₁	∆ P₂	
Fecha	Temp. Jet N°1	Presión salida	Temperatura	Flujo Motriz	Presión Jet N°2	Temp. Jet N°2	Presión salida	Temperatura	PT-675 -	PT-685 -	Punto
18/09/2002	Fluido motriz	Jet N°1	salida Jet Nº1	Jet N°2	Fluido motriz	Fluido motriz	Jet N°2	salida Jet N°2	PT-665	PT-675	Experimental
Unidades	(°F)	(Psia)	(°F)	(BPD)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(Psig)	
Promedio	95,0	36,9	98,6	0,0	-1,9	92,4	21,4	115,3	21,8	-0,5	
Mínimo	94,9	36,9	98,4	0,0	-1,9	92,3	21,4	115,2	21,8	-0,6	=
Máximo	95,1	37,0	98,7	0,0	-1,9	92,5	21,5	115,4	21,8	-0,4	5
Desv. Estand	0,1	0,0	0, 1	0,0	0,0	0,0	0,0	0,1	0,0	0,0	
Promedio	95,4	37,0	99,0	0,0	-1,9	92,3	21,3	115,7	21,8	-0,7	
Mínimo	95,3	37,0	98,8	0,0	-1,9	92,3	21,3	115,6	21,8	-0,7	=
Máximo	95,5	37,0	99,1	0,0	-1,8	92,3	21,4	115,8	21,8	-0,6	6
Desv. Estand	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,0	0,0	
Promedio	95,9	38,3	99,5	0,0	-1,9	92,6	22,4	116,2	23,0	-0,9	
Mínimo	95,6	38,2	99,2	0,0	-1,9	92,4	22,2	115,9	22,9	-1,0	÷
Máximo	96,1	38,5	99,7	0,0	-1,8	92,9	22,7	116,4	23,2	-0,8	7
Desv. Estand	0,1	0,1	0,2	0,0	0,0	0,1	0,1	0,1	0,1	0,1	
Promedio	97,5	41,1	100,3	0,0	-1,7	93,8	25,0	116,9	25,7	-1,1	
Mínimo	96,4	40,8	100,0	0,0	-1,9	93,3	24,9	116,6	25,4	-1,2	÷
Máximo	98,7	41,4	100,5	0,0	-1,5	94,3	25,2	117,1	26,0	-0,9	
Desv. Estand	0,7	0,2	0,2	0,0	0,1	0,3	0,1	0,1	0,2	0,1	
Promedio	102,3	47,8	101,2	0,0	-1,6	96,1	30,2	117,7	32,8	-2,6	
Mínimo	100,7	46,2	100,9	0,0	-1,7	95,4	28,6	117,5	31,2	-3,7	÷
Máximo	104,6	49,2	101,4	0,0	-1,5	97,1	31,6	117,9	34,2	-0,8	19
Desv. Estand	1,2	0,7	0,2	0,0	0,0	0,5	0,7	0,1	0,7	0,5	
Promedio	111,2	53,8	102,3	0,0	-1,3	101,4	34,8	118,8	38,1	-3,9	
Mínimo	109,9	51,5	102,1	0,0	-1,3	100,8	33,3	118,5	35,8	-5,4	
Máximo	111,9	55,7	102,6	0,0	-1,3	101,9	36,6	119,0	40,0	-2,1	8
Desv. Estand	0,6	1,1	0,2	0,0	0,0	0,3	0,8	0,1	1,1	0,8	
Promedio	110,1	60,7	103,1	0,0	-1,3	101,4	40,5	119,7	44,9	-5,3	
Mínimo	109,6	58,2	102,8	0,0	-1,3	100,4	38,2	119,2	42,4	-6,9	
Máximo	110,7	62,9	103,7	0,0	-1,3	101,9	42,6	120,3	47,1	-3,4	21
Desv. Estand	0,3	1,1	0,2	0,0	0,0	0,5	1,0	0,3	1,1	0,7	
Promedio	100,9	61,1	99,6	5,1	48,5	92,8	40,9	115,9	46,0	-5,2	
Mínimo	99,1	58,5	99,3	0,0	48,0	92,3	37,9	115,6	43,3	-6,9	÷
Máximo	102,6	64,2	99,7	272,9	48,6	93,4	43,3	116,2	49,1	-2,4	8
Desv. Estand	1,0	1,3	0, 1	35,2	0,2	0,4	1,1	0,2	1,3	0,9	

<u>Fluido Impulsor: Agua, Fluido succión: Aire</u> <u>R = 0,132</u>, $\mathbf{Q}_{iny} = var$, $P_{atmosférica} = 14,7$ Psi, Jet 3 1/2"

Тад	LT-510	FT-521 V	DT-521	TT-521	PT-521	FY-660	FY-660A	PT-660	
Fecha	Nivel Tanque	Flujo agua	Densidad agua	Temp. agua	Presión agua	Flujo de aire	Flujo de aire	Presió de aire	Punto
18/09/2002	crudo TK-04	Motriz (bomba	Motriz (bomba	Motriz (bomba	desc. bomba	Succión	Succión	Succión	Experimental
Unidades	("H2O)	(BPD)	(gr/cc)	(°F)	(Psig)	(Scfd)	(Mscfd)	(Psia)	
Promedio	176,8	1301,7	0,9960	212,1	295,8	15,2	0,0	15,9	
Mínimo	176,7	1301,0	0,9959	212,0	295,2	12,6	0,0	15,9	t.
Máximo	176,8	1302,0	0,9961	212,2	296,9	17,8	0,0	15,9	8
Desv. Estand	0,0	0,4	0,0001	0,1	0,4	0,8	0,0	0,0	
Promedio	176,7	1108,4	0,9959	212,0	217,7	14,6	0,0	15,9	
Mínimo	176,7	1106,0	0,9958	211,8	216,7	12,6	0,0	15,9	t.
Máximo	176,7	1110,0	0,9962	212,2	218,3	15,2	0,0	15,9	24
Desv. Estand	0,0	1,2	0,0001	0,1	0,5	0,9	0,0	0,0	
Promedio	176,4	1596,5	0,9958	214,5	433,7	9099,8	8,0	15,8	
Mínimo	176,4	1591,0	0,9956	213,1	430,2	7165,4	1,9	15,7	-
Máximo	176,4	1604,7	0,9962	215,6	447,5	10165,8	10,2	15,8	25
Desv. Estand	0,0	4,1	0,0002	0,8	3,7	785,4	2,3	0,0	
Promedio	176,5	1799,2	0,9954	219,5	533,3	13205,7	13,2	15,6	
Mínimo	176,5	1793,1	0,9953	218,7	530,4	12613,6	12,6	15,6	t,
Máximo	176,5	1805,8	0,9957	220,0	538,2	13792,3	13,6	15,6	26
Desv. Estand	0,0	3,6	0,0001	0,2	2,0	257, 1	0,2	0,0	

Tag	PT-665	TT-665	PT-670	TT-670	PT-675	TT-675	ΔP ₁	
Fecha	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	PT-675 -	Punto
18/09/2002	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	PT-665	Experimental
Unidades	(Psig)	(°F)	(Psig)	(°F)	(Psia)	(°F)	(Psi)	
Promedio	2,1	89,1	283,9	86,6	29,8	95,7	27,7	
Mínimo	1,8	89,0	283,2	86,6	29,5	95,4	27,5	
Máximo	2,9	89,3	284,9	86,6	30,6	96,0	27,9	23
Desv. Estand	0,3	0,1	0,5	0,0	0,3	0,2	0,1	
Promedio	7,1	89,6	208,2	86,6	27,0	95,1	20,0	
Mínimo	7,0	89,4	207,4	86,6	27,0	95,0	19,9	t,
Máximo	7,1	89,7	208,8	86,6	27,1	95,3	20,0	24
Desv. Estand	0,0	0,1	0,4	0,0	0,0	0,1	0,0	
Promedio	0,0	95,6	417,0	98,5	39,5	94,9	39,5	
Mínimo	0,0	94,2	413,9	96,4	38,9	91,8	38,8	
Máximo	0,1	96,9	431,3	100,6	40,4	97,3	40,4	25
Desv. Estand	0,0	0,8	4,0	1,2	0,4	1,8	0,4	
Promedio	0,1	102,8	512,7	106,7	45,5	100,2	45,4	
Mínimo	0,1	101,2	510,3	105,7	44,1	99,2	44,1	-
Máximo	0,1	104,1	516,7	107,6	46,6	100,6	46,5	26
Desv. Estand	0,0	0,9	1,5	0,6	0,6	0,3	0,6	

Resultados Proceso 3 (compresión de gas con gas)

A-8.2.3. Resultados Proceso 3 (compresión de gas con gas)

<u>Fluido Impulsor: Gas, Fluido succión: Gas</u> <u>R = 0,132, $\mathbf{Q}_{iny} = var$, $\mathbf{P}_{instrumetación} = P_{atm}$, Jet 1, Vortex 1"</u>

Tag	PT-010	FY-010	PT-012	FY-660	FY-660A	PT-660	PT-665	
Fecha	Presión de gas	Caudal de gas	Presión de	Flujo de gas	Flujo de gas	Presión de gas	Presión entr.	Punto
07/02/2002	Estación	Estación	gas inyección	Succión	Succión	Succión	Jet N°1	Experimental
Unidades	(Psig)	(Mscfd)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	
Promedio	181,2	0,8	0,9	9,5	10,1	0,0	15,5	
Mínimo	181,2	0,8	0,9	9,4	6,8	0,0	11,3	=
Máximo	181,2	0,8	0,9	9,7	12,0	0,0	18,8	27
Desv. Estand	0,0	0,0	0,0	0,1	1,6	0,0	2,8	
Promedio	1394,8	197,8	135,7	19195,7	19,2	13,7	0,2	
Mínimo	1389,2	196,6	134,9	13797,7	14,2	13,2	0,2	=
Máximo	1401,8	200,6	136,2	21365,6	21,4	14,2	0,2	28
Desv. Estand	3,3	0,8	0,4	2253,2	2,2	0,3	0,0	
Promedio	1403,5	536,4	338,5	25345,2	25,3	21,8	-0,5	
Mínimo	1401,4	525,1	322,2	24982,7	25,0	21,0	-0,5	=
Máximo	1405,8	546,3	347,5	25544,5	25,5	24,4	-0,5	66
Desv. Estand	1,3	5,5	7,6	134,2	0, 1	0,6	0,0	

Tag	TT-665	PT-670	TT-670	PT-675	TT-675	PT-685	TT-685	
Fecha	Temperatura	Presión Jet N°1	Temp. Jet N°1	Presión salida	Temperatura	Presión salida	Temperatura	Punto
07/02/2002	entr. Jet N°1	Fluido motriz	Fluido motriz	Jet N°1	salida Jet N°1	Jet N°2	salida Jet N°2	Experimental
Unidades	(°F)	(Psig)	(°F)	(Psig)	(°F)	(Psig)	(°F)	
Promedio	16,5	0,4	103,9	-1,4	106,6	23,2	98,2	
Mínimo	16,2	0,3	103,4	-1,5	104,8	20,6	96,5	1
Máximo	16,7	0,4	104,3	5,5	107,8	25,3	98,7	27
Desv. Estand	0, 1	0,0	0,2	0,7	0,9	1,2	0,7	
Promedio	97,5	121,2	97,7	22,9	92,9	6,9	110,6	
Mínimo	96,9	120,7	96,4	22,6	92,2	6,5	109,7	1
Máximo	98,3	121,7	99,1	23,2	93,6	7,2	111,5	28
Desv. Estand	0,4	0,3	0,8	0,2	0,4	0,2	0,5	
Promedio	88,0	310,8	88,7	43,8	81,3	25,7	100,5	
Mínimo	87,0	294,5	87,7	43,4	80,9	25,3	100,3	1
Máximo	89,0	319,3	89,7	45,9	81,7	27,9	100,6	29
Desv. Estand	0,6	7,5	0,6	0,5	0,3	0,5	0, 1	

<u>Fluido Impulsor: Gas, Fluido succión: Gas</u> <u>**R** = 0,132, $\mathbf{Q}_{iny} = var$, $\underline{P}_{instrumetación} = P_{atm}$, Jet 2, Vortex 1"</u>

Тад	PT-010	FY-010	PT-012	FY-660	FY-660A	PT-660	PT-665	TT-665	
Fecha	Presión de gas	Caudal de gas	Presión de	Flujo de aire	Flujo de aire	Presión de aire	Presión entr.	Temperatura	Punto
07/02/2002	Estación	Estación	gas inyección	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Experimental
Unidades	(Psig)	(Mscfd)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	
Promedio	1434,5	566,9	348,0901	20741,7520	20,7290	27,0700	0,0108	105,5093	
Mínimo	1423,0	560,3	344,5869	1522,0833	1,2792	25,1440	-0,1332	104,8476	,
Máximo	1445,0	572,0	351,0084	25871,5117	25,8660	29,8633	0,1548	106,9320	30
Desv. Estand	6,6	3,2	1,1014	4150,6466	4,1441	1,1624	0,0837	0,6100	
Promedio	1440,5	567,9	347,7487	22130,7886	22,0796	18,0335	0,3933	110,0835	
Mínimo	1439,7	565,5	346,7366	13317,5098	13,2937	17,1638	0,3009	108,9676	4
Máximo	1441,8	570,4	348,9619	26433,9844	26,2547	18,5211	0,4631	110,3900	31
Desv. Estand	0,6	1,2	0,6071	3256,8265	3,2518	0,3414	0,0512	0,4299	
Promedio	1446,9	814,5	488,2569	22355,5132	22,3934	22,7172	0,5100	110,1802	
Mínimo	1442,6	810,8	471,2924	19,0466	0,0196	17,0875	0,4756	109,9370	7
Máximo	1452,0	821,0	492,3737	26487,8574	26,4522	23,3724	0,5443	110,3133	32
Desv. Estand	2,7	3,0	2,5819	5017,5177	5,0572	1,0468	0,0200	0,1155	

Тад	PT-675	TT-675	PT-680	FY-680A	PT-680A	TT-680	PT-685	TT-685	
Fecha	Presión salida	Temperatura	Presión Jet N°2	Caudal de gas	Presión Jet N°2	Temp. Jet N°2	Presión salida	Temperatura	Punto
07/02/2002	Jet N°1	salida Jet N°1	Fluido motriz	Jet N°2	Fluido motriz	Fluido motriz	Jet N°2	salida Jet N°2	Experimental
Unidades	(Psig)	(°F)	(Psig)	(Mscfd)	(Psig)	(°F)	(Psig)	(°F)	
Promedio	25,9319	98,2024	313,3531	524,0658	329,6790	94,0726	36,4559	102,9607	
Mínimo	24,6584	88,2692	309,1454	510,0138	325,4083	93,7151	35,2680	102,7189	
Máximo	28,1799	102,6204	315,9108	531,5737	332,9474	94,6804	39,1005	103,9927	30
Desv. Estand	1,0811	3,6787	1,2742	4,3009	1,4731	0,3142	0,7557	0,3703	
Promedio	17,1094	104,8317	314,5655	526,4763	330,7933	94,5469	27,6438	102,5855	
Mínimo	16,8891	103,9706	314,1788	521,5711	330,0639	94,2501	27,5341	102,4807	4
Máximo	17,5163	105,4609	315,3374	531,6190	332,0799	94,7682	27,7535	102,6903	31
Desv. Estand	0,1891	0,4807	0,3002	2,2105	0,5735	0,1505	0,0640	0,0612	
Promedio	21,3005	105,2883	448,5213	746,2696	469,8114	91,7848	42,0794	95,0104	
Mínimo	19,4902	105,1844	438,4537	737,0839	460,1841	90,5030	40,5509	94,0228	
Máximo	21,6598	105,3921	451,5518	753,7531	473,4793	95,0358	42,4091	99,6656	32
Desv. Estand	0,4296	0,0606	2,2589	3,4919	2,1053	1,1456	0,3689	1,2509	

<u>Fluido Impulsor: Gas, Fluido succión: Gas</u> <u>**R** = 0,132, \mathbf{Q}_{iny} = var, \mathbf{P}_{pozo} = P_{atm} , Jet 2, Vortex 1"</u>

Tag	PT-010	FY-010	PT-012	FY-660	FY-660A	PT-660	PT-665	TT-665	
Fecha	Presión de gas	Caudal de gas	Presión de	Flujo de gas	Flujo de gas	Presión de gas	Presión entr.	Temperatura	Punto
07/02/2002	Estación	Estación	gas inyección	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Experimental
Unidades	(Psig)	(Mscfd)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	-
Promedio	1433,6	526,0	324,5753	39593,6891	39,5830	19,1679	0,6525	108,9013	
Mínimo	1433,1	523,6	323,5652	31807,6816	31,7798	18,4782	0,6028	107,4720	-
Máximo	1434,1	527,2	325,5997	48510,9492	48,5055	20,0790	0,7022	109,8562	33
Desv. Estand	0,3	0,7	0,7043	4831,3892	4,8380	0,4917	0,0291	0,6578	
Promedio	1420,4	706,3	396,3070	47318,9085	47,3310	22,3898	0,2908	97,9672	
Mínimo	1420,0	703,6	395,4161	47127,6172	47,1680	22,3276	0,2610	97,9201	
Máximo	1421,1	708,0	396,8014	47648,3047	47,6446	22,4138	0,3206	98,0144	34
Desv. Estand	0,3	1,0	0,4171	150,7744	0,1567	0,0200	0,0176	0,0279	
Promedio	1415,2	906,9	533,8570	35397,3234	35,3742	24,4769	0,0702	97,6185	
Mínimo	1414,3	904,9	532,5231	34329,4141	34,3351	24,4135	0,0364	97,5650	
Máximo	1416,1	909,5	535,4836	36483,7422	36,4724	24,5816	0,1040	97,6719	55
Desv. Estand	0,5	1,0	1,0093	641,5035	0,6524	0,0462	0,0199	0,0315	
Promedio	1411,1	1105,9	642,5125	24589,6500	24,5882	28,6690	-0,0540	96,4220	
Mínimo	1408,1	1102,0	638,3135	21316,8477	21,1894	27,9731	-0,1156	95,2836	<u>.</u>
Máximo	1413,2	1109,6	649,6878	27370,1230	27,3855	29,1092	0,0076	97,5195	36
Desv. Estand	1,3	1,7	2,9170	1952,5384	1,9637	0,2894	0,0360	0,6645	
Promedio	1373,6	1094,2	633,8716	17305,5274	17,3707	27,0619	0,6623	108,4624	
Mínimo	1371,6	1052,2	623,2214	1087,1647	0,4333	26,2300	0,6432	106,5242	4
Máximo	1376,3	1150,9	638,4534	26626,3398	26,6628	28,0038	0,6813	110,6087	37
Desv. Estand	1,3	13,0	3,4025	6200,3570	6,0579	0,5438	0,0111	1,2941	
Promedio	1396,4	323,3	187,4573	45625,4860	45,6187	16,0953	0,5903	108,8024	
Mínimo	1392,9	318,8	76,5749	38452,9844	38,4537	15,4884	0,5542	108,2369	<u>.</u>
Máximo	1400,3	326,9	202,1534	52873,3164	52,9044	16,5508	0,6265	109,2511	8
Desv. Estand	2,2	2,3	29,0868	4319,5846	4,2907	0,3241	0,0213	0,3024	
Promedio	1405,2	502,0	300,2010	40319,1347	40,3392	18,4040	0,4870	107,0904	
Mínimo	1404,1	456,2	278,9302	34594,9102	34,6998	17,5084	0,4560	106,5613	
Máximo	1405,6	553,2	317,7644	47806,2578	47,8621	19,4274	0,5180	107,6196	99
Desv. Estand	0,4	29,1	12,6818	3122,7465	3,1602	0,7011	0,0183	0,3119	
Promedio	1431,5	733,0	426,9291	33844,8389	33,8611	22,3975	0,3630	102,1160	
Mínimo	1425,4	727,2	422,4460	26553,2070	26,5614	21,7740	0,3242	100,2566	1
Máximo	1438,6	740,8	430,0707	41579,3164	41,5490	23,1140	0,4017	103,9754	6
Desv. Estand	3,8	4,1	1,8347	4342,6747	4,3284	0,3953	0,0227	1,0914	
Promedio	1439,6	905,9	519,5337	23642,3461	23,6151	24,9655	0,2222	97,6019	
Mínimo	1436,0	902,7	518,4252	16207,6689	15,9431	24,1537	0,1718	96,7762	-1
Máximo	1445,1	909,7	520,6855	32451,8848	32,5927	25,8600	0,2726	98,4276	=
Desv. Estand	2,8	1,5	0,6116	4769,2277	4,7928	0,4945	0,0295	0,4828	

Tag	PT-675	TT-675	FY-680A	PT-680A	TT-680	PT-685	TT-685	
Fecha	Presión salida	Temperatura	Caudal de gas	Presión Jet N°2	Temp. Jet N°2	Presión salida	Temperatura	Punto
07/02/2002	Jet N°1	salida Jet N°1	Jet N°2	Fluido motriz	Fluido motriz	Jet N°2	salida Jet N°2	Experimental
Unidades	(Psig)	(°F)	(Mscfd)	(Psig)	(°F)	(Psig)	(°F)	•
Promedio	18,3814	105,6962	479,3304	307,0625	93,5707	26,0471	103,5736	
Mínimo	17,7902	104,3072	473,8522	306,1107	92,5717	25,6009	102,6386	د
Máximo	18,9726	107,0852	484,8925	308,0826	94,3861	26,5114	104,4970	33
Desv. Estand	0,3465	0,8140	2,4631	0,7487	0,5594	0,2617	0,5419	
Promedio	20,9369	96,3493	591,4497	377,5853	88,2186	34,0880	94,7065	
Mínimo	20,6538	96,1090	586,0089	376,4793	87,3974	33,9273	93,3340	د
Máximo	21,2199	96,5897	595,6382	378,1295	89,1749	34,2488	96,0791	34
Desv. Estand	0,1675	0,1422	2,5035	0,4738	0,5226	0,0951	0,8122	
Promedio	23,4929	94,5707	784,7521	512,5885	82,0010	46,5763	81,9264	
Mínimo	23,4044	94,2983	777,9906	511,3450	81,7069	46,3031	81,3376	1
Máximo	23,5813	94,8431	790,4824	514,3356	82,4100	46,8495	82,7245	35
Desv. Estand	0,0522	0,1607	2,7837	1,0274	0,2069	0,1612	0,3653	
Promedio	26,9374	93,5692	944,9733	618,0691	80,0109	57,2677	74,9832	
Mínimo	25,7669	93,0724	933,4458	613,6133	79,1253	56,3416	74,7593	1
Máximo	27,3943	94,0659	962,8069	625,7631	81,8785	57,5735	77,7155	36
Desv. Estand	0,3206	0,2903	5,4496	3,0712	0,7707	0,4520	0,6045	
Promedio	25,1172	106,3535	1003,6425	609,4148	91,9455	58,9246	88,2326	
Mínimo	24,1783	105,6582	982,4244	598,1696	89,1761	57,6219	85,6319	5
Máximo	26,0561	107,3818	1019,0932	614,0828	96,8810	60,2657	93,5004	37
Desv. Estand	0,5477	0,4856	8,0324	3,3791	2,2551	0,7856	2,2843	
Promedio	14,2520	105,1939	282,5890	171,2554	95,1911	12,4067	111,2202	
Mínimo	13,8916	105,0835	107,0442	62,3805	93,7752	4,3510	110,5888	1
Máximo	14,6124	105,3043	307,8464	186,0943	95,5327	14,1961	111,8379	38
Desv. Estand	0,2118	0,0649	46,0258	28,6336	0,3817	2,1688	0,3704	
Promedio	16,7690	104,6561	463,3852	282,8861	94,9061	23,6692	107,0990	
Mínimo	15,8518	103,8551	429,4761	261,1797	93,6713	21,0338	104,7863	1
Máximo	17,5402	104,9731	490,6605	300,1432	96,5793	25,0430	110,2030	39
Desv. Estand	0,4618	0,3525	20,0071	12,3995	1,0110	1,1737	1,5568	
Promedio	21,1174	100,6167	667,3577	407,8263	90,5358	37,2730	96,5451	
Mínimo	20,9502	99,2674	650,5911	403,0690	88,9440	36,4123	94,1807	1.
Máximo	21,2846	101,9661	673,9021	410,5631	92,7207	37,4494	100,3584	0
Desv. Estand	0,0981	0,7920	5,6162	1,8180	1,0676	0,1816	1,6918	
Promedio	23,0345	96,1529	831,1093	498,6552	85,4521	46,7349	88,1095	
Mínimo	22,3790	95,3304	822,0383	497,4716	84,0556	46,3339	86,6347	1
Máximo	23,6900	97,4683	839,1237	499,9274	87,9260	47,0793	91,2139	11
Desv. Estand	0,3833	0,6027	3,0418	0,7169	1,0896	0,2059	1,0572	

Fluido Impulsor: Gas, Fluido succión: Gas	
$\mathbf{R} = 0,132, \mathbf{Q}_{inv} = var, \mathbf{P}_{instrumetación} = P_{atm_1} Jet 1, Vortex 1"$	

Tag	PT-010	FY-010	PT-012	FY-660	FY-660A	PT-660	PT-665	TT-665	PT-670	TT-670	
Fecha	Presión de gas	Caudal de gas	Presión de	Flujo de aire	Flujo de aire	Presión de aire	Presión entr.	Temperatura	Presión Jet N°1	Temp. Jet N°1	Punto
07/02/2002	Estación	Estación	gas inyección	Succión	Succión	Succión	Jet N°1	entr. Jet N°1	Fluido motriz	Fluido motriz	Experimental
Unidades	(Psig)	(Mscfd)	(Psig)	(Scfd)	(Mscfd)	(Psia)	(Psig)	(°F)	(Psig)	(°F)	
Promedio	1291,0	599,4	196,1	18434,9	18,4	26,8	10,4	98,6	65,5	98,9	
Mínimo	1270,6	582,5	191,6	8241,9	9,1	25,9	9,7	97,5	62,5	98,5	1
Máximo	1325,6	622,0	204,9	27295,4	27,3	27,8	11,1	99,9	68,4	99,8	12
Desv. Estand	15,8	8,7	3,3	5072,3	5,1	0,5	0,4	0,7	1,2	0,4	
Promedio	1270,2	1007,9	329,5	34,0	0,0	31,1	22,3	103,2	117,2	102,5	
Mínimo	1259,6	1000,5	275,4	24,1	0,0	29,9	17,6	100,1	95,9	99,3	-
Máximo	1300,1	1035,4	343,6	44,3	0,0	31,2	23,7	105,2	122,6	104,1	13
Desv. Estand	12,8	8,9	13,9	4,9	0,0	0,1	1,3	1,8	5,5	1,5	

Tag Fecha 07/02/2002 Unidades	PT-675 Presión salida Jet N°1 (Psig)	TT-675 Temperatura salida Jet N°1 (°F)	PT-680 Presión Jet N°2 Fluido motriz (Psig)	FY-680A Caudal de gas Jet N°2 (Mscfd)	PT-680A Presión Jet N°2 Fluido motriz (Psig)	TT-680 Temp. Jet N°2 Fluido motriz (°F)	PT-685 Presión salida Jet N°2 (Psig)	TT-685 Temperatura salida Jet N°2 (°F)	PT-Succ1 Presión Fondo Pozo 950 pie (Psig)	PIT-109 Presión cabezal Pozo (Psig)	Punto Experimental
Promedio	36,0	91,4	168,3	292,1	179,5	92,4	29,6	108,4	67,8	14,0	142
Mínimo	35,0	90,3	163,2	283,9	174,5	91,9	28,7	107,5	66,7	12,3	
Máximo	36,3	92,5	176,5	301,3	187,4	92,7	30,1	109,1	68,9	15,8	
<i>Desv. Estand</i>	<i>0,2</i>	<i>0</i> ,6	<i>3,0</i>	<i>4,4</i>	<i>3,1</i>	<i>0</i> ,2	<i>0,2</i>	<i>0,5</i>	<i>0,6</i>	<i>1,0</i>	
Promedio	55,2	83,8	286,5	485,9	302,5	89,5	55,1	101,6	68,7	15,6	143
Mínimo	46,9	80,9	238,1	408,5	253,1	87,5	44,8	99,4	67,6	14,2	
Máximo	56,2	86,7	299,0	507,5	315,9	91,7	57,4	103,9	69,2	16,0	
Desv. Estand	2,1	1,7	12,5	<i>19,8</i>	<i>12,8</i>	<i>1</i> ,2	2,7	<i>1</i> ,3	<i>0</i> ,3	<i>0</i> ,3	

COMPARACIÓN RESULTADOS EXPERIMENTALES, SIMULACIONES Y TEÓRICOS

		Qiny	Q _{succ}	P _{succ}	Piny	P _d
		FT-521 V	FT-621V	PT-665	PT-670	PT-675
	Configuración	Flujo crudo	Flujo crudo	Presión entr.	Presión Jet N°1	Presión salida
-		Motriz (bomba)	desc. bomba	Jet N°1	Fluido motriz	Jet N°1
2		(BPD)	(BPD)	(Psig)	(Psig)	(Psig)
Ň		200 72	450.00	00 50	400.75	101.00
F	R=0 132	299,72	150,83	98,58	138,75	101,00
	Q _{succ} 150	502,38	155,42	91,47	211,55	98,25
	THP100	698,76	155,69	85,36	312,94	99,26
		898,37	149,45	78,93	409,04	101,54

Experimental									
N	М	Eficiencia (%)							
0,0641	0,5032	3,23							
0,0598	0,3094	1,85							
0,0650	0,2228	1,45							
0,0735	0,1664	1,22							

	Experimental		Simulación		Teorico Petrie		Teorico Jiao		% Error Eficiencia		
N	М	Eficiencia (%)	М	Eficiencia (%)	М	Eficiencia (%)	М	Eficiencia (%)	% M _{error} simulación	% M _{error} Teorico Petrie	% M _{e rror} Teorico Jiao
0,0641	0,5032	3,23	2,2394	14,61	2,6970	17,30	3,3100	21,23	345	436	558
0,0598	0,3094	1,85	2,3100	14,11	2,7450	16,40	3,3690	20,13	647	787	989
0,0650	0,2228	1,45	2,2237	14,72	2,6870	17,47	3,2980	21,45	898	1106	1380
0,0735	0,1664	1,22	2,0825	15,51	2,5920	19,06	3,1840	23,41	1152	1458	1814

	Experimental		Simulación		Teorico Petrie		Teorico Jiao		% Error Eficiencia		
м	Ν	Eficiencia (%)	Ν	Eficiencia (%)	Ν	Eficiencia (%)	Ν	Eficiencia (%)	% M _{error} simulación	% M _{error} Teorico Petrie	% M _{e rror} Teorico Jiao
0,5032	0,0641	3,23	0,1650	8,54	0,2300	11,58	0,2730	13,75	157	259	326
0,3094	0,0598	1,85	0,1760	5,83	0,2430	7,52	0,2870	8,88	194	307	380
0,2228	0,0650	1,45	0,1810	2,64	0,2490	5,54	0,2930	6,53	178	283	350
0,1664	0,0735	1,22	0,1840	3,81	0,2530	4,20	0,2970	4,95	150	244	304

			Q _{iny}	Q _{succ}	Psucc	Piny	Pd	Experimental		Simulación			Error		
			FT-521 V	FT-621V	PT-665	PT-670	PT-675		Experimental			onnuación		-	
	Configuración	Punto	Flujo crudo	Flujo crudo	Presión entr.	Presión Jet Nº1	Presión salida							~ •	0/ 54
			Motriz (bomba)	desc. bomba	Jet Nº1	Fluido motriz	Jet N°1 (Doig)	N	м	Efic	N	м	Efic	% Werror	% Efferror
			(BPD)	(BPD)	(Psiy)	(Psig)	(Fsig)								
R = 0,132	Q _{succ} 150 THP100	1	299,72	150,83	98,58	138,75	101,00	0,0641	0,5032	3,23	0,0641	2,2394	14,61	345	353
		2	502,38	155,42	91,47	211,55	98,25	0,0598	0,3094	1,85	0,0598	2,31	14,11	647	663
		4	898.37	149.45	78.93	409.04	101.54	0.0735	0,2220	1,43	0.0735	2,0825	15.51	1152	1168
		F	207.00	140.72	100.25	529.24	204.54	0.0162	0,4963	0.70	0.0163	2,0107	5.04	F01	560
		6	307,50	247.63	195,25	446 50	204,54	0,0103	0,4002	1.56	0,0103	2 9753	6.00	264	284
	Q300	7	298.04	354.02	197,89	437.89	201.98	0.0173	1,1878	2.06	0.0173	3.0037	5.51	153	168
	THP100	8	297,90	447,64	198,37	440,27	201,89	0,0148	1,5027	2,22	0,0148	3,0450	4,79	103	116
		9	301,11	556,44	194,92	439,63	197,92	0,0124	1,8479	2,30	0,0124	3,0828	4,10	67	78
		10	298,63	648,03	197,03	437,03	199,29	0,0095	2,1700	2,07	0,0095	3,1294	3,22	44	56
	O 500 THP100	11	483,52	154,77	106,30	481,07	103,40	0,0000	0,0000	0,00	0,0000	0,0000	0,00	NA	NA
	ainy 500 THF 100	12	498,17	150,40	101,27	530,63	101,69	0,0010	0,3019	0,03	0,0010	3,2665	0,45	982	1450
		13	297,84	152,48	99,70	180,79	102,31	0,0332	0,5120	1,70	0,0332	2,3644	7,88	361,83	364,18
	0 150	14	500,18	151,97	90,98	286,00	97,96	0,0371	0,3038	1,13	0,0371	2,2983	9,22	656,47	717,26
		15	703,70	149,10	89,76	396,92	103,30	0,0461	0,2119	0,98	0,0461	2,2129	10,81	944,44	1006,73
		16	898,30	151,74	81,32	422,81	99,62	0,0566	0,1689	0,96	0,0566	2,1014	12,66	1144,00	1223,36
		17	1108,81	153,17	73,89	589,53	102,58	0,0589	0,1381	0,81	0,0589	2,0670	13,17	1396,33	1518,23
	Q _{succ} 150 THP200	18	296,78	148,53	198,67	248,24	200,78	0,0444	0,5005	2,22	0,0444	2,2307	10,49	345,71	371,67
		19	496,67	148,06	193,39	317,67	198,75	0,0451	0,2981	1,34	0,0451	2,2241	10,61	646,11	689,45
		20	697,39	151,15	190,57	410,50	201,06	0,0501	0,2167	1,09	0,0501	2,1706	11,54	901,48	962,83
		21	904,05	152,77	179,36	521,11	197,26	0,0553	0,1690	0,93	0,0553	2,1157	12,44	1151,99	1232,37
	Q _{succ} 250 THP100	22	301,08	252,37	96,42	150,95	99,09	0,0516	0,8382	4,32	0,0516	2,1557	11,79	157,18	172,82
		23	497,39	248,35	93,94	226,70	100,59	0,0527	0,4993	2,63	0,0527	2,1505	11,88	330,69	351,45
		24	698,91	250,64	88,44	327,49	100,68	0,0540	0,3586	1,94	0,0540	2,1276	12,25	493,29	533,00
		26	1069.57	249.33	73.38	569.17	103.25	0.0641	0,2733	1,73	0.0641	2,0430	13,48	767.82	822.85
	Q _{succ} 250	27	298.61	250.97	202.01	254.49	204 18	0.0432	0.8405	3.63	0.0432	2 2449	10.23	167 10	181.83
		28	507.10	252.55	192,14	324.40	198.36	0.0493	0.4980	2.46	0.0493	2,1784	11.41	337.40	364.32
12	THP200	29	700,92	251,25	186,27	426,46	199,10	0,0564	0,3585	2,02	0,0564	2,1034	12,63	486,78	524,25
0 =		30	904,05	152,77	179,36	521,11	197,26	0,0553	0,1690	0,93	0,0553	2,1157	12,44	1151,99	1232,37
₩	Q _{succ} 350 THP100	31	203,55	350,06	98,56	122,76	99,50	0,0405	1,7198	6,97	0,0405	2,2742	9,68	32,24	38,93
		32	302,98	352,07	97,45	149,84	99,59	0,0426	1,1620	4,94	0,0426	2,2508	10,13	93,70	104,87
		33	504,63	350,36	95,20	224,77	101,24	0,0490	0,6943	3,40	0,0490	2,1833	11,33	214,46	233,23
		34	704,60	352,16	92,11	326,13	104,06	0,0538	0,4998	2,69	0,0538	2,1311	12,19	326,38	353,30
		35	897,95	351,55	79,95	442,51	99,90	0,0582	0,3915	2,28	0,0582	2,0845	12,91	432,43	466,18
		36	1073,28	350,07	71,26	568,50	99,91	0,0612	0,3262	1,99	0,0612	2,0540	13,36	529,73	569,81
	Q _{succ} 350 THP200	37	199,29	350,51	202,13	224,98	202,34	0,0091	1,7588	1,60	0,0091	2,6186	1,84	48,88	14,82
		38	298,46	348,89	196,81	250,22	198,26	0,0280	1,1690	3,28	0,0280	2,4105	6,89	106,21	110,19
		39	496,31	3/0 08	197,31	320,04	202,90	0,0456	0,7039	2.47	0,0456	2,2176	10,73	215,04	234,01
		40	899.97	351.67	179.59	541.38	199.10	0.0570	0.3908	2.23	0.0570	2,3570	13.73	503,19	516.56
		42	301.91	450.35	101.61	152.43	103 39	0.0364	1.4917	5.43	0.0364	2 3187	8.81	55 44	62.20
	Q _{succ} 450 THP100	43	501.12	451.87	96.55	223.99	101.52	0,0406	0,9017	3,66	0,0406	2,2724	9,72	152.01	165.59
		44	697,90	449,42	90,87	322,45	101,65	0,0489	0,6440	3,15	0,0489	2,1856	11,29	239,40	258,76
		45	895,19	447,99	82,32	452,13	101,12	0,0536	0,5004	2,68	0,0536	2,1337	12,15	326,36	353,32
		46	1030,62	446,06	76,04	544,41	101,61	0,0577	0,4328	2,50	0,0577	2,0896	12,84	382,80	413,74
		47	201.20	152.00	06.40	120.27	09 70	0.0757	0.5109	2 9661	0.0757	1 2905	10.71	170.20	177.02
80		47	498.95	153,00	90,49	129,27	90,79	0.0689	0,3184	2 1948	0.0689	1,3003	9.89	340.95	350.61
0,2	Q _{succ} 150 THP100	49	697.59	152.68	89.45	227.76	100.52	0.0870	0.2189	1.9042	0.0870	1,3404	12.05	512.44	532.83
Ĩ		50	895.82	150.80	82.87	296.39	100.35	0.0892	0.1683	1,5010	0.0892	1.3330	12,29	691.88	718.81
<u>~</u>		51	1099,82	150,54	73,71	407,10	102,16	0,0933	0,1369	1,2768	0,0933	1,3189	12,74	863.58	897,80

Comparación resultados experimentales y resultados de las simulaciones

Anexo 12 Planificación de las pruebas

Boquilla:	
Fecha:	

Tabla A11 Datos experimentales almacenados.

Hora	P suministro del gas (Psig)	RGP	Q fluido a inyectar (Mscfd) ó (BPD)	Q fluido a bombear (Mscfd) ó (BPD)	Psucción del crudo (Psig)	Psucción del gas (Psig)	Pdescarga (Psig)	Pseparador (Psig)	Observaciones