Universidad Central de Venezuela Facultad de Ciencias Escuela de Química

TRABAJO ESPECIAL DE GRADO "COMPARACIÓN DE DOS MODELOS DE TEORÍA PARA EL CÁLCULO DE LOS DESPLAZAMIENTOS QUÍMICOS EN ESPECTROS RMN¹³C, EN MOLÉCULAS DEL TIPO ANDROSTANO"

Trabajo Especial de Grado presentado ante la llustre Universidad Central de Venezuela por la Br. Génesis Falcón, para optar por el título de Licenciada en Química.

Caracas, junio, 2016

Universidad Central de Venezuela Facultad de Ciencias Escuela de Química

TRABAJO ESPECIAL DE GRADO "COMPARACIÓN DE DOS MODELOS DE TEORÍA PARA EL CÁLCULO DE LOS DESPLAZAMIENTOS QUÍMICOS EN ESPECTROS RMN¹³C, EN MOLÉCULAS DEL TIPO ANDROSTANO"

Br. Génesis R. Falcón P. Tutor Prof. Gustavo Cabrera.

Caracas, junio, 2016

Yo, Profesor Gustavo Cabrera, investigador del Laboratorio de Productos Naturales, de la Escuela de Química de la Universidad Central de Venezuela.

Certifico que, el presente Trabajo Especial de Grado, titulado:

"COMPARACIÓN DE DOS MODELOS DE TEORÍA PARA EL CÁLCULO DE LOS DESPLAZAMIENTOS QUÍMICOS EN ESPECTROS RMN¹³C, EN MOLÉCULAS DEL TIPO ANDROSTANO"

Que presenta la Br. Génesis R. Falcón P, C. I.: 20.913.489, para aspirar al título de Licenciado en Química, ha sido realizado en el Laboratorio de Físico Química Orgánica Computacional, de la Escuela de Química de la Universidad Central de Venezuela, bajo mi dirección, durante los años 2015 y 2016, y con esta fecha se autoriza su presentación.

Caracas, mayo de 2016.

Prof / Justavo Cabrera (Tutor) Los abajo firmantes asignados por la Universidad Central de Venezuela, como integrantes del jurado examinador del Trabajo Especial de Grado titulado:

"COMPARACIÓN DE DOS MODELOS DE TEORÍA PARA EL CÁLCULO DE LOS DESPLAZAMIENTOS QUÍMICOS EN ESPECTROS RMN¹³C, EN MOLÉCULAS DEL TIPO ANDROSTANO"

Presentado por la Br. Génesis R. Falcón P, C. I.: 20.913.489, certificamos que este trabajo cumple con los requisitos exigidos por nuestra Magna Casa de Estudios para optar por el Título de Licenciado en Química.

Gustavo Cabrera Prof:

(Tutor)

Profa. María Rodríguez (Jurado)

Profa. Lola De Lima (Jurado)

RESUMEN

En el presente trabajo de investigación se realizó la comparación de dos modelos teóricos, que permitan predecir espectros RMN¹³C de moléculas del tipo androstanos. El principal fin de esta comparación es utilizar el modelo validado para la creación y actualización de una base de datos de compuestos derivados de androstanos; específicamente, datos fisicoquímicos que están directamente relacionados con la actividad viral que puedan poseer estos compuestos, concretamente contra el dengue y la fiebre amarilla.

Los modelos teóricos comparados son B3LYP y MPW1PW91, ambos con las bases 6-31G(d,p) y 6-311G(d,p); a través del uso del programa Gaussian 09 como herramienta de cálculo computacional.

Una vez obtenidos los espectros RMN¹³C de todas las moléculas, dicha data fue estadísticamente analizada haciendo uso de los parámetros coeficiente de correlación lineal, error medio, error medio absoluto, error medio cuadrático y residuales. Finalmente, se reporta como mejor funcional de cálculo B3LYP, con la base 6-311G(d,p).

KEYWORDS: Química Computacional, Cálculos DFT, RMN, RMN¹³C, Androstanos.

ÍNDICE GENERAL

INTRODUCCIÓN	1
FUNDAMENTO TEÓRICO	3
Química Computacional	3
Química Cuántica	4
Ecuación de Schrödinger	4
Aproximaciones para la resolución de la ecuación de Schrödinger	6
Mecánica Molecular	6
Mecánica Cuántica	7
a. Métodos semiempíricos	9
b. Métodos ab-initio	10
b. 1. Hartree-Fock (HF)	10
b. 1. 1. Funciones bases	12
b. 2. Teoría del funcional de densidad (DFT)	16
b. 2. 1. Funcionales de intercambio y correlación	17
a. Métodos de densidad local (LDA)	18
b. Métodos de aproximación de gradiente (GGA)	18
c. Funcionales híbridos	19
Comparación estadística	19
Correlación entre dos conjuntos de datos	20
Cálculos químico-computacionales de espectros RMN ¹³ C	22
ANTECEDENTES	23

OBJETIVOS	31
Objetivo General	31
Objetivos Específicos	31
METODOLOGÍA EXPERIMENTAL	32
Equipos y Software	32
Procedimiento	32
RESULTADOS Y DISCUSIÓN	34
CONCLUSIONES	73
APÉNDICE A (Tablas)	75
APÉNDICE B (Gráficos)	97
BIBLIOGRAFÍA	110

ÍNDICE DE TABLAS

TABLA n°1: Compuestos utilizados y sus estructuras	34
TABLA n°2: Valores de los desplazamientos químicos de RMN ¹³ C, exp calculados con MPW1PW91/6-31G(d,p)	erimentales y 38
TABLA n°3: Compuestos principales y sus derivados	45
TABLA n°4: Intercepción, pendiente y coeficiente de correlación lineal (r ²), obtenidos

TABLA n°5: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidospor ajuste lineal de $\delta_{exp.}$ Vs. $\delta_{cal.}$, MPW1PW91/6-311G(d,p)51

50

por ajuste lineal de $\delta_{exp.}$ vs. $\delta_{cal.}$ MPW1PW91/6-31G(d,p)

TABLA n°6: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidospor ajuste lineal de $\delta_{exp.}$ Vs. $\delta_{cal.,}$ B3LYP/6-31G(d,p) y B3LYP/6-311G(d,p)52

TABLA n°7: Error medio (EM) obtenido en el cálculo de los desplazamientosquímicos55

TABLA n°8: Error medio absoluto (EMA) obtenido en el cálculo de los desplazamientosquímicos56

TABLA n°9: Error medio y Error medio absoluto para la totalidad de los carbonosestudiados. Valores en ppm57

ÍNDICE DE GRÁFICOS

GRÁFICO derivados	n°1:	Correlación	de	datos,	MPW1PW91/6-31G(d,p),	compuesto	3 y 48
GRÁFICO derivados	n°2:	Correlación	de	datos,	MPW1PW91/6-31G(d,p),	compuesto	4 y 49
GRÁFICO derivados	n°3:	Correlación	de	datos,	MPW1PW91/6-31G(d,p),	compuesto	5 y 49
GRÁFICO derivados	n°4:	Correlación	de	datos,	MPW1PW91/6-31G(d,p),	compuesto	6 y 49
GRÁFICO desplazami	n°5: ientos	Error medic químicos	cu	adrático	(EMC) obtenido en el	cálculo de	los 54
GRÁFICO n°6: Residuales del compuesto n°18					58		
GRÁFICO n°7: Residuales del compuesto n°4					61		
GRÁFICO n°8: Residuales del compuesto n°5					62		
GRÁFICO n°9: Residuales del compuesto n°8.a					65		
GRÁFICO n°10: Residuales del compuesto n°8.b					65		
GRÁFICO	n°11:	Residuales de	el cor	mpuesto	n°10.a		68

GRÁFICO n°12: Residuales del compuesto n°10.b	68
GRÁFICO n°13: Residuales del compuesto n°15.a	71
GRÁFICO n°14: Residuales del compuesto n°15.b	71

ÍNDICE DE FIGURAS

FIGURA n°1: Enumeración del esqueleto carbonado	37
FIGURA n°2: Estructura de la 3β-Acetoxi-5α, 6β, 16α-tribromo	58
FIGURA n°3: Estructura de la Dihidrotestosterona	61
FIGURA n°4: Estructura de la Epiandrosterona	62
FIGURA n°5: Estructura A = 5α-Androstan-4α,17β-diol; Estructura B = 5β-Androstan- 4β,17β-diol	64
FIGURA n°6: Estructura A = 2α-Acetoxi-17β-hidroxi-5α-androstan-3-ona; Estructura E 2β-Acetoxi-17β-hidroxi-5α-androstan-3-ona	3 = 67
FIGURA n°7: Estructura A = 5α-Androst-3-en-17-ona; Estructura B = 5α-Androst-2-er	า-
17-ona	70

INTRODUCCIÓN

El desarrollo de nuevos métodos para los cálculos en mecánica cuántica de los parámetros de RMN, junto con el crecimiento continuo de las infraestructuras de computación, han llevado al estudio de una amplia gama de problemas químicos.^[1]

La confrontación simultánea de la información experimental con aquella predicha según modelos químico-computacionales conduce a un proceso muy potente y creativo de intercambio entre la información experimental y las presunciones teóricas propuestas. Esta metodología asegura la confiabilidad de los resultados experimentales. La información teórica no sólo es un complemento a los datos experimentales, sino que también es una fuente independiente de información acerca de estructuras moleculares, información vibracional y propiedades experimentales del estado basal electrónico y de los estados excitados. Así, el objetivo de la química computacional es producir y utilizar programas informáticos, los cuales se basan en algoritmos y teorías desarrolladas en química teórica y permiten predicciones precisas de propiedades atómicas y moleculares (energía, momento dipolar, frecuencias vibracionales, etc.), así como del desarrollo de reacciones químicas.^[2]

Debido a las características intrínsecas del desplazamiento químico del ¹³C, su cálculo ha demostrado ser particularmente valioso como apoyo en el análisis estructural de compuestos orgánicos. En detalle, este enfoque ha sido empleado para investigar los mecanismos de reacción, iones inestables, complejos organometálicos, tautomería, propiedades conformacionales, y en general, diferentes aspectos estructurales de las moléculas orgánicas.^[1]. Debido a esto, la aplicación generalizada de RMN¹³C ha supuesto una demanda creciente de un tratamiento teórico fiable de los parámetros espectroscópicos subyacentes. Sin embargo, el establecimiento de relaciones precisas, entre los desplazamientos químicos experimentales y los calculados, requieren la

evaluación de muchos factores notablemente complejos; entre ellos el efecto de los sustituyentes en una molécula. En este sentido, uno de los efectos de sustituyentes más fuertemente debatidos en la química orgánica e inorgánica se debe al efecto que producen los átomos de halógenos pesados.

Por otra parte, existen una serie de moléculas orgánicas muy conocidas y estudiadas actualmente por su actividad biológica, llamadas androstanos. Los androstanos, son terpenos tetracíclicos. Los terpenos son acoplamientos diméricos de unidades de difosfato reactivo de isopreno (pirofosfato de isopreno), los cuales pueden ser de cadena abierta, cíclicos, policíclicos y policíclicos puenteados.^[3]

Considerando lo anteriormente expuesto, el presente trabajo tiene como objetivo la comparación de dos modelos teóricos, que permitan predecir los espectros RMN¹³C de moléculas del tipo androstanos, con el menor sesgo respecto a los espectros obtenidos experimentalmente. Esto con el fin de obtener un método computacional que permita calcular teóricamente, con el mínimo error, las propiedades físico-químicas relacionadas a la actividad biológica de dichas moléculas.

FUNDAMENTO TEÓRICO

Química Computacional

La química computacional simula estructuras químicas y reacciones numéricamente, basándose en las leyes fundamentales de la física. Esta permite el estudio de los fenómenos químicos mediante la ejecución de cálculos en los ordenadores, en lugar de, mediante el estudio de las reacciones y compuestos experimentalmente. Algunos métodos pueden ser usados para modelar no sólo las moléculas estables, sino también, intermedios inestables de corta duración e incluso estados de transición. De esta manera, puede proporcionar información sobre las moléculas y reacciones, que es imposible de obtener a través de la observación.

Hay dos grandes áreas dentro de la química computacional dedicadas a la estructura de las moléculas y su reactividad: mecánica molecular y la teoría de la estructura electrónica (química cuántica).^[4]

La mecánica molecular utiliza las leyes de la física clásica para predecir estructuras y propiedades moleculares, considerando únicamente el movimiento de los núcleos; es decir, no tratan a los electrones de un sistema explícitamente. Los efectos electrónicos se encuentran implícitos en los campos de fuerza. Esto hace que la mecánica molecular sea muy eficiente computacionalmente, y pueda ser utilizada para hacer cálculos en moléculas muy grandes (del orden de 104 a 105 átomos), pero está limitada a la clase de sistema molecular, ya que no todos los campos de fuerza pueden ser usados para los sistemas de interés; y por otro lado, los efectos electrónicos no son los predominantes, por lo que no se pueden hacer estudios sobre procesos que involucren formación o rompimiento de enlaces.

En contra parte, la teoría de la química cuántica se basa en la mecánica cuántica y constituyen aproximaciones para la resolución de la ecuación de onda de Schrödinger. Estos métodos permiten estudiar formación y/o rompimiento de enlaces como consecuencia de reacciones químicas; sin embargo, el costo y tiempo computacional son mucho mayores.^[5]

Química Cuántica

A principios del siglo veinte, los físicos encontraron que la mecánica clásica no describía correctamente el comportamiento de partículas tan pequeñas como los electrones y los núcleos de los átomos y las moléculas. El comportamiento de estas partículas está regido por un conjunto de leyes denominado mecánica cuántica. La aplicación de la mecánica cuántica a los problemas de la química constituye la Química Cuántica.

El estado de un sistema en mecánica clásica se define especificando todas las fuerzas que actúan y todas las posiciones y velocidades (o momentos) de las partículas. El principio de incertidumbre de Heisenberg muestra que la especificación simultánea de la posición y del momento es imposible para una partícula microscópica. Debido a esto, en mecánica cuántica, el estado de un sistema está definido por una función matemática Ψ , llamada función de onda dependiente del tiempo (ecuación de Schrödinger).

Ecuación de Schrödinger

El concepto de función de onda y la ecuación que proporciona la forma en la que dicha función cambia con el tiempo fueron descubiertos en 1926 por el físico austríaco Erwin

Schrödinger. Para un sistema unidimensional de una sola partícula se postula que la ecuación es:

$$-\frac{\hbar}{i}\frac{\partial\Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) \quad (1)$$

donde la constante $\hbar \equiv h/2\pi$; h es la constante de Planck, m es la masa de la partícula, y V(x,t) es la función de energía potencial del sistema.

En muchas aplicaciones de la química cuántica no es necesario utilizar la ecuación (1); sino una forma más sencilla, la cual es independiente del tiempo. Así, si se considera el caso en el que la función de energía potencial "V" depende de la posición "x" pero no del tiempo (el sistema está en uno de sus estados estacionarios de energía constante) y además, que la función Ψ posee soluciones que pueden ser escritas como el producto de una función del tiempo por una función de x; es decir, $\Psi(x,t) = f(t)\Psi(x)$; la ecuación (1) queda entonces como:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x) \quad (2)$$

donde E es la energía total del sistema.

Usualmente la ecuación (2) puede ser rescrita de la siguiente manera:

$$H\psi(x) = E\psi(x)$$
 (3)

donde ψ son las autofunciones, E los autovalores y H es el operador Hamiltoniano del sistema, el cual viene dado por:

$$H = -\frac{\hbar}{2m}\nabla^2 + v(x) \quad (4)$$

El formalismo en el uso de los operadores permite entonces extender la ecuación a un sistema de varias partículas en las tres dimensiones r=(x,y,z). Quedando así la ecuación (3) como:

$$H\psi(r) = E\psi(r)$$
 (5)

Es notorio que la ecuación de Schrödinger independiente del tiempo contiene dos incógnitas, las energías permitidas E y las funciones de onda ψ . Para obtenerlas es necesario imponer condiciones adicionales (condiciones límite) a la función ψ para que se satisfaga la ecuación (5). Dichas condiciones límites, a su vez, determinan las energías permitidas en el sistema.^[7]

Aproximaciones para la resolución de la ecuación de Schrödinger

La resolución de la ecuación de Schrödinger independiente del tiempo de sistemas moleculares puede realizarse mediante métodos clásicos (mecánica molecular) o cuánticos (mecánica cuántica).

Mecánica Molecular

En mecánica molecular (MM), los electrones del sistema en estudio no son considerados de manera explícita sino que cada átomo (el núcleo atómico y sus electrones asociados) se trata como una sola partícula. Las interacciones entre los átomos vecinos son descritas por interacciones del tipo oscilador armónico clásico.^[8]

Se dice que una partícula realiza un movimiento armónico si experimenta una fuerza de recuperación proporcional a su desplazamiento. Debido a que el concepto de fuerza se relaciona con la energía potencial; la misma corresponde a:

$$V = \frac{1}{2}kx^2 \qquad (6)$$

Esta expresión, corresponde a la ecuación de una parábola (Figura n°1).^[9]

Figura n°1: Curva de energía potencial

Sin embargo, la MM no es muy útil para problemas químicos que implican ruptura o formación de enlace ya que los efectos electrónicos son críticos en tales casos. Más bien, se utiliza comúnmente en los grandes sistemas para predecir la energía potencial de una conformación molecular particular.^[8]

Mecánica Cuántica

Esta describe a las moléculas en términos de interacciones entre núcleos y electrones, y la geometría molecular en base a la energía mínima de arreglo de los núcleos; debido a esto, también es conocida como métodos de Estructura Electrónica.^[10]

La ecuación de Schrödinger para un átomo monoelectrónico (ecuación 5) tiene solución exacta. Sin embargo, dicha ecuación para átomos polielectrónicos y para moléculas no puede ser resuelta de forma exacta, a causa de los términos de repulsión interelectrónica de sus Hamiltonianos:

$$H = -\frac{\hbar^2}{2m_e} \sum_{i}^{electrones} \nabla_i^2 - \frac{\hbar^2}{2} \sum_{a}^{núcleos} \frac{1}{M_A} \nabla_A^2 - \frac{e^2}{4\pi\epsilon_0} \sum_{i}^{electrones} \sum_{A}^{núcleos} \frac{Z_A}{r_{iA}} + \frac{e^2}{4\pi\epsilon_0} \sum_{i}^{electrones} \sum_{j}^{electrones} \frac{1}{r_{ij}} + \frac{e^2}{4\pi\epsilon_0} \sum_{A}^{núcleos} \sum_{B}^{núcleos} \frac{Z_A Z_B}{R_{AB}}$$
(7)

Para intentar resolver la ecuación general de Schrödinger, considerando el Hamiltoniano mostrado anteriormente, la primera aproximación que se debe hacer toma en cuenta el hecho de que los núcleos se mueven mucho más lentamente que los electrones. Es decir, los núcleos son estacionarios (aproximación de Born-Oppenheimer).

En consecuencia, el Hamiltoniano puede reescribirse despreciando la energía cinética de los núcleos, quedando como se muestra a continuación:

$$H = T_e + V_{NN} + V_{eN} + V_{ee}$$
 (8)

donde T_e representa la energía cinética de los electrones, V_{NN} es la energía potencial de repulsión de los núcleos, V_{eN} es la energía potencial de atracción entre los electrones y núcleos; y V_{ee} es la energía potencial de repulsión de los electrones. Por otro lado, si se agrupan todos los términos electrónicos entonces el Hamiltoniano se representa como:

$$H = H_{el} + V_{NN}$$
(9)

Las variables en la ecuación de Schrödinger son las coordenadas electrónicas. La cantidad V_{NN} es independiente de esas coordenadas, y es una constante para una configuración nuclear dada. La omisión de un término constante "C" en el Hamiltoniano no afecta a las funciones de onda, y simplemente hace que cada valor propio de la energía disminuya en C. Por tanto si V_{NN} se omite de la ecuación de Schrödinger, se obtiene:

$$H_{el}\psi_{el} = E_{el}\psi_{el} \qquad (10)$$

donde la energía puramente electrónica (E_{el}) depende paramétricamente de las coordenadas nucleares.^[7]

Sin embargo, aún así esta ecuación es irresoluble al considerar sistemas con muchos electrones; por lo tanto, para elaborar una teoría mecanocuántica práctica, se han introducido aproximaciones con el fin de proveer métodos que permitan obtener información acerca del sistema que se quiera estudiar.

De esta manera, los métodos de estructura electrónica pueden agruparse según el tipo de aproximación que se utilice para resolver la ecuación de onda de Schrödinger en: métodos semiempíricos, métodos ab initio y funcionales de densidad.^[11]

a. Métodos semiempíricos

Se caracterizan por el uso de parámetros derivados de data experimental para así simplificar la aproximación de la ecuación de Schrödinger. Estos métodos son apropiados para cálculos cualitativos de moléculas orgánicas simples, y por ser relativamente económicos, se puede aplicar en una gran cantidad de moléculas.

También se utilizan como un primer paso en cálculos ab-initio de sistemas muy grandes. Entre los métodos más conocidos se encuentran: MINDO, AM1 y PM3.

Una gran limitante es que sólo pueden ser usados para sistemas en los cuales los parámetros han sido desarrollados para todos los átomos que lo componen. Además, no son buenos para describir estructuras de transición, los enlaces de con hidrógenos, moléculas que contienen átomos para los cuales no existe una buena parametrización.^[4]

b. Métodos ab-initio

Llamados también métodos de primeros principios; ya que estos no incluyen parámetros empíricos ni semiempíricos en sus ecuaciones; sólo asumen leyes básicas y bien establecidas para la resolución de la ecuación de Schrödinger. Existen una amplia variedad en este tipo de método; el más común de cálculo ab initio es llamado cálculo Hartree-Fock (HF), en el cual la aproximación principal es llamada aproximación de campo central.^[4]

<u>b. 1. Hartree-Fock (HF)</u>

En la aproximación de Hartree-Fock se supone que los electrones se mueven independientemente unos de otros; por lo cual, la función de onda multielectrónica es considerada como el producto de "n" funciones monoelectrónicas, tal como se presenta en la ecuación 11, conocida comúnmente como producto Hartree:

$$\Psi(r_1, r_2, ..., r_n) = \phi_1(r_1)\phi_2(r_2) ... \phi_n(r_n) \quad (11)$$

Sin embargo, para describir completamente al electrón, no sólo es necesario describirlo en función de sus coordenadas espaciales, sino especificar también su spin. Por lo que se debe introducir el electrón spin como un efecto cuántico, donde cada electrón posee un número cuántico de spin, que se puede orientar, en presencia de un campo, en el sentido de este u opuesto. Las funciones de spin son denotadas como α y β (+¹/₂ y -¹/₂). Es conclusión, un electrón es descrito por cuatro coordenadas: tres espaciales (r) y una coordenada spin (ω), que pueden ser expresadas como:

$$x = \{r, \omega\}$$
 (12)

Así, el producto Hartree se convierte en:

$$\Psi(x_1, x_2, \dots, x_n) = X_1(x_1) X_2(x_2) \dots X_n(x_n)$$
(13)

La función de onda total no sólo debe depender del spin, sino que debe satisfacer igualmente el requerimiento de antisimetría (el intercambio de pares de electrones genera el negativo de la función de onda, $\Psi(x_2,x_1) = -\Psi(x_1,x_2)$). Esta es una afirmación general del Principio de Exclusión de Pauli. La forma más conveniente de satisfacer dicho requerimiento para un sistema polielectrónico es mediante la construcción de un determinante cuyas columnas implican el mismo orbital-spin, mientras que, los elementos de la misma fila implican al mismo electrón. Este determinante es conocido como el determinante de Slater:

$$\Psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} X_{1}(1) & X_{2}(1) & \cdots & X_{N}(1) \\ X_{1}(2) & X_{2}(2) & \cdots & X_{N}(2) \\ \vdots & \vdots & \ddots & \vdots \\ X_{1}(N) & X_{2}(N) & \cdots & X_{N}(N) \end{vmatrix}$$
(14)

Una consecuencia de esta forma funcional es que los electrones son indistinguibles, lo que es consistente con los resultados de la mecánica cuántica, ya que cada electrón está asociado con todos los orbitales. Por otra parte, esta teoría asigna cada electrón a un orbital del tipo hidrogenoide, lo que permite el cálculo de la energía cinética electrónica, la energía potencial de atracción núcleo – electrón y la energía potencial de repulsión con los electrones de otros orbitales a través de la siguiente ecuación:

$$F\Phi_i = E_i \Phi_i \quad (15)$$

donde F es el operador de Fock, el cual contiene los operadores de energía cinética y potencial y Φ_i es un orbital molecular generado de una combinación lineal de orbitales atómicos.^[12]

La teoría Hartree-Fock es muy útil para proporcionar cálculos predictivos iniciales de primer nivel para muchos sistemas. También es razonablemente bueno en el cálculo de las estructuras y frecuencias vibratorias de moléculas estables y algunos estados de transición. Como tal, es una buena teoría a nivel de base. Sin embargo, su omisión de la correlación electrónica y su aplicabilidad a átomos o moléculas pequeñas, por lo complejo de su desarrollo, lo hace inadecuado para algunos propósitos. Por ejemplo, es insuficiente para el modelado preciso de las barreras de energía de las reacciones y de disociación del enlace.^[5]

b. 1. 1. Funciones bases

Para obtener la energía de un sistema mediante el procedimiento de Hartree-Fock, se deben especificar los orbitales atómicos con los que se van a construir los orbitales moleculares. La forma más práctica de obtener estas funciones es con un conjunto base que corresponde a una expansión truncada de orbitales atómicos.

Un punto de partida lógico es el uso de funciones que se asemejen a las funciones obtenidas de la solución de la ecuación de onda de Schrödinger para el átomo de hidrógeno. Estos orbitales tienen la forma:

$$\chi = Nx^{i}y^{j}z^{k}e^{-\zeta(r-R)}$$
(16)

Donde **R** es el vector posición del núcleo en el cual la función está centrada y N es la constante de normalización. Las funciones de este tipo se llaman funciones tipo Slater.

La construcción de orbitales moleculares a partir de un conjunto de funciones es un procedimiento matemático para el que se escoge centrar estas funciones en los núcleos porque son las regiones de mayor densidad electrónica. Los orbitales atómicos que se utilizan no obedecen a una solución estricta de la ecuación de Schrödinger, sino consisten en una expansión de funciones matemáticas (o funciones base) que conforman finalmente los orbitales moleculares.^[13]

La base STO *(Slater Type Orbitals)* es sencilla pues imita la solución exacta para el átomo de un solo electrón. Desafortunadamente, con los orbitales del tipo Slater, la resolución de muchas de las integrales que se tienen que evaluar para construir la matriz de Fock dependen de series infinitas, y el truncamiento de estas series conduce a errores significativos.^[14] Por lo que estos orbitales son ampliamente usados para moléculas lineales y para cálculos del tipo OM semiempírico.

Pople empleó una combinación de funciones Gaussianas para reemplazar a las funciones STO. La ventaja de orbitales del tipo Gaussiano (GTO) es que con estas

funciones, las integrales que se necesitan para construir la matriz de Fock pueden evaluarse exactamente.^[13] La desventaja es que los GTO tienen problemas representando el comportamiento cerca del núcleo.

Debido a la diferencia que tienen ambas funciones (STO y GTO) se necesitan varias funciones Gaussianas para suplantar adecuadamente cada STO; lo que aumenta el costo computacional; sin embargo, son las más comúnmente utilizadas.

Un conjunto base mínimo tiene una función base por cada orbital atómico formal o parcialmente ocupado. Por ejemplo, el conjunto base mínimo para el carbono, con una distribución electrónica $1s^22s^22p^2$, tiene dos funciones tipo *s* y funciones p_x , p_y y p_z , para un total de 5 funciones base. Este conjunto base mínimo se denomina *single zeta* (SZ).

Un conjunto base mínimo resulta por lo general inadecuado, pues no describe correctamente a los electrones de valencia. Una solución a esto es duplicar el tamaño del conjunto base, estos se conocen como conjuntos *double zeta* (DZ). Así, para el ejemplo del carbono, el conjunto DZ presenta 4 funciones base del tipo s y 2 conjuntos de funciones del tipo p (que comprenden p_x , $p_y y p_z$), para un total de 10 funciones base. Pueden mejorarse los resultados con conjuntos *triple zeta* (TZ) o aun más grandes (*multi-zetas*).

Para la gran mayoría de los conjuntos base, las funciones base no se construyen a partir de una sola función Gaussiana, sino que se hace una combinación lineal de funciones primitivas (PGTO) para formar una función base, que se conoce como base contraída (CGTO). ^[14] La contracción es especialmente útil para describir los orbitales del core (capas electrónicas internas), debido a que ellos requieren un gran número de funciones base para representar la cúspide de la función de onda cerca del núcleo. Es

decir, las CTGO minimizan el problema de la representación de los GTO, del comportamiento cerca del núcleo (Figura n°2).^[5]

Figura n°2: Comparación de Funciones bases CTGO en relación a orbitales STO.

De esta manera vemos que en la base 6-31G, el guión separa lo relativo al *core* de la valencia. En este caso, cada electrón del *core* está representado por 6 funciones Gaussianas. La región de valencia está representada por dos tipos de base. La base interna es una combinación lineal de tres funciones primitivas, mientras que la base externa está descrita por una sola función primitiva Gaussiana.

En ciertos casos, aún el uso de bases *multi-zeta* no proporciona suficiente flexibilidad matemática para describir adecuadamente la distribución electrónica. Al extender el conjunto base incluyendo un conjunto de funciones que imitan los orbitales atómicos con un momento angular mayor que en el espacio de valencia, se mejora en gran medida la flexibilidad base. Estas funciones se llaman funciones de polarización. En la nomenclatura de Pople se indican en paréntesis, como por ejemplo 6-31(d,p). En este caso se indica que se ha incluido una función *d* a los átomos que no son de hidrógeno y una función *p* a los átomos de hidrógeno.

En los aniones o moléculas con pares de electrones adyacentes, el conjunto base debe aumentarse con funciones difusas que permitan la expansión de la densidad electrónica en un volumen mayor. La nomenclatura corresponde a un signo "+".

Para incluir la correlación electrónica, la combinación lineal de funciones base considera estas nuevas funciones con configuraciones excitadas y en función a estas existen métodos como Interacción de Configuraciones, CI; o Coupled Clusters (CC)₁. Otros métodos que incluyen correlación electrónica son el método de perturbaciones (MP), y la teoría del funcional de Densidad (DFT).^[14]

b. 2. Teoría del funcional de densidad (DFT)

La función de onda electrónica depende de 3n varibles, las coordenadas x,y,z de cada electrón. Esto hace complicada y difícil su interpretación. Por otra parte, la densidad electrónica total $\rho(\mathbf{r})$ depende sólo de tres variables, la posición x, y, z en el espacio. En 1964, Honhenberg y Kohn^[15] probaron un teorema que establecía que para moléculas con estados basales no degenerados, la energía del estado basal, la función de onda y las demás propiedades electrónicas son determinadas únicamente por la densidad electrónica de ese estado $\rho(\mathbf{r})$, por lo que se puede decir que la energía del estado basal E es funcional (función de una función) de la densidad electrónica, $E = E[\rho(\mathbf{r})]$. Asimismo, también demostraron que la densidad electrónica específica, su energía será mayor o igual a la energía exacta.

Debido a que la función densidad electrónica sólo depende de tres coordenadas, independientemente del número de electrones, a medida que aumenta la complejidad de la función de onda el número de variables que describen la densidad electrónica

permanecen igual. Esto hace que los métodos DFT tengan un menor costo computacional en comparación a otros métodos que incluyen correlación electrónica.^[15]

En la teoría del funcional de densidad, la energía de un sistema está compuesta por la suma de 6 componentes:

$$E[\rho(r)] = V_{nn}[\rho(r)] + T_{e'}[\rho(r)] + V_{ne}[\rho(r)] + V_{ee}[\rho(r)] + E_{xc}[\rho(r)]$$
(17)

Las definiciones para la repulsión núcleo-núcleo (V_{nn}), la atracción núcleo-electrón (V_{ne}), y la repulsión clásica de coulomb electrón-electrón (V_{ee}) son las mismas que las que se usan en la teoría Hartree-Fock. Sin embargo, la energía cinética de los electrones (T_e), así como la energía de intercambio electrón-electrón no-clásica (E_{xc}) difieren de las que se utilizan en la teoría de Hartree-Fock. Este último término describe el movimiento correlacionado de los electrones de diferente spín, que no es tomado en cuenta en la teoría de Hartree-Fock. Debido a estas diferencias, la energía de intercambio calculada en la teoría de Hartree-Fock no se utiliza en la teoría DFT.^[14]

b. 2. 1. Funcionales de intercambio y correlación

Existen varias aproximaciones para calcular los términos de energía de correlación e intercambio. La principal diferencia entre estos métodos es el uso único de la densidad electrónica (métodos de la densidad local, LDA) o de la densidad electrónica y sus gradientes (métodos de aproximación de gradiente, GGA). Además de estos métodos, existe otro grupo de funcionales híbridos en los cuales se utilizan mezclas de energía de intercambio DFT y HF.

a. Métodos de densidad local (LDA)

Los métodos LDA utilizan la densidad local para definir el aproximado del funcional de intercambio y correlación. El modelo más simple de esta aproximación considera un gas de electrones uniforme. Estos funcionales no describen adecuadamente los sistemas moleculares porque en éstos, la densidad electrónica no es constante en toda la molécula. El funcional de Slater, combinado con el funcional de correlación VWN de Vosco, Wilk y Nussair es uno de los funcionales LDA más utilizados.

b. Métodos de aproximación de gradiente (GGA)

Los métodos GGA mejoran su aproximación con respecto a los modelos LDA incluyendo el gradiente de la densidad, por lo que consideran un gas de electrones no uniforme, más parecido a un sistema real. Se han propuesto diferentes funcionales de intercambio y de correlación utilizando esta aproximación. Para calcular la energía de un sistema se pueden combinar diferentes funcionales de intercambio y correlación, a continuación se indican algunos de los más utilizados y su acrónimo en el software Gaussian^[14]:

Intercambio Becke88 (B) Perdew.Wang (PW91) Perdew-Wang modificado (MPW) Gill96 Perdew-Burke-Erzenhof (PBE)

Correlación

Lee Yang y Parr (LYP) Perdew-Wang (PW) Perdew 86 (P86)

Becke96 (B96) Perdew-Burke-Erzenhof (PBE)

c. Funcionales híbridos

Los funcionales híbridos obtienen la energía de correlación incorporando una porción de la energía exacta de correlación calculada con HF a la energía de intercambio y correlación que se calcula a partir de DFT e incluso otros métodos ab-initio. Un funcional híbrido de correlación e intercambio se construye como una combinación lineal del funcional de intercambio exacto de HF con algún funcional de densidad de intercambio y correlación. Los parámetros que determinan la contribución de cada funcional se obtienen por lo general mediante el ajuste de las predicciones del funcional a datos termodinámicos experimentales o calculados con precisión. Estos funcionales son muy utilizados ya que se ajustan en gran medida a parámetros experimentales. Entre estos están el funcional B3LYP^[16], desarrollado como una combinación del funcional de correlación de tres parámetros de Becke con el funcional de intercambio de Lee, Yang y Parr. El funcional MPW1PW91 tiene como diferencia principal con B3LYP un mayor porcentaje de energía de correlación HF.

Comparación estadística

Un componente esencial de los cálculos computacionales es calibrar nuevos métodos, y otra es utilizar los resultados de los cálculos para predecir o racionalizar el resultado de experimentos. Ambos tipos de investigación comparan dos tipos de datos y el interés es en la caracterización de lo bien que un conjunto de datos puede representar o predecir el otro. Por desgracia, uno o ambos conjuntos de datos suelen contener "ruido", y puede ser difícil decidir si una pobre correlación se debe a datos ruidosos ó a una falta fundamental en el cálculo. La estadística es una herramienta para cuantificar este tipo de relaciones.

Correlación entre dos conjuntos de datos

En la ciencia, se está a menudo interesado en saber si un tipo de dato está correlacionado con otro tipo, es decir, si los puntos de datos de un conjunto pueden ser usados para predecir otros. Si se denota esos dos conjuntos de datos, "x" e "y" (función, f(x)), y se desconoce la forma funcional f (x), el análisis de correlación se puede utilizar para buscar una función aproximada que conecta los dos conjuntos de datos. El caso más simple corresponde a una correlación lineal (Figura n°3):

$$y_i = f(x_i) = ax_i + b$$
 (18)

Figura n°3: Correlación linear aproximada entre "x" e "y",

Se debe determinar la pendiente (a) y el parámetro de intersección (b) para dar el mejor ajuste posible; es decir, se hace un ajuste lineal por mínimos cuadrados que surge al definir la "mejor" línea como la que tiene la más mínima desviación entre los y_i puntos reales y los experimentales.^[15] Los puntos individuales sobre la línea se denotan por (x₁,y₁), (x₂,y₂),... (x_i,y_i).La media de los valores de x se designa por \bar{x} y la media de los valores de y por \bar{y} Para estimar la bondad con que se ajustan los puntos experimentales a una línea recta, se calcula el coeficiente de correlación momento-producto, r. Para simplificar, a este dato estadístico se le denomina "coeficiente de correlación" debido a que en las ciencias cuantitativas es el tipo de coeficiente de correlación más usado. El valor de r viene dado por:

$$r = \frac{\sum_{i} \{(x_{i} - \bar{x}) (y_{i} - \bar{y})\}}{\left\{ \left[\sum_{i} (x_{i} - \bar{x})^{2}\right] \left[\sum_{i} (y_{i} - \bar{y})^{2}\right] \right\}^{1/2}}$$
(19)

Se puede demostrar que el coeficiente de correlación está limitada al intervalo [-1,1], donde r = 1 indica que todos los puntos se encuentran exactamente en una línea con una pendiente positiva (a> 0), r = -1 indica que todos los puntos se encuentran exactamente en una línea con una pendiente negativa (a <0), mientras que r = 0 indica dos conjuntos de datos no correlacionados ó que no están linealmente relacionados. El "coeficiente de correlación" se da a menudo como r², que por supuesto está limitado al intervalo [0,1].^[17]

Cuando se quiere comparar los resultados experimentales contra los teóricos (dos métodos), uno de los ejes del gráfico de regresión se usa para los resultados obtenidos experimentalmente, y el otro para los resultados obtenidos teóricamente de los compuestos en estudio. En estas circunstancias, cada punto del gráfico representa una muestra única analizada por dos métodos distintos. De dicha regresión lineal se deduce si los datos se correlacionan, usando el r². Un método es considerado aceptable cuando el valor de r² \ge 0,5.

Adicionalmente, para comprobar si un ajuste de un modelo lineal es correcto, el análisis de residuos juega un papel fundamental. Llamamos residuos a las diferencias entre los

valores observados y los pronosticados ($y_i - \hat{y}_i$). Si es apropiado un grafico de calibrado lineal, y si los errores aleatorios en los valores de "y" están distribuidos normalmente, los residuos en sí mismos deberían estar distribuidos normalmente en torno al valor cero.^[17]

Cálculos químico-computacionales de espectros RMN¹³C

La asignación de las señales de los espectros de Resonancia Magnética Nuclear (RMN) de ¹³C en moléculas orgánicas es difícil y ha llevado a errores que han requerido múltiples revisiones.

El desarrollo de la química computacional, tanto en el aspecto del cómputo mismo (procesadores más rápidos, recursos más grandes de memoria, cómputo en paralelo, etc.) así como de la química teórica (nuevas teorías, conceptos innovadores, nuevos algoritmos) y de las matemáticas (métodos numéricos más eficientes, por ejemplo), permiten actualmente el cálculo de las propiedades electrónicas de las moléculas que se estudian experimentalmente, de tal modo que es posible obtener propiedades termodinámicas y espectroscópicas más confiables de las mismas y no sólo de modelos, en ocasiones sobre simplificados.

De manera general, desplazamientos químicos satisfactorios, para varios núcleos diferentes incluyendo ¹³C, ¹⁷O, ¹⁵N y ¹⁹F, se pueden obtener por cálculos DFT en combinación con los orbitales atómicos Gauge incluidos (GIAO's).^[18]

ANTECEDENTES

En 2002, Barone y col.^[19], realizaron la optimización geométrica y los cálculos de los desplazamientos químicos de RMN¹³C, sobre 14 productos naturales de baja polaridad que contienen entre 10-20 átomos de carbono; utilizando los métodos Hartree - Fock (HF) y B3LYP y la base 6-31G(d), en ambos casos. Los compuestos utilizados fueron:

Se realizó la correlación de los parámetros de linealidad, obtenidos a partir del gráfico desplazamientos químicos de RMN¹³C teóricos vs. experimentales; realizado para cada compuesto con ambos métodos. A partir de lo cual se propuso que tanto el método HF como el B3LYP son métodos computacionales adecuados para confirmar la data estructural de RMN, en productos naturales de baja polaridad y tamaño medio.

Cabe acotar que los datos de RMN¹³C del compuesto 3, utilizado por Barone y Col. serán usados en este proyecto, ya que el mismo forma parte de la familia de los androstanos.

Por su parte, en 2004, Cimino y col.^[1], estudiaron la influencia del método de cálculo sobre cálculos teóricos de desplazamientos químicos de RMN¹³C; este estudio se llevó a cabo con 16 productos naturales de baja polaridad, que contienen entre 10-20 átomos de carbono. Las geometrías de las especies involucradas fueron optimizadas a nivel PM3, HF, B3LYP y MPW1PW91 mientras que los parámetros RMN¹³C se determinaron a nivel HF, B3LYP y MPW1PW91. Los compuestos usados fueron los siguientes:

Análogamente, se realizó la correlación de los parámetros de linealidad y se obtuvo que el método híbrido MPW1PW91 ofrece la mejor coincidencia entre los resultados calculados y los experimentales. Además, independientemente del método de cálculo considerado, siempre se obtuvieron los resultados más fiables mediante el uso de la base 6-31G (d, p).
Por otra parte, entre el Laboratorio de Productos Naturales de la Facultad de Ciencias-UCV, el Instituto de Biomedicina de la Facultad de Medicina-UCV y el Laboratorio de Físico Química Orgánica Computacional de la Facultad de Ciencias-UCV, se lleva a cabo un proyecto en conjunto sobre el uso de androstanos como antivirales, contra el dengue y la fiebre amarilla. Por tal razón, en el Laboratorio de Productos Naturales se han realizado diversos trabajos que consisten en modificaciones estructurales en androstanos; los cuales han sido caracterizados posteriormente a través de sus respectivos espectros RMN¹³C; además de otras técnicas. Dichos espectros de RMN¹³C serán utilizados para llevar a cabo este proyecto de tesis. Cabe acotar que los trabajos a tomar en cuenta se realizaron a partir de 4 materiales principales de partida (testosterona, dihidrotestosterona, epiandrosterona y dehidroepiandrosterona), los cuales también se contemplarán para la comparación teórico-experimental.

Desde el año 2007 hasta la presente fecha^[20, 21], Neacato, P. sintetizó 6 androstanos diferentes; 1 de ellos es el resultado de modificaciones al anillo A de la testosterona; otros 2 resultaron de la modificación del anillo A de la Dihidrotestosterona; finalmente, 3 fueron el resultado de modificaciones en los anillos A, B y D, de la Dehidroepiandrosterona:

Asimismo, en el 20012^[22], Paz, D. realizó diversas esterificaciones del anillo A de la epiandrosterona, haciendo uso de la Diciclohexilcarbodiimida (DCC) como catalizador; obteniendo, entre otros, 3 productos de interés:

En el 2013^[23], Alvarado, R llevó a cabo una esterificación en el anillo D de la Testosterona, obteniendo un 71% del producto esperado.

Igualmente, en el 2014^[24], Antunez D. obtuvo 2 androstanos de interés, al realizar dos modificaciones diferentes a los anillos A y B de la Dehidroepíandrosterona; una de ella fue la oxidación de dichos anillos, y la otra, una bromación y posterior esterificación:

Por su parte, en el 2015^[25], Montilla E., realizó una modificación del anillo B de la testosterona, obteniendo el producto 17 β -acetoxiandrost- $\Delta^{4,6}$ -dien-3-ona:

Además, Marcano, D. y col., realizaron diversas síntesis de derivados de D-Homoandrostanos, para sus posteriores estudios de actividad biológica. Dichos compuestos también fueron sintetizados en el Laboratorio de Productos Naturales de la Faculta de Ciencias – UCV, y en una publicación realizada en 1981^[26], detalla un estudio sistemático de los desplazamientos químicos de RMN¹³C de algunos derivados oxigenados de los D-Homoandrostanos. Del conjunto de datos mostrados en dicha publicación, se usarán los correspondientes al D-homo-5 α -androstan-3-ona.

En 2010, Ricco, C. y col.^[27], sintetizaron la 7 β -hidroxi-epiandrosterona, el cual posee fuertes propiedades anti-inflamatorias, partiendo de la 3 β -acetoxi-17,17-(etilendioxi)-5-androsteno, bajo la siguiente ruta sintética:

6 5 4 Condiciones de reacción: (i) CrO3-3,5-dimetilpirazol, CH2Cl2, 4h, −20 °C; (ii) H2, 10%Pd/C, EtOAc, 1 h, Ta; (iii) NaBH4, CeCl3·7H2O, MeOH, 2 h, 0 °C; (iv) TsOH, H2O, Me2CO, 12 h, Ta; (v) K2CO3, MeOH, 1.5 h, Ta.

Esta síntesis estereoselectiva, dio un 63% del producto esperado y sus datos de RMN¹³C serán utilizados en este proyecto.

OBJETIVOS

Objetivo General

Comparar los métodos computacionales B3LYP y MPW1PW91 a través del cálculo de los desplazamientos químicos en espectros RMN¹³C, en moléculas del tipo androstano; usando las bases 6-31G(d,p) y 6-311G(d,p).

Objetivos Específicos

- Optimizar la geometría molecular de los androstanos en estudio, con el método B3LYP y las bases 6-31G(d,p) y 6-311G(d,p).
- Optimizar la geometría molecular de los androstanos en estudio, con el método MPW1PW91 y las bases 6-31G(d,p) y 6-311G(d,p).
- Realizar los cálculos de los espectros de RMN¹³C para cada uno de los androstanos, con el método B3LYP y las bases 6-31G(d,p) y 6-311G(d,p).
- Realizar los cálculos de los espectros de RMN¹³C para cada uno de los androstanos, con el método MPW1PW91 y las bases 6-31G(d,p) y 6-311G(d,p).
- Comparar los resultados obtenidos teóricamente a través del modelaje molecular para cada uno de los métodos usados con sus respectivas bases, con los experimentales; haciendo uso de parámetros estadísticos como: curvas de regresión lineal, parámetros de correlación, residuales y errores medios.

METODOLOGÍA EXPERIMENTAL

Equipos y Software

PC con procesador Intel Core2 Quad de 2,4 GHz x 4, memoria RAM=4GB. PC con procesador Intel Pentium Dual de 2,0 GHz x 2, memoria RAM=4GB. PC con procesador Intel Core i5-2310 de 2,9 GHz x 4, memoria RAM=4GB. Sistema Operativo Ubuntu 14.04 LTS. Software Gaussian 09 y Gauss View 5.0. Software Gabedit 2.4.7. Software Microsoft Office Excel 2007.

Procedimiento

La optimización geométrica y posterior modelado del espectro de RMN¹³C de los diversos androstanos se llevó a cabo con los niveles de teoría de funcional de densidad (métodos híbridos): B3LYP y MPW1PW91, usando como conjuntos bases 6-31G(d,p) y 6-311G(d,p).

Se realizó los cálculos con el programa Gaussian 09, a través de los siguientes pasos:

- 1. Se inició el programa Gabedit y con este se dibujó la estructura a optimizar.
- Luego, con el mismo programa, se creó la matriz de entrada (con extensión .com).
- Se inició la terminal de Ubuntu a partir de la cual se dio la orden de ejecución del cálculo, al programa Gaussian.

- 4. Se revisó el archivo de salida (con extensión .log) para verificar que el cálculo culminara de manera satisfactoria.
- Nuevamente, con el programa Gabedit, se tomó la última geometría optimizada para la molécula en estudio y se creó una nueva matriz de entrada (con extensión .com), la cual permitió realizar el cálculo correspondiente a los desplazamientos químicos de ¹³C.
- 6. Se inició la terminal de Ubuntu y se dio la orden de ejecución del cálculo, al programa Gaussian, usando la matriz creada previamente.
- Se revisó el archivo de salida (con extensión .log) para verificar que el cálculo culminara de manera satisfactoria.

Una vez culminados los cálculos, se procedió a visualizar el espectro de RMN¹³C obtenido, haciendo uso del programa Gauss View; con el cual se obtuvieron los desplazamientos químicos calculados para cada átomo de C; los cuales fueron guardados en un archivo .txt..

Posteriormente, dichos desplazamientos se compararon contra la data experimental ya existente, y se llevó a cabo la validación del método computacional, haciendo uso de herramientas estadísticas como cálculos de residuales, cálculos de los coeficientes de correlación lineal y cálculos de errores medio; haciendo uso del programa Office Excel,

RESULTADOS Y DISCUSIÓN

En la siguiente tabla se muestran todos los compuestos utilizados para el cálculo de los desplazamientos químicos de RMN¹³C; además, a lo largo del análisis y discusión de los resultados se utilizará la numeración que cada uno de ellos tiene en la tabla:

Compuesto n°	Autor	Nombre	Estructura
1	BARONE	5α-Androstan-3-ona	H ₃ C H ₃ C H ₃ C H ₃ C
2	RICCO	3β,7β-Dihidroxi-5α- androstan-17-ona	HO HO HO HO HO HO HO HO HO HO HO HO HO H
3	N/A	Dehidroepiandrosterona	HO
4	N/A	Dihidrotestosterona	CH ₃ OH
5	N/A	Epiandrosterona	CH ₃ HO
6	N/A	Testosterona	CH ₃ OH

Tabla n°1: Compuestos utilizados y sus estructuras

Compuesto n°	Autor	Nombre	Estructura
7	MARCANO	5α-D- Homoandrostan- 3-ona	H ₃ C H ₃ C H ₃ C H ₃ C
8.a	NEACATO	5α-Androstan- 4α,17β-diol	CH ₃ OH CH ₃ OH
8.b	NEACATO	5β-Androstan- 4β,17β-diol	CH ₃ OH CH ₃ OH
9	NEACATO	17β-Hidroxi- androst-1,4- dien-3-ona	CH ₃ OH
10.a	NEACATO	2α-Acetoxi-17β- hidroxi-5α- androstan-3-ona	O CH ₃ O CH ₃ CH ₃ O H
10.b	NEACATO	2β-Acetoxi-17β- hidroxi-5α- androstan-3-ona	O CH ₃ CH ₃ OH
11	NEACATO	3β,6α-Dihidroxi- 5α-androstan- 17-ona	HO HO
12	NEACATO	3β,6α-Dihidroxi- 5α-androstano	HO HO

 Tabla n°1: Compuestos utilizados y sus estructuras (continuación)

Compuesto n°	Autor	Nombre	Estructura
13	NEACATO	5α- Androstan- 3,6-diona	
14	PAZ	3β- Maloniloxi- 5α- androstan- 17-ona	HO O O CH ₃
15.a	PAZ	5α-Androst- 3-en-17-ona	CH ₃ O CH ₃ O
15.b	PAZ	5α-Androst- 2-en-17-ona	CH3 CH3
16	PAZ	3β- Benzoiloxi- 5α- androstan- 17-ona	CH ₃ CH ₃ C CH ₃ C CH ₃ C CH ₃ C C CH ₃ C C C C C C C C C C C C C C C C C C C
17	ALVARADO	17β-Acetoxi- androst-4- en-3-ona	CH ₃ O ^{CH3} O ^{CH3}
18	ANTUNEZ	3β-Acetoxi- 5α,6β,16α- tribromo- androstan- 17-ona	CH ₃ O CH ₃ O CH ₃ Br Br Br Br

Tabla n°1: Compuestos utilizados y sus estructuras (continuación)

Compuesto Nombre Autor Estructura n° CH3 CH-4-Androst-en-19 **ANTUNEZ** 3.6.17-ona CH₃ Ha 17β-Acetoxi-20 MONTILLA androsta-4,6-CH3 dien-3-ona

Tabla n°1: Compuestos utilizados y sus estructuras (continuación)

* Los desplazamientos químicos correspondientes a los compuestos 3, 4, 5 y 6 fueron tomados de la Página Web Spectral Database for Organic Compounds (SDBS). Referencia bibliográfica nº 28.

** Los desplazamientos químicos para el compuesto nº1 fueron tomados de la Referencia Bibliográfica nº29.

Además, es necesario acotar que para todas las estructuras, la enumeración usada en el esqueleto carbonado principal es la que se muestra en la figura n°1:

Los valores de los desplazamientos químicos de los espectros de RMN¹³C, calculados para las estructuras optimizadas de los compuestos señalados en la tabla n°1, se compararon frente a los valores de los desplazamientos químicos experimentales correspondientes, reportados en la literatura^[19-27]. (Ver tabla n°2)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	1	38.7	24.7975		15	31.43	16.7927
	2	38.1	25.6596		16	38.82	22.0237
	3	211	193.5574	2	17	221.8	193.4456
	4	44.6	33.8132		18	13.94	4.7922
	5	46.7	25.2526		19	12.31	4.4204
	6	29	15.3863		1	37.21	23.6965
	7	32.1	20.6644		2	31.48	19.5151
	8	35.7	22.3351		3	71.36	55.5081
	9	54.1	42.647		4	42.14	26.916
1	10	35.7	22.1114		5	141.17	124.3046
	11	21.5	9.2331		6	120.72	106.2936
	12	38.8	25.1822		7	30.29	18.7828
	13	40.8	26.7343		8	31.01	18.1972
	14	54.3	40.2636	3	9	50.23	36.1789
	15	25.5	12.638		10	36.63	24.8336
	16	20.5	8.5057		11	20.35	8.3275
	17	40.3	29.0421		12	30.77	19.1626
	18	17.4	3.1935		13	47.52	34.312
	19	11.4	-0.6489		14	51.75	37.2084
	1	24.76	21.2478		15	27.85	9.9379
	2	35.96	20.0454		16	35.82	21.9712
	3	70.1	54.8373		17	221.23	195.6143
	4	36.74	23.3736		18	19.41	0.5662
	5	41.95	25.5324		19	13.52	6.9644
	6	37.55	22.4573		1	38.63	24.7294
2	7	73.91	59.5797		2	38.13	25.5726
۷	8	51.02	28.77		3	211.72	193.4384
	9	52.41	32.8351		4	44.7	33.7927
	10	34.95	22.9342	4	5	46.81	25.262
	11	20.55	9.9156		6	28.85	15.2832
	12	31.19	17.6286		7	31.3	20.0021
	13	48.11	36.4932		8	35.54	22.0655
	14	42.44	32.1931		9	54.05	42.4498

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	10	35.8	22.0009		5	171.35	148.9181
	11	21.08	9.1406		6	32.8	20.5411
	12	36.73	23.2118		7	31.55	18.7419
	13	43.04	29.9265		8	35.73	22.0801
Λ	14	50.92	36.8833		9	53.93	40.1932
4	15	23.42	10.8369		10	38.67	25.927
	16	30.57	15.9515		11	20.65	8.5587
	17	81.84	67.4704	6	12	36.44	23.0712
	18	11.15	-0.8673		13	42.82	29.865
	19	11.5	-0.7167		14	50.49	36.8117
	1	36.96	21.46		15	23.34	10.8575
	2	31.35	20.0715		16	30.41	15.9037
	3	70.91	54.7471		17	81.56	67.3504
	4	38.01	23.2727		18	11.06	-0.8307
	5	44.84	26.6062		19	17.42	4.8109
	6	28.38	16.5316		1	38.5	24.3103
	7	30.88	17.1155		2	38.1	23.6568
	8	35.03	24.0618		3	212.3	191.6067
	9	54.43	35.103		4	44.7	32.0982
5	10	35.62	22.9899		5	46.5	33.9835
	11	20.47	9.8417		6	29.1	16.4829
	12	31.54	17.7014		7	30.8	21.3037
	13	47.76	36.4253		8	35.5	21.9652
	14	51.41	32.7336	7	9	54.1	45.3697
	15	21.75	11.6399	,	10	36.1	24.248
	16	35.81	21.9626		11	20.8	8.5808
	17	221.34	194.6375		12	42	27.995
	18	13.78	4.7659		13	33.6	19.0161
	19	12.29	4.2725		14	51	34.6544
	1	35.67	23.3798		15	27.2	11.8572
6	2	33.94	19.954		16	24.1	13.894
0	3	199.6	173.1543		17	21.5	8.4688
	4	123.85	108.8871		18	42.3	30.5158

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
7	19	17	3.4864		13	44.9	29.8337
/	20	11.5	-0.7084		14	54.3	37.0148
	1	38.1	25.6116		15	23.5	10.9552
	2	18.4	7.5802	8.b	16	29.4	16.0185
	3	34.7	27.4574		17	83.5	67.5361
	4	71.2	51.7727		18	12.3	-0.9551
	5	46	38.0912		19	14.2	5.2188
	6	22.7	7.918		1	162.9	134.7574
	7	31.5	20.1259		2	123.3	112.5993
	8	35.6	21.8161		3	184.2	161.0137
	9	51.4	43.1264		4	120.4	109.467
8.a	10	32	23.9619		5	171.1	146.3529
	11	20.8	8.9257		6	36.3	20.2272
	12	37	23.2676	9	7	29.4	20.4784
	13	44.9	29.9419		8	39.7	21.9255
	14	54.3	37.2086		9	49.5	38.27
	15	23.5	10.9241		10	49.3	30.2098
	16	29.4	16.0139		11	21.1	10.0254
	17	83.5	67.5165		12	42.4	22.8977
	18	12.3	-0.8374		13	44.8	30.1708
	19	14.2	1.915		14	53.6	36.6972
	1	38.1	26.0907		15	23.2	11.06
	2	18.4	4.1272		16	27.3	15.805
	3	34.7	20.8157		17	81.9	67.2992
	4	71.2	57.8228		18	12.1	-0.8692
	5	46	-15.0021		19	20.6	6.3383
8 h	6	22.7	14.4415		1	42.4	29.3903
0.0	7	31.5	20.4935		2	74.1	59.1839
	8	35.6	22.7061		3	204	189.5773
	9	51.4	44.064	10.a	4	43.2	31.8535
	10	32	23.2813		5	47.5	25.0033
	11	20.8	9.2073		6	27.9	14.5105
	12	37	23.2115		7	27.2	19.8948

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	8	34.2	21.597	10 h	20	171.1	145.1735
	9	53.4	42.5182	10.0	21	20.5	5.2518
	10	37	23.22	-	1	32.7	31.1904
	11	20.9	9.0267		2	29.8	19.6363
	12	36.4	23.1082		3	75.9	58.9092
	13	44.5	30.113		4	31.5	17.2686
10 0	14	50.1	37.0688		5	50.3	19.4964
10.a	15	23.2	10.9904		6	66.6	49.232
	16	30.8	16.0155		7	35.9	23.9613
	17	82.5	67.3357		8	30.8	17.514
	18	11.2	-0.9643		9	40.4	37.122
	19	12.4	0.2277	11	10	38.9	23.3489
	20	171.1	147.9314		11	21.9	8.312
	21	20.5	6.5241		12	31.5	19.0576
	1	42.4	28.3337		13	47.6	34.5153
	2	74.1	59.3498		14	51.8	37.7545
	3	204	197.6226		15	23.5	9.9106
	4	43.2	29.7442		16	36.9	22.0417
	5	47.5	24.7842		17	221.2	195.4288
	6	27.9	14.8213		18	13.5	0.6505
	7	27.2	19.9695		19	19.4	2.409
	8	34.2	21.6149		1	34.5	29.3215
	9	53.4	42.5611		2	31	20.4002
10.b	10	37	22.4401		3	71.3	58.7944
	11	20.9	9.2656		4	32.3	16.4152
	12	36.4	23.2334		5	51.2	38.0575
	13	44.5	29.8603	12	6	69.8	54.5484
	14	50.1	36.8829	12	7	37.1	23.0951
	15	23.2	10.8571		8	27.1	19.89
	16	30.8	15.942		9	50.8	38.3199
	17	82.5	67.4013		10	33.5	24.2012
	18	11.2	-0.9708		11	21.4	8.9416
	19	12.4	2.4977		12	36.4	25.2462

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	13	42.2	26.4095		8	35.6	24.0674
	14	53.9	40.1897		9	54.3	34.7591
	15	24.1	13.8246		10	35	22.6771
12	16	20.5	8.1975		11	20.5	9.756
	17	40.8	28.58		12	31.5	17.4725
	18	13.5	5.9909		13	47.8	36.4452
	19	16.9	1.0149		14	51.4	32.6701
	1	36.9	33.5431	14	15	21.8	11.6964
	2	33.9	23.5373		16	35.8	22.0921
	3	211.3	185.7003		17	221.2	194.2168
	4	41.9	22.5597		18	12.2	4.7525
	5	57.2	44.5095		19	13.8	4.2456
	6	209.6	182.9583		20	166.3	151.8446
	7	45.8	30.7192		21	42	20.9709
	8	37.3	22.1311		22	166.8	139.2882
	9	51.4	38.6169		1	33.8	20.7117
13	10	38.2	28.682		2	24.8	10.5684
	11	24	9.3157		3	129.8	105.9054
	12	37.9	25.0029		4	130.5	114.3995
	13	41.4	26.6625		5	44.6	28.7006
	14	53.6	40.7189		6	28.2	13.9275
	15	26.9	13.5236		7	31.5	17.1658
	16	21.2	8.1266		8	35.6	23.9613
	17	40.9	28.398	15 2	9	54.2	35.0405
	18	20.9	5.9189	15.a	10	35	22.7177
	19	16.8	0.9591		11	20.4	9.3785
	1	36.6	21.3946		12	31.4	17.6298
	2	27.2	16.114		13	47.8	36.4433
	3	74.7	60.0599		14	51.4	32.7329
14	4	30.8	21.7715		15	21.8	11.6348
	5	44.6	26.7925		16	35.8	21.9379
	6	29.7	16.2256		17	221.2	194.6241
	7	28.2	16.9185		18	13.8	4.773

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
15.a	19	12.2	4.9428		14	50.6	32.78
	1	35.8	29.6257		15	21.5	11.7925
	2	129.8	123.944		16	34.9	22.1517
	3	130.5	133.5036		17	220.8	194.5684
	4	31.4	20.8172		18	11.6	4.7707
	5	44.6	26.211		19	13.4	4.3643
	6	24.8	17.1499	16	20	168	145.6328
	7	28.2	16.9407		21	131.8	113.7415
	8	35	24.0707		22	125.4	114.5196
	9	54.2	34.3846		23	130.8	110.4985
15.b	10	33.8	22.5068		24	122.3	114.723
	11	20.4	9.5048		25	125.3	110.1226
	12	31.5	17.6778		26	133.5	112.3363
	13	47.8	36.4605	-	1	35.69	23.4003
	14	51.4	32.8362		2	33.91	20.0596
	15	21.8	11.6314		3	199.34	173.1256
	16	35.6	21.9587		4	123.93	109.0054
	17	221.2	194.6416		5	171.07	148.4475
	18	13.8	4.7963		6	32.71	20.2694
	19	12.2	4.7973		7	31.48	18.486
	1	35.5	22.1729		8	35.39	21.9183
	2	25.7	15.2752		9	53.7	40.1405
	3	76	58.4299	17	10	38.59	25.9363
	4	30.4	21.0656	17	11	20.51	8.5091
	5	41.2	26.7632		12	36.5	23.4252
	6	30	16.3748		13	42.44	30.4691
16	7	28.2	17.1264		14	50.24	36.9637
	8	34.8	24.1146		15	23.45	10.5473
	9	51.2	35.0776		16	27.46	15.6344
	10	34.5	22.9106		17	82.43	70.0101
	11	20.1	9.811		18	12	-1.3831
	12	31.3	17.639		19	17.38	4.7438
	13	47.4	36.6452		20	170.87	144.5212

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p) (continuación)

					·/		
Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
17	21	21.12	5.1901		12	30.9	19.8667
	1	29.53	29.8456		13	47.55	36.6508
	2	26.06	13.6944		14	50.87	38.6799
	3	71.65	59.6195	10	15	21.56	10.8706
	4	46.48	27.9894	19	16	35.56	23.4079
	5	86.71	102.7949		17	219.1	198.0195
	6	59.14	54.7281		18	13.65	1.3307
	7	41.3	23.6362		19	17.57	6.0933
	8	36.2	16.5961		1	33.87	21.0172
	9	46.63	33.3379		2	33.87	20.1995
	10	42.03	27.7219		3	199.47	173.3593
18	11	20.13	7.8828		4	123.8	108.5124
	12	32.44	19.4462		5	163.44	141.8145
	13	47.8	35.2389		6	128.18	113.1721
	14	54.64	32.6574		7	139.96	122.4116
	15	36.41	22.1411		8	37.36	25.1441
	16	47.31	40.2263		9	48.04	36.6031
	17	205.75	192.9604		10	36.51	23.2549
	18	16.36	0.859	20	11	20.17	7.9009
	19	20.04	6.2206		12	36.06	22.7891
	20	170.35	147.8102		13	43.41	31.2146
	21	21.3	6.8767		14	50.62	34.956
	1	35.45	23.6671		15	23.07	10.5254
	2	33.88	21.4796		16	27.44	14.1217
	3	201.1	178.8336		17	82.07	64.3302
	4	125.88	112.6587		18	11.92	-0.7275
	5	160.14	140.7149		19	16.29	3.8766
19	6	198.98	182.8232		20	171.06	148.2512
	7	45.36	32.914		21	21.09	7.1001
	8	33.67	21.872				
	9	51.45	37.7113				
	10	39.67	29.1197				
-	11	20.19	9.2683				

Tabla n°2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-31G(d,p) (continuación)

Cabe acotar que se realizaron cuatro gráficas que muestran la tendencia general de la correlación de los datos. Además, en cada uno de estos gráficos se agruparon los cuatro compuestos principales (Dehidroepiandrosterona (3), Dihidrotestosterona (4), Epiandrosterona (5) y Testosterona (6)) con los productos sintetizados a partir de ellos. (Ver tabla n°3).

Compuesto		Derivados		
Principal	Estructura	Compuesto n°	Estructura	
	$ \begin{array}{c} \downarrow \\ \downarrow \\ HO \end{array} \\ \hline \\ Dehidroepiandrosterona \end{array} $		11	HO HOH
			12	HO H
3		13		
		18	CH ₃ O CH ₃ O Br Br Br Br	
		19		

Tabla <u>n°3: Compuestos principales y sus derivados</u>

Compuesto	Ectructure	Derivados			
Principal	Estructura	Compuesto n°	Estructura		
4		1	CH ₃ H ₃ C		
		7			
	Dihidrotestosterona	CH ₃ OH	9	CH ₃ OH	
		10.a	O CH ₃ O CH ₃ CH ₃ O H		
		10.b	O CH ₃ CH ₃ OH		
5	CH ₃ HO Epiandrosterona	2	HO HO HO HO HO HO HO HO HO HO HO HO HO H		
		14			
		15.a	CH ₃ CH ₃		

Tabla n°3: Compuestos principales y sus derivados (continuación)

Compuesto	Estructure		Derivados		
Principal	Estructura	Compuesto n°	Estructura		
	CH CH3	15.b	CH3 CH3		
5	Epiandrosterona	16	CH ₃ CH ₃ CH ₃		
6		8.a	CH ₃ OH CH ₃ OH		
	CH ₃ OH	8.b	CH ₃ OH CH ₃ OH OH		
	Testosterona	17	CH ₃ CH ₃ O		
		20	CH ₃ CH ₃ C		

Tabla n°3: Compuestos principales y sus derivados (continuación)

A continuación se muestran las gráficas de correlación entre los desplazamientos calculados con MPW1PW91 y la base 6-31G(d,p) vs. los datos experimentales:

Gráfico n°1: Correlación de datos, MPW1PW91/6-31G(d,p), compuesto 3 y derivados

Gráfico n°2: Correlación de datos, MPW1PW91/6-31G(d,p), compuesto 4 y derivados

Gráfico n°3: Correlación de datos, MPW1PW91/6-31G(d,p), compuesto 5 y derivados

Gráfico n°4: Correlación de datos, MPW1PW91/6-31G(d,p), compuesto 6 y derivados

En los cuatro gráficos antes mostrados se observa cualitativamente una tendencia lineal de los datos, lo cual se pudo constatar con los valores de pendiente, punto de corte y coeficiente de correlación lineal, calculados a partir de la regresión lineal aplicada a cada uno de los compuestos en estudio. Dichos valores se muestran tabulados a continuación:

Compuesto n°	Pendiente	Pto. Corte	r²
1	0.9749	-12.3612	0.9971
2	0.9100	-9.8858	0.9922
3	0.9467	-11.3510	0.9970
4	0.9665	-11.7627	0.9954
5	0.9174	-10.2849	0.9965
6	0.9338	-10.6430	0.9992
7	0.9587	-11.4277	0.9977
8.a	0.9318	-10.0703	0.9715
8.b	0.8748	-10.3591	0.6781
9	0.9403	-11.6382	0.9939
10.a	0.9648	-11.9908	0.9959
10.b	0.9833	-12.8389	0.9923
11	0.9288	-10.9600	0.9823
12	0.9375	-9.6103	0.9660
13	0.9294	-10.6081	0.9959
14	0.9272	-10.5537	0.9951
15.a	0.9227	-10.4753	0.9971
15.b	0.9716	-10.0962	0.9857
16	0.9355	-9.4718	0.9963
17	0.9290	-10.5391	0.9986
18	0.9983	-12.0981	0.9702
19	0.9532	-10.1006	0.9995
20	0.9397	-10 9821	0,9990

Tabla n°4: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidos por ajuste lineal de $\delta_{exp.}$ vs. $\delta_{cal.}$, MPW1PW91/6-31G(d,p)

En la tabla anterior se evidencia que, para el método MPW1PW91 con la base 6-31G(d,p), los valores de r² resultaron mayor que 0,9600, inclusive la mayoría de los compuestos poseen un r² mayor que 0,9900. La obtención de un r² mayor que 0,9600 podría indicar que es correcto establecer que existe una relación lineal entre la data experimental y la data calculada a través del programa Gaussian 09, y que por ende el nivel de teoría y la base usada se pudieran emplear en la interpretación de espectros RMN¹³C de androstanos análogos a los listados en la tabla n°1.

Todo el análisis estadístico realizado previamente, con MPW1PW91/6-31G(d,p), se aplicó también al resto de las bases planteadas en los objetivos del proyecto; estas son B3LYP/6-31G(d,p), B3LYP/6-311G(d,p) y MPW1PW91/6-311G(d,p). Los resultados obtenidos en dichos casos se muestran a continuación:

Tabla n°5: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidos por ajuste lineal de $\delta_{exp.}$ Vs. $\delta_{cal.}$, MPW1PW91/6-311G(d,p)

Compuesto n°	Pendiente	Pto. Corte	r ²
1	1.0248	-4.5759	0.9970
2	0.9632	-2.1364	0.9927
3	1.0108	-3.9345	0.9961
4	1.0163	-3.9786	0.9949
5	0.9712	-2.5567	0.9974
6	0.9946	-3.2174	0.9986
7	1.0068	-3.3885	0.9972
8.a	0.9974	-2.7917	0.9664
8.b	0.9366	-3.0404	0.6855
9	1.0043	-4.3681	0.9935
10.a	1.0194	-4.4477	0.9965
10.b	1.0382	-5.2605	0.9935
11	0.9838	-3.4279	0.9809
12	1.0126	-2.6471	0.9625
13	0.9797	-2.7808	0.9952
14	0.9844	-3.1354	0.9953

Tabla n°5: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidos por ajuste lineal de $\delta_{exp.}$ Vs. $\delta_{cal.,}$ MPW1PW91/6-311G(d,p) (continuación)

Compuesto n°	Pendiente	Pto. Corte	r ²
15.a	0.9852	-3.0692	0.9976
15.b	1.0375	-2.6552	0.9833
16	0.9983	-1.9869	0.9958
17	0.9878	-3.0384	0.9982
18	1.0610	-4.8523	0.9697
19	1.0060	-2.4040	0.9994
20	1.0026	-3.6990	0.9983

*Los valores espectrales experimentales y los calculados se encuentran tabulados en el Apéndice A.

**Los gráficos correspondientes a la correlación lineal para esta base se encuentran en el Apéndice B.

Tabla n°6: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidos por ajuste lineal de $\delta_{exp.}$ Vs. δ_{cal}

Compuesto	B3L	YP/6-31G(d,	p)	B3LY	P/6-311G(d,	ა)
'n°	Pendiente	Pto. Corte	r ²	Pendiente	Pto. Corte	r ²
1	0.9638	-7.2212	0.99712	1.0263	1.0146	0.9968
2	0.9013	-4.6861	0.9922	0.9658	3.6080	0.9927
3	0.9363	-6.2664	0.9969	1.0114	1.6988	0.9959
4	0.9592	-7.2870	0.9923	1.0184	1.6463	0.9945
5	0.9091	-5.1312	0.9973	0.9738	3.1302	0.9979
6	0.9207	-5.4303	0.9989	0.9939	2.4618	0.9982
7	0.9462	-6.1290	0.9969	1.0066	2.4046	0.9963
8.a	0.9440	-5.6307	0.9668	1.0245	2.0742	0.9625
8.b	0.8863	-5.8840	0.6759	0.9614	1.8467	0.6821
9	0.9250	-6.3517	0.9941	1.0015	1.3733	0.9937
10.a	0.9522	-6.8671	0.9953	1.0194	1.1666	0.9960
10.b	0.9711	-7.6947	0.9918	1.0385	0.3728	0.9931
11	0.9206	11.6374	0.9809	0.9868	2.2083	0.9795
12	0.9513	-5.2750	0.9641	1.0450	1.9961	0.9611
13	0.9166	-5.4749	0.9948	0.9793	2.8170	0.9942
14	0.9136	-5.3568	0.9951	0.9826	2.5755	0.9954
15.a	0.9106	-5.3245	0.9975	0.9842	2.5698	0.9981
15.b	0.9592	-4.9259	0.9872	1.0373	3.0020	0.9845

Compuesto	B3L	YP/6-31G(d,	p)	B3LYP/6-311G(d,p)			
n°	Pendiente	Pto. Corte	r ²	Pendiente	Pto. Corte	r ²	
16	0.9180	-4.1739	0.9969	0.9934	3.7961	0.9965	
17	0.9198	-5.4973	0.9983	0.9863	2.5481	0.9974	
18	0.9884	-6.9790	0.9668	1.0629	0.7395	0.9674	
19	0.9408	-5.0256	0.9994	1.0057	3.1634	0.9993	
20	0.9250	-5.9215	0.9988	1.0005	1.8211	0.9981	

Tabla n°6: Intercepción, pendiente y coeficiente de correlación lineal (r²), obtenidos por ajuste lineal de δ_{exp} . Vs. δ_{cal} (continuación)

*Los valores espectrales experimentales y los calculados se encuentran tabulados en el Apéndice A.

**Los gráficos correspondientes a la correlación lineal para estas bases se encuentran en el Apéndice B.

Análogamente a lo obtenido para MPW1PW91/6-31G(d,p), los valores de r^2 fueron mayores que 0,9600 e inclusive la mayoría de los compuestos poseen un r^2 mayor que 0,9900, para las tres bases restantes. De igual manera, se nota un valor de r^2 anómalo para el compuesto 8.b, en todos los casos.

Las bases MPW1PW91/6-311G(d,p), B3LYP/6-31G(d,p) y B3LYP/6-311G(d,p) también podrían ser empleadas en la interpretación de espectros RMN¹³C de ciertos androstanos. Sin embargo, un coeficiente de correlación muy cercano a 1, no es una prueba fehaciente de que exista una verdadera correlación entre los desplazamientos químicos calculados y los experimentales, y por ende, no evidencia claramente que los niveles de teoría MPW1PW91 y B3LYP, con las bases 6-31G(d,p) y 6-311G(d,p), sean adecuados para la interpretación de desplazamientos químicos ¹³C de los compuestos en estudio.

El coeficiente de determinación (r²) debe tomarse como una primera medida, a completar con otras, para evaluar el modelo lineal de regresión ajustado y obtener conclusiones válidas sobre su grado de ajuste al conjunto de observaciones.^[30]. Siguiendo este planteamiento, se llevó a cabo el análisis residual, el cálculo del error

medio (EM), el cálculo del error medio absoluto (EMA) y el cálculo del error medio cuadrático (EMC)^[31] de los compuestos presentados en la tabla n°1.

En primer lugar, se mostrarán los resultados obtenidos para el cálculo del error medio cuadrático.

Gráfico n°5: Error medio cuadrático (EMC) obtenido en el cálculo de los desplazamientos químicos. Valores en ppm

**La fórmula para calcular el error cuadrático medio es descrita por Jensen, F [31], donde n= n°C de cada androstano.

Por un lado, la gráfica muestra, claramente, que los funcionales que mejor calculan el desplazamiento químico de RMN¹³C son B3LYP y MPW1PW91, con la base 6-311G(d,p) (curvas roja y morada), para ambos casos, debido a que estos exhiben los errores medios cuadráticos más cercanos a cero; sin poderse discernir entre ellos cuál es el mejor método. Por otra parte, la tendencia de los valores del ECM, por definición, está dominada por los (pocos) puntos con desviaciones más grandes ^[31]. Este hecho

también es notable en la gráfica, ya que los compuestos 4, 8.b, 15.b y 18 arrojan valores anómalos y los mismos serán objetos de estudio, posteriormente.

A continuación, se muestran los resultados derivados del cálculo del error medio y error medio absoluto de cada compuesto:

Compuesto n°	MPW1PW91/ 6-31G(d,p)	MPW1PW91/ 6-311G(d,p)	B3LYP/ 6-31G(d,p)	B3LYP/ 6-311G(d,p)
1	13.4648	3.4831	8.8127	2.1727
2	14.2433	3.9193	9.4637	1.9525
3	14.3247	3.3339	9.8227	2.3375
4	13.2952	1.4814	6.9638	4.2591
5	14.0326	3.8628	9.2569	1.9410
6	14.3739	3.5234	9.9002	2.1191
7	13.8903	3.2624	8.8791	2.8274
8.a	12.5875	2.8863	7.6966	2.977
8.b	14.9799	5.3805	10.082	0.4213
9	15.7039	4.0724	11.453	1.4762
10.a	15.2828	3.801	10.3406	2.4064
10.b	15.1507	3.6155	10.1679	2.6311
11	14.3337	4.195	7.8745	1.5836
12	11.9401	2.1768	7.0922	3.6742
13	14.5009	3.9006	10.0696	1.674
14	16.9247	4.6379	11.7872	1.856
15.a	14.5581	3.8517	10.0462	1.736
15.b	11.5969	0.6728	7.0817	4.9707
16	18.9891	2.8773	13.3734	4.5786
17	16.3574	4.1643	11.393	1.9107
18	13.4724	1.6472	8.4183	4.6536
19	13.5025	1.9703	9.3348	3.5798
20	16.7302	3.8938	12.2559	2.0487

 Tabla n°7: Error medio (EM) obtenido en el cálculo de los desplazamientos químicos. Valores en ppm

Compuesto	MPW1PW91/	MPW1PW91/	B3LYP/	B3LYP/		
n°	6-31G(d,p)	6-311G(d,p)	6-31G(d,p)	6-311G(d,p)		
1	13.4648	3.5144	8.8127	2.9982		
2	14.2433	4.6349	9.6197	3.4024		
3	14.3247	3.8795	9.8227	3.5322		
4	13.2952	5.5743	8.6303	5.0568		
5	14.0326	3.8628	9.2569	2.5877		
6	14.3739	3.5830	9.9002	2.6727		
7	13.8903	3.5581	8.8791	3.0816		
8.a	12.5875	4.0560	7.6966	3.4978		
8.b	14.9799	6.0537	10.0820	5.7914		
9	15.7039	5.3010	11.4530	3.5673		
10.a	15.2828	4.3761	10.3406	3.3079		
10.b	15.1507	5.1295	10.1679	3.9612		
11	14.3337	5.9614	9.3218	4.0114		
12	11.9401	3.0089	7.0922	4.2684		
13	14.5009	4.7714	10.2603	3.4770		
14	16.9247	5.1022	11.7872	3.9523		
15.a	14.5581	3.9968	10.0462	2.4264		
15.b	11.9131	4.9438	7.6830	5.6987		
16	18.9891	4.7085	13.3734	4.7969		
17	16.3574	4.2304	11.3930	3.4131		
18	15.1988	7.7156	11.3504	6.9636		
19	13.5025	2.3266	9.3348	3.6107		
20	16.7302	4.0737	12.2559	2.8182		

Tabla n°8: Error medio absoluto (EMA) obtenido en el cálculo de los desplazamientos químicos. Valores en ppm

*La fórmula para calcular el error medio es la usada por Cimino, P. y col. [1], donde n= n°C de cada androstano.

En las tablas n°7 y n°8 se puede evidenciar que, para todos los compuestos usados, la mejor base para el cálculo de los desplazamientos químicos de ¹³C es 6-311G(d,p) ya que tanto para el nivel de teoría B3LYP como para MPW1PW91 se obtuvieron los valores de EM y EMA más bajos. Además, tomando en cuenta los funcionales, dieciséis de los veintitrés compuestos mostraron el EM más bajo al usarse B3LYP. Igualmente,

también usando B3LYP, diecinueve de los veintitrés compuestos tuvieron un menor valor de EMA.

Así, se puede afirmar que, en base a los resultados arrojados por el EM y el EMA, la mejor correlación de datos experimentales vs. teóricos se obtuvo con la base B3LYP/6-311G(d,p). Esta aseveración puede ser, al mismo tiempo, corroborada por el análisis del EM y del EMA para la totalidad de los carbonos, de los diversos androstanos a los cuales se les calculó su desplazamiento químico ¹³C. En este sentido, se calcularon en total 458 desplazamientos químicos y el error medio y error medio absoluto obtenido para dicho universo fue:

Tabla n°9: Error medio y Error medio absoluto para la totalidad de los carbonos estudiados. Valores en ppm

MPW1PW91			E	SLYP		
Base	EM	EMA	Base	EM	EMA	
6-31G(d,p)	13.8657	13.9504	6-31G(d,p)	8.5530	9.4886	
6-311G(d,p)	3.1781	4.3294	6-311G(d,p)	2.4803	3.6877	
*La fórmula par	a calcular el er	ror medio es la	usada por Cimino, P. y	/ COl. [1], donde	n= 458.	

Los resultados, anteriormente mostrados, confirman que la mejor base para el cálculo de desplazamientos químicos ¹³C es B3LYP/6-311G(d,p), ya que muestra los valores más bajos de EM y EMA, en el universo de carbonos estudiados.

A pesar de obtenerse muy buenos resultados generales con el uso del error medio hay que destacar que dicho parámetro, por definición, es una sumatoria tanto de valores positivos como negativos, los cuales se compensan mutuamente y pueden conducir a conclusiones erróneas. Además, la afirmación de cuál es la mejor base se da, únicamente, por una simple evaluación del menor error obtenido, ya que no se tiene definido un límite que exprese si el resultado es o no significativo. Esto hace necesario un criterio de estudio más exhaustivo, como el que se expresa a continuación con el

análisis de los residuales. Cabe destacar que dicho análisis se realizó para cada uno de los compuestos, a través de sus gráficas. Se presentarán y discutirán los resultados más relevantes.

A continuación se muestran los residuales obtenidos para el compuesto n°18, que corresponde a la 3 β -Acetoxi-5 α , 6 β , 16 α -tribromo-androstan-17-ona (ver figura n°2).

Figura n°2: Estructura de la 3β-Acetoxi-5α,6β,16α-tribromoandrostan-17-ona

Gráfico n°6: Residuales del compuesto n°18

En la gráfica previa se evidencia, claramente, que ninguna de las bases y los funcionales usados para el cálculo de los desplazamientos químicos ¹³C, de la 3 β -Acetoxi-5 α , 6 β , 16 α -tribromo-androstan-17-ona, son adecuados, ya que varios de sus carbonos presentan residuales muy grandes; específicamente, el "carbono 5" refleja un residual aproximadamente entre 15-40 ppm, dependiendo de la base y el funcional que se utiliza. Esto además, explica porque el valor del EMA es tan alto (mayor que 6,50 ppm) inclusive para la base considerada previamente como la de mayor correlación lineal (B3LYP/6-311G(d,p)).

Los efectos de los sustituyente en los desplazamientos químicos han sido de interés desde los primeros días de la espectroscopia de RMN. Las explicaciones de las tendencias observadas experimentalmente abundan, y se les ha dado muy diferentes racionalizaciones por diferentes autores. En algunos casos, la aparición relativamente reciente de la Química Computacional y su aplicación a la Resonancia Magnética Nuclear han permitido una mejor comprensión de los desplazamientos químicos aunque muchas preguntas siguen abiertas debido a la naturaleza polifacética del desplazamiento químico de RMN.

El número de explicaciones sobre el efecto de los sustituyentes en los desplazamientos químicos, a veces contradictorias entre sí, es notable. La mayoría de los libros de texto de RMN explican los efectos de átomos pesados en términos del apantallamiento diamagnético debido a los electrones alrededor del átomo pesado.^[32] Otros argumentos incluyen efectos de electronegatividad.^[33]

Uno de los efectos de los sustituyentes que han sido más debatidos en la química orgánica es el causado por los halógenos, principalmente Yodo y Bromo. La disminución observada, con frecuencia, en el desplazamiento químico del núcleo unido directamente al halógeno que se incrementa al aumentar el número atómico del

halógeno, se conoce como dependencia normal del halógeno (NHD, por sus siglas en inglés).^[34]

Algunos autores han sugerido que los efectos causados por los halógenos se deben a la polarización de espín electrónico inducida por el acoplamiento spin-orbital.^[34] Aparentemente, este argumento no había sido considerado anteriormente por los espectroscopistas. Recientemente, con el desarrollo e implementación de técnicas de *ab initio* Hartree Fock y la Teoría Funcional de la Densidad (DFT) se han hecho disponibles tratamientos más cuantitativos de las correcciones spin-orbital a los desplazamientos químicos de RMN. Estos enfoques han ayudado a confirmar que el principal efecto creado, por los átomos pertenecientes al grupo NHD, es en gran medida la consecuencia de la interacción spin-orbital.

Es por ello que para realizar los cálculos que permiten considerar el efecto NHD se desarrollaron protocolos que incluyen el método que permite la Suma Sobre los Estados incluyendo perturbaciones en la Teoría de Funcionales de la Densidad (SOS-DFPT).^[18, 34]

En consecuencia a lo anteriormente expuesto, el resultado mostrado en la gráfica n°6 era esperado. Sin embargo, se llevó a cabo el cálculo de los desplazamientos químicos de RMN¹³C de dicha molécula, debido a que se quería conocer si el efecto NHD podía extenderse sobre el desplazamiento químico de RMN en los átomos de carbono adyacentes.

En este sentido, en la gráfica se puede constatar que no hay un efecto significativo en los desplazamientos químicos de dichos carbonos. Es decir, el efecto NHD producido, en este caso por el átomo de Br, no se extiende a los átomos de carbonos vecinales; éste sólo afecta, al átomo de carbono al que se encuentra directamente unido el halógeno.

Siguiendo con el análisis de residuales se tiene:

Gráfico n°7: Residuales del compuesto n°4

Figura n°3: Estructura de la Dihidrotestosterona

En la gráfica n°7, correspondiente a la Dihidrotestosterona, se observa que al comparar las cuatro bases, B3LYP/6-331G(d,p) arroja los mejores resultados, mostrando una
dispersión alrededor o menor a 6ppm, lo cual concuerda con su valor intermedio de EMA obtenido (menor a 5,00 ppm).

Residual(ppm) 30 25 MPW1PW91 20 6-31G(d,p) MPW1PW91/ 15 6-311G(d,p) B3LYP/6-10 31G(d,p) B3LYP/6-5 311G(d,p) 0 3 9 10 11 12 13 14 15 16 17 18 4 5 7 8 6 1 -5 -10 Átomo de Carbón

Gráfico nº8: Residuales del compuesto nº5

Al igual que en el caso anterior, en la gráfica nº8, es evidente que el funcional que arroja la menor dispersión corresponde a B3LYP con la base 6-311G(d,p), con una dispersión comparable a la obtenida para la Dihidrotestosterona; en este caso,

alrededor de 5 ppm. A pesar de que, para el compuesto n°5, el valor del EMA (2,59 ppm) está por debajo del EMA correspondiente al compuesto n°4, al comparar los resultados de la gráfica n°7 con los de la gráfica n°8, queda evidenciado que, en ambos casos, la base B3LYP/6-311G(d,p) muestra una dispersión muy baja en los valores de los desplazamientos químicos calculados, respecto a los experimentales; y por ende, ésta establece una correlación lineal válida entre los datos.

Cabe acotar que en la gran mayoría de los androstanos estudiados, el mejor funcional encontrado fue B3LYP con la base 6-311G(d,p). Esto puede ser verificado a través de las gráficas de residuales de dichos compuestos, las cuales se encuentran en el apéndice B.

De esta manera, el análisis de residuales reafirma, entonces, el resultado obtenido con los estadísticos EM y EMA; es decir, la base que menor dispersión posee en el cálculo de los desplazamientos químicos ¹³C, en androstanos no halogenados, es B3LYP/6-311G(d,p).

Recordemos que en la gráfica n°5, que muestra la tendencia de los valores del EMC, se observan algunos resultados anómalos en los compuestos 4, 8.b, 15.b y 18. El comportamiento observado en los compuestos 4 y 18 fue previamente explicado, haciendo uso de sus respectivos gráficos de residuales; por lo tanto, se utilizará el mismo método de análisis para explicar lo obtenido en los compuestos 8.b y 15.b; comparándolos además, con los resultados obtenidos para los compuestos 8.a y 15.a. También, es de particular interés, discutir los compuesto 10.a y 10.b

En primer lugar, se discutirá los resultados referentes a los compuestos 8.a y 8.b. En este sentido, es importante destacar que se planteó realizar el cálculo de los desplazamientos químicos ¹³C en ambas moléculas por dos razones: La primera es que

luego de su síntesis y caracterización, no se pudo concluir, inequívocamente, cuál isómero se había obtenido^[21]. La segunda es que la síntesis de esta molécula se llevó a cabo a través de una hidroboración y posterior oxidación de la 17β-Hidroxi-androst-4-eno; en general, el proceso de hidroboración de un alqueno es una adición cis^[36], lo cual implica que los posibles isómeros obtenidos, sean sólo dos, los estereoisómeros 5α-Androstan-4α,17β-diol y 5β-Androstan-4β,17β-diol (ver figura n°2), compuestos 8.a y 8.b respectivamente.

A continuación, se muestran los residuales obtenidos en cada caso:

Gráfico nº9: Residuales del compuesto nº8.a

Gráfico n°10: Residuales del compuesto n°8.b

Al observar la gráfica n°10 es notable que el átomo de carbono 5 posee una alta dispersión (entre 50-60ppm, dependiendo de la base y el funcional) y por ende se puede suponer que la estructura con la que se compara no posee el hidrógeno en beta. Por otra parte, la gráfica n°9 muestra una mejora sustancial en el desplazamiento químico del carbono 5, tomando en cuenta que el hidrógeno está en alfa. Particularmente, los desplazamientos químicos del compuesto 8.a poseen la menor dispersión con el funcional MPW1PW91 y la base 6-311G(d,p).

Sobre la base de los resultados presentados en las gráficas 9 y 10, y los valores de los estadísticos r², EMC, EM y EMA, para los compuestos 8.a y 8.b, se afirma que el compuesto 8.b no posee una correlación lineal válida entre los desplazamientos calculados y los experimentales. Lo que permite excluir al compuesto 8.b como el posible isómero sintetizado. Además, esta premisa se confirma con lo descrito por Marcano, D. y Cortés. L.^[35], quienes afirman que "En sistemas esteroidales Δ^9 , aquellos de la serie 5 α -H que tienen el anillo A y B fusionados trans, ...El acercamiento del diborano por la cara beta está impedida por el metilo angular en C-10" como consecuencia directa de esto, la reacción puede ocurrir exclusivamente por la cara alfa, lo cual confirmaría la síntesis del 5 α -Androstan-4 α ,17 β -diol.

Análogamente al caso anterior, es de interés analizar los compuestos 10.a y 10.b ya que los mismos son los estereoisómeros alfa y beta, respectivamente, de la 2 ξ -Acetoxi-17 β -hidroxi-5 α -androstan-3-ona (ver figura n°3). La síntesis de esta molécula se llevó a cabo a través de la acetilación del carbono-2 de la Dihidrotestosterona y al caracterizar el producto, no se pudo concluir cuál isómero se había obtenido^[21].

Para este caso, los residuales calculados se muestran a continuación:

Gráfico nº11: Residuales del compuesto nº10.a

Gráfico n°12: Residuales del compuesto n°10.b

Al comparar la gráfica n°11 con la gráfica n°12 es notorio que existe una gran diferencia entre los desplazamientos químicos calculados para el carbono-3. En esta oportunidad, la gráfica 12 refleja que existe mayor dispersión de dicho carbono, al compararlo con el residual mostrado en la gráfica 11. Al igual que en el caso anterior, se puede pensar que la esterificación en el carbono-2, por la cara beta, está impedida estéricamente por el metilo angular en el carbono-10, favoreciéndose así la producción del isómero alfa. Además, los valores de los estadísticos r², EM y EMA, para los compuestos 10.a y 10.b, se deduce que los desplazamientos químicos calculados para el compuesto 10.a concuerdan, en mayor proporción, con la data espectroscópica experimental. Lo que permite descartar al compuesto 10.b como el posible isómero sintetizado.

Por último, se analizará los compuestos 15.a y 15.b; la 5α-Androst-3-en-17-ona y la 5α-Androst-2-en-17-ona, respectivamente (ver figura n°4). Estos son dos posibles productos de eliminación que se obtenían como producto colateral de las esterificaciones llevadas a cabo por Paz, D^[22]; sin embargo, con la data espectral que se obtuvo experimentalmente no se pudo verificar si se obtenía sólo uno de estos isómeros o una mezcla de ellos. Por consiguiente, haciendo un análisis de los residuales de cada compuesto se quiere, como lo obtenido con las moléculas anteriores, discernir cuál es el isómero que se produjo.

Figura n°7: Estructura A = 5α -Androst-3-en-17-ona; Estructura B = 5α -Androst-2-en-17-ona

A continuación, se muestran los residuales para los compuestos 15.a y 15.b:

Gráfico n°13: Residuales del compuesto n°15.a

Gráfico n°14: Residuales del compuesto n°15.b

Al observar la gráfica n°14 (correspondiente a la eliminación en C-2) se evidencia, notoriamente, que los carbonos 2 y 3 presentan una alta dispersión, entre 12 y 28 ppm, para los funcionales MPW1PW91 y B3LYP, con la base 6-311G(d,p) (las que mejor ajuste lineal presentan, de manera general); mientras que, al observar la gráfica n°13 (correspondiente a la eliminación en C-3) se evidencian desviaciones muy pequeñas, de los datos calculados respecto a los experimentales, lo que da indicios de que dicha estructura sea la obtenida, con mayor probabilidad, como producto colateral. Esta afirmación se apoya, además, en que el producto termodinámicamente más estable es la eliminación en C-3^[22].

De esta manera, en base a lo obtenido gráficamente y a los valores de los estadísticos r^2 , EMC, EM y EMA, para ambos compuesto con la función-base B3LYP/6-311G(d,p), se concluye que el espectro RMN¹³C experimental concuerda, en mayor proporción, con la data espectroscópica calculada para el compuesto 15.a. Lo que permite descartar al compuesto 15.b como posible producto colateral de eliminación.

CONCLUSIONES

- Haciendo uso de las curvas de correlación lineal, coeficiente de correlación y error medio cuadrático, se determinó que la mejor base, para el cálculo de los espectros de RMN¹³C, en moléculas del tipo androstano, es 6-311G(d,p).
- Se comprobó a través de curvas de correlación lineal, coeficiente de correlación, error medio cuadrático, error medio, error medio absoluto y gráficas de residuales, que el nivel de teoría (funcional) más apropiado, para el cálculo de espectros RMN¹³C de androstanos no halogenados, es B3LYP.
- A través del análisis de residuales, se comprobó que los métodos basados en funcionales de densidad (métodos híbridos, DFT), por sí solos, no son válidos para el modelaje de androstanos halogenados, ya que los mismos no describen correctamente los efectos NHD en dichas moléculas.
- Asimismo, con el análisis residual, se demostró que el efecto NHD afecta únicamente el desplazamiento químico de RMN del carbono al que está directamente enlazado.
- De igual manera, a partir del análisis de residuales, se pudo comprobar que los androstanos al someterse a una hidroboración y posterior oxidación, sólo reaccionan por la cara alfa de la molécula, debido al impedimento estérico de los grupos metilos en beta, en los carbonos C-10 y C-13. A consecuencia de la premisa anterior, se determinó que el isómero sintetizado por Neacato, P.^[20] correspondió al 5α-Androstan-4α,17β-diol.

- Se probó, a través de los gráficos de residuales, que el espectro experimental de RMN¹³C para la 2ξ-acetoxi-17β-hidroxi-5α-androstan-3-ona, sintetizada por Neacato, P.^[20], posee una menor dispersión respecto a los datos calculados para el isómero alfa de dicho compuesto. Por lo que se considera que el compuesto sintetizado fue la 2α-acetoxi-17β-hidroxi-5α-androstan-3-ona
- Se demostró, haciendo uso del análisis residual, que el producto colateral, obtenido en las esterificaciones realizadas por Paz, D.^[21], corresponde a la eliminación en C-3 (el isómero termodinámicamente más estable).
- A través del análisis estadístico que se realizó para todo el conjunto de datos obtenidos, se verificó que haciendo uso del funcional-base B3LYP/6-311G(d,p) se obtuvieron valores espectrales muy exactos. Razón por la cual, dicho funcional-base puede ser utilizado en el cálculo de las propiedades físicoquímicas relacionadas a la actividad antiviral, en moléculas del tipo androstano no halogenadas.
- Asimismo, por la gran exactitud mostrada en el cálculo espectral, el funcionalbase B3LYP/6-311G(d,p) puede ser utilizado como herramienta de apoyo al momento de caracterizar un androstano no halogenado, que haya sido sintetizado y cuyos desplazamientos químicos de RMN¹³C no estén reportados en la literatura.
- Igualmente, se verificó que además de ser una herramienta de caracterización, el cálculo de espectros RMN¹³C y su posterior análisis residual, puede ser un criterio para discernir entre dos o más posibles isómeros.

APÉNDICE A (TABLAS)

Tabla A-1: Valores de los desplazamientos químicos de RMN13C, experimentales y calculados con MPW1PW91/6-311G(d,p)

Communette	Átomo	Señal	Señales	Communette	Átomo	Señal	Señales
Compuesto	de	Experimental	calculadas	Compuesto	de	Experimental	calculadas
	Carbono	δ(ppm)	δ(ppm)		Carbono	δ(ppm)	δ(ppm)
	1	38.7	34.6512		13	48.11	45.9184
	2	38.1	36.3823		14	42.44	42.8534
	3	211	211.2966		15	31.43	25.5685
	4	44.6	44.4222	2	16	38.82	32.0127
	5	46.7	35.6019		17	221.8	212.6216
	6	29	25.0011		18	13.94	12.80
	7	32.1	30.4252		19	12.31	11.92
	8	35.7	32.1851		1	37.21	33.64
	9	54.1	53.7377		2	31.48	29.67
1	10	35.7	31.5294		3	71.36	68.08
	11	21.5	18.079		4	42.14	37.03
	12	38.8	35.3642		5	141.17	143.49
	13	40.8	37.127	3	6	120.72	122.40
	14	54.3	50.7626		7	30.29	28.24
	15	25.5	21.3171		8	31.01	27.92
	16	20.5	16.7795		9	50.23	47.09
	17	40.3	38.8533		10	36.63	34.07
	18	17.4	10.57		11	20.35	17.29
	19	11.4	5.9351		12	30.77	28.52
	1	24.76	31.1444		13	47.52	43.63
	2	35.96	30.1337		14	51.75	48.01
	3	70.1	67.2321		15	27.85	18.50
	4	36.74	33.0965		16	35.82	31.77
	5	41.95	35.9003		17	221.23	215.00
2	6	37.55	32.4464		18	19.41	8.06
2	7	73.91	71.6541		19	13.52	14.71
	8	51.02	39.0181		1	38.63	39.63
	9	52.41	43.4504		2	38.13	69.98
	10	34.95	32.1744	4	3	211.72	207.06
	11	20.55	18.7762		4	44.70	42.51
	12	31.19	26.7529		5	46.81	35.51

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	6	28.85	23.987		1	35.67	33.0463
	7	31.3	29.5942		2	33.94	30.0989
	8	35.54	31.3339		3	199.6	190.0999
	9	54.05	53.4118		4	123.85	124.416
	10	35.8	32.8052		5	171.35	169.284
	11	21.08	17.8009		6	32.8	30.5102
Λ	12	36.73	32.9453		7	31.55	28.7217
4	13	43.04	39.6259		8	35.73	32.0178
	14	50.92	47.6582		9	53.93	51.1758
	15	23.42	19.4856	6	10	38.67	35.4311
	16	30.57	25.2412		11	20.65	17.3995
	17	81.84	79.4256		12	36.44	32.8652
	18	11.15	5.8419		13	42.82	39.6942
	19	11.5	7.0487		14	50.49	47.1766
	1	36.96	31.304		15	23.34	19.4565
	2	31.35	30.1385		16	30.41	25.1085
	3	70.91	67.153		17	81.56	79.4539
	4	38.01	33.1211		18	11.06	5.9541
	5	44.84	37.1421		19	17.42	12.4254
	6	28.38	26.1717		1	38.5	34.0446
	7	30.88	26.7033		2	38.1	34.2588
	8	35.03	33.9139		3	212.3	209.3685
	9	54.43	46.0887		4	44.7	42.8827
5	10	35.62	32.1248		5	46.5	44.667
	11	20.47	18.7803		6	29.1	26.0449
	12	31.54	26.8176	7	7	30.8	31.0978
	13	47.76	45.8687		8	35.5	31.7863
	14	51.41	43.4937		9	54.1	56.6113
	15	21.75	20.2176		10	36.1	33.7072
-	16	35.81	31.9005		11	20.8	17.3781
	17	221.34	213.904		12	42	38.248
	18	13.78	12.713		13	33.6	28.6369
	19	12.29	11.6094		14	51	45.115

Tabla A-1: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	15	27.2	21.1041		9	51.4	55.6909
	16	24.1	23.8501		10	32	32.79
7	17	21.5	17.8677		11	20.8	18.1146
1	18	42.3	40.9867		12	37	33.0842
	19	17	10.9912		13	44.9	39.5582
	20	11.5	6.0673	8.b	14	54.3	47.3899
	1	38.1	35.6979		15	23.5	19.577
	2	18.4	16.9761		16	29.4	25.2616
	3	34.7	38.0446		17	83.5	79.707
	4	71.2	63.1521		18	12.3	5.7067
	5	46	49.4328		19	14.2	12.443
	6	22.7	16.6569		1	162.9	152.8389
	7	31.5	30.0012		2	123.3	129.05
	8	35.6	31.683		3	184.2	177.5508
	9	51.4	54.214		4	120.4	125.006
8.a	10	32	33.5201		5	171.1	165.8832
	11	20.8	17.7216		6	36.3	30.2042
	12	37	33.1245		7	29.4	30.5383
	13	44.9	39.6246		8	39.7	31.8253
	14	54.3	47.7367		9	49.5	49.6774
	15	23.5	19.5055	9	10	49.3	40.0341
	16	29.4	25.2257		11	21.1	19.2234
	17	83.5	79.663		12	42.4	32.5963
	18	12.3	5.9272		13	44.8	40.0248
	19	14.2	8.7524		14	53.6	46.9228
	1	38.1	36.3858		15	23.2	19.7167
	2	18.4	12.8249		16	27.3	24.9985
	3	34.7	30.8631		17	81.9	79.3567
8 h	4	71.2	69.4239		18	12.1	5.9264
0.0	5	46	-6.9857		19	20.6	14.3506
	6	22.7	24.0143		1	42.4	39.6288
	7	31.5	30.6756	10.a	2	74.1	69.9837
	8	35.6	32.7456		3	204	207.0576

 Tabla A-1: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	4	43.2	42.5098		16	30.8	25.1628
	5	47.5	35.5116		17	82.5	79.6075
	6	27.9	23.987	10 h	18	11.2	5.7548
	7	27.2	29.5942	10.0	19	12.4	9.7965
	8	34.2	31.3339		20	171.1	162.7334
	9	53.4	53.4118		21	20.5	14.0496
	10	37	32.8052		1	32.7	41.9642
10 0	11	20.9	17.8009		2	29.8	29.9207
	12	36.4	32.9453		3	75.9	71.5172
10.a	13	44.5	39.6259		4	31.5	26.347
	14	50.1	47.6582		5	50.3	28.772
	15	23.2	19.4856		6	66.6	60.6098
	16	30.8	25.2412		7	35.9	33.5368
	17	82.5	79.4256	11	8	30.8	27.0752
	18	11.2	5.8419		9	40.4	47.7961
	19	12.4	7.0487		10	38.9	32.5806
	20	171.1	165.9531		11	21.9	17.1744
	21	20.5	15.4309		12	31.5	28.3483
	1	42.4	38.5672		13	47.6	43.6452
	2	74.1	70.1292		14	51.8	48.5808
	3	204	215.6574		15	23.5	18.3769
	4	43.2	40.4801		16	36.9	31.8147
	5	47.5	35.353		17	221.2	214.8116
	6	27.9	24.3935		18	13.5	8.2026
	7	27.2	29.7041		19	19.4	9.3204
10.b	8	34.2	31.3907		1	34.5	39.5921
	9	53.4	53.6214		2	31	30.7437
	10	37	32.018		3	71.3	71.3997
	11	20.9	18.0579	12	4	32.3	25.2246
	12	36.4	33.1149	12	5	51.2	48.904
-	13	44.5	39.417		6	69.8	65.9561
	14	50.1	47.3553		7	37.1	32.8782
	15	23.2	19.4417		8	27.1	29.4797

 Tabla A-1: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	9	50.8	49.2358		4	30.8	31.4281
	10	33.5	33.8007		5	44.6	37.3933
	11	21.4	17.7962		6	29.7	25.7168
	12	36.4	35.5262		7	28.2	26.3942
	13	42.2	36.3014		8	35.6	33.7577
12	14	53.9	50.8789		9	54.3	45.5071
	15	24.1	22.6917		10	35	31.7311
	16	20.5	16.4308		11	20.5	18.7248
	17	40.8	38.5113		12	31.5	26.5532
	18	13.5	13.5322	14	13	47.8	45.7558
	19	16.9	8.0566		14	51.4	43.3595
	1	36.9	43.9367		15	21.8	20.3117
	2	33.9	34.6869		16	35.8	31.92
	3	211.3	203.5258		17	221.2	213.4218
	4	41.9	32.3965		18	12.2	12.7336
	5	57.2	55.5892		19	13.8	11.6201
	6	209.6	201.4772		20	166.3	169.5492
	7	45.8	41.1755		21	42	29.2625
	8	37.3	31.9195		22	166.8	156.8677
	9	51.4	49.6111		1	33.8	30.3561
13	10	38.2	38.6489		2	24.8	19.8081
	11	24	18.2294		3	129.8	123.072
	12	37.9	35.1889		4	130.5	131.8782
	13	41.4	36.6505		5	44.6	38.9117
	14	53.6	51.3749		6	28.2	23.3381
	15	26.9	22.4557	15 a	7	31.5	26.7855
	16	21.2	16.3913	15.4	8	35.6	33.853
	17	40.9	38.2909		9	54.2	46.0607
	18	20.9	13.4632		10	35	31.6204
	19	16.8	7.9771		11	20.4	18.2178
	1	36.6	31.0546		12	31.4	26.7487
14	2	27.2	25.4356		13	47.8	45.8663
	3	74.7	71.1812		14	51.4	43.5025

Tabla A-1: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	15	21.8	20.2094		10	34.5	32.051
	16	35.8	31.8647		11	20.1	18.7803
15.a	17	221.2	213.8895		12	31.3	26.6896
	18	13.8	12.7306		13	47.4	45.9658
	19	12.2	11.904		14	50.6	43.4951
	1	35.8	39.8767		15	21.5	20.2786
	2	129.8	142.2348		16	34.9	32.0089
	3	130.5	152.531		17	220.8	213.8552
	4	31.4	30.5529	16	18	11.6	12.6904
	5	44.6	36.3117		19	13.4	11.7129
	6	24.8	26.8319		20	168	163.2323
	7	28.2	26.5131		21	131.8	129.0431
	8	35	33.9018		22	125.4	130.8584
15.b	9	54.2	45.3663		23	130.8	126.9824
	10	33.8	31.7095		24	122.3	131.9829
	11	20.4	18.3728		25	125.3	126.4646
	12	31.5	26.784		26	133.5	128.8062
	13	47.8	45.8774		1	35.69	33.0572
	14	51.4	43.5798		2	33.91	30.1575
	15	21.8	20.2085		3	199.34	190.1083
	16	35.6	31.8915		4	123.93	124.5577
	17	221.2	213.9		5	171.07	168.6093
	18	13.8	12.7686		6	32.71	30.2144
	19	12.2	11.8045		7	31.48	28.4163
	1	35.5	32.06	17	8	35.39	31.9199
	2	25.7	24.9734	17	9	53.7	51.1614
	3	76	70.0048		10	38.59	35.4603
	4	30.4	30.2681		11	20.51	17.3818
16	5	41.2	37.1028		12	36.5	33.4359
	6	30	25.9691		13	42.44	40.4749
	7	28.2	26.6002		14	50.24	47.3221
	8	34.8	33.6042		15	23.45	19.154
	9	51.2	46.0504		16	27.46	24.7754

Tabla A-1: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-311G(d,p) (continuación)

Compuesto	Átomo de	Señal Experimental	Señales calculadas	Compuesto	Átomo de	Señal Experimental	Señales calculadas
	Carbono	δ(ppm)	δ(ppm)		Carbono	δ(ppm)	δ(ppm)
	17	82.43	81.5083		8	33.67	31.7053
	18	12	5.6247		9	51.45	48.716
17	19	17.38	12.2684		10	39.67	38.5328
	20	170.87	161.641		11	20.19	18.3231
	21	21.12	13.8397		12	30.9	29.2062
	1	29.53	40.1942	19	13	47.55	46.0097
	2	26.06	23.6361	10	14	50.87	49.3095
	3	71.65	71.1055		15	21.56	19.5413
	4	46.48	37.6162		16	35.56	33.2093
	5	86.71	117.8125		17	219.1	217.3927
	6	59.14	65.5141		18	13.65	8.8518
	7	41.3	32.8121		19	17.57	13.6187
	8	36.2	25.3748		1	33.87	30.4755
	9	46.63	43.2957		2	33.87	30.0833
	10	42.03	37.3464		3	199.47	190.4429
18	11	20.13	16.6643		4	123.8	123.9196
	12	32.44	28.8807		5	163.44	160.5455
	13	47.8	44.9533		6	128.18	129.7691
	14	54.64	42.3858		7	139.96	139.9297
	15	36.41	31.7971		8	37.36	34.9754
	16	47.31	50.2694		9	48.04	47.2491
	17	205.75	212.2997		10	36.51	32.668
	18	16.36	8.6205	20	11	20.17	16.7836
	19	20.04	14.113		12	36.06	32.9046
	20	170.35	166.2976		13	43.41	41.0025
	21	21.3	15.9739		14	50.62	45.1989
	1	35.45	33.352		15	23.07	19.1754
	2	33.88	31.4739		16	27.44	23.2658
	3	201.1	195.6841		17	82.07	75.4506
19	4	125.88	127.9913		18	11.92	6.3531
	5	160.14	158.5233		19	16.29	11.1178
	6	198.98	200.2539		20	171.06	166.4753
	7	45.36	43.4002		21	21.09	15.9318

Tabla A-1: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con MPW1PW91/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	1	38.7	29.8694		15	31.43	21.52
	2	38.1	29.6944		16	38.82	25.97
	3	211	195.787	2	17	221.80	196.33
	4	44.6	37.9398		18	13.94	9.34
	5	46.7	30.7847		19	12.31	8.82
	6	29	20.1847		1	37.21	28.85
	7	32.1	25.6299		2	31.48	24.55
	8	35.7	27.405		3	71.36	60.42
	9	54.1	48.3761		4	42.14	31.62
1	10	35.7	27.2338		5	141.17	127.84
	11	21.5	13.9009		6	120.72	109.03
	12	38.8	30.1312		7	30.29	23.38
	13	40.8	31.855		8	31.01	23.11
	14	54.3	45.4988	3	9	50.23	41.88
	15	25.5	17.0869		10	36.63	29.85
	16	20.5	12.8413		11	20.35	12.99
	17	40.3	33.9167		12	30.77	23.99
	18	17.4	7.3517		13	47.52	38.96
	19	11.4	3.2721		14	51.75	42.82
	1	24.76	26.2423		15	27.85	14.28
	2	35.96	25.1233		16	35.82	25.90
	3	70.1	59.6675		17	221.23	198.45
	4	36.74	28.3566		18	19.41	4.83
	5	41.95	30.8515		19	13.52	11.10
	6	37.55	27.4154		1	38.63	41.46
2	7	73.91	64.3961		2	38.13	49.32
2	8	51.02	33.6925		3	211.72	196.71
	9	52.41	38.3601		4	44.70	36.35
	10	34.95	28.1615	4	5	46.81	30.54
	11	20.55	14.6008		6	28.85	19.34
	12	31.19	22.3522		7	31.30	24.85
	13	48.11	41.187		8	35.54	26.65
	14	42.44	37.7447		9	54.05	48.27

Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	10	35.8	27.8408		5	171.35	152.334
	11	21.08	13.8629		6	32.8	25.0507
	12	36.73	27.9709		7	31.55	23.7436
	13	43.04	35.0718		8	35.73	27.1449
Λ	14	50.92	42.4555		9	53.93	45.9881
4	15	23.42	15.4261		10	38.67	30.8656
	16	30.57	20.6435		11	20.65	13.2233
	17	81.84	72.2974	6	12	36.44	27.9585
	18	11.15	3.1951		13	42.82	34.8541
	19	11.5	4.4748		14	50.49	42.2559
	1	36.96	26.4684		15	23.34	15.2892
	2	31.35	25.1403		16	30.41	20.43
	3	70.91	59.5745		17	81.56	72.3323
	4	38.01	28.2489	-	18	11.06	3.3881
	5	44.84	32.0135		19	17.42	8.9478
	6	28.38	21.4228		1	38.5	29.4124
	7	30.88	21.9618		2	38.1	27.7157
	8	35.03	29.0936		3	212.3	193.686
	9	54.43	40.736		4	44.7	36.2594
5	10	35.62	28.2289		5	46.5	39.3573
	11	20.47	14.5314		6	29.1	21.3039
	12	31.54	22.4206		7	30.8	26.2671
	13	47.76	41.1161		8	35.5	27.0425
	14	51.41	38.197	7	9	54.1	51.1311
	15	21.75	16.0939	· ·	10	36.1	29.412
	16	35.81	25.962		11	20.8	13.1701
	17	221.34	197.506		12	42	33.1801
	18	13.78	9.3072		13	33.6	24.2476
	19	12.29	8.6565		14	51	40.139
	1	35.67	28.566		15	27.2	16.7732
6	2	33.94	24.1607		16	24.1	18.8349
0	3	199.6	175.11		17	21.5	13.2738
	4	123.85	111.534		18	42.3	35.8725

 Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
7	19	17	7.6824		13	44.9	34.814
1	20	11.5	3.2359		14	54.3	42.4569
	1	38.1	30.8566		15	23.5	15.412
	2	18.4	12.1801	8.b	16	29.4	20.5589
	3	34.7	32.7502		17	83.5	72.5196
	4	71.2	56.3306		18	12.3	3.247
	5	46	43.6574		19	14.2	9.2759
	6	22.7	12.4866		1	162.9	137.528
	7	31.5	25.096		2	123.3	115.12
	8	35.6	26.8633		3	184.2	162.983
	9	51.4	48.842		4	120.4	112.039
8.a	10	32	29.0409		5	171.1	149.795
	11	20.8	13.5875		6	36.3	24.6901
	12	37	28.1544		7	29.4	25.5035
	13	44.9	34.9269	9	8	39.7	26.9823
	14	54.3	42.655		9	49.5	44.0358
	15	23.5	15.375		10	49.3	34.9067
	16	29.4	20.5702		11	21.1	14.7033
	17	83.5	72.5011		12	42.4	27.78
	18	12.3	3.3763		13	44.8	35.1785
	19	14.2	6.0145		14	53.6	42.1766
	1	38.1	31.3666		15	23.2	15.5081
	2	18.4	8.8306		16	27.3	20.3318
	3	34.7	25.9453		17	81.9	72.2804
	4	71.2	62.7959		18	12.1	3.3347
	5	46	-10.68		19	20.6	10.6168
8 h	6	22.7	19.5253		1	42.4	34.4797
0.0	7	31.5	25.4596		2	74.1	62.9661
	8	35.6	27.7216		3	204	191.923
	9	51.4	49.9129	10.a	4	43.2	36.0214
	10	32	28.8328		5	47.5	30.534
	11	20.8	13.8503		6	27.9	19.2811
	12	37	28.097		7	27.2	24.8561

 Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	8	34.2	26.6538	10 h	20	171.1	147.24
	9	53.4	48.2387	10.0	21	20.5	8.6023
	10	37	28.2753		1	32.7	53.7785
	11	20.9	13.7037		2	29.8	42.181
	12	36.4	28.0026		3	75.9	81.3291
	13	44.5	35.1123		4	31.5	39.5588
10 0	14	50.1	42.5053		5	50.3	41.9759
10.a	15	23.2	15.4373		6	66.6	71.3009
	16	30.8	20.5702		7	35.9	46.5805
	17	82.5	72.3121		8	30.8	39.8353
	18	11.2	3.2284		9	40.4	60.3112
	19	12.4	4.17	11	10	38.9	45.9206
	20	171.1	150.062		11	21.9	30.4677
	21	20.5	9.6959		12	31.5	41.413
	1	42.4	33.3472		13	47.6	56.6844
	2	74.1	63.8129		14	51.8	60.8979
	3	204	200.075		15	23.5	31.788
	4	43.2	33.8553		16	36.9	43.5088
	5	47.5	30.2912		17	221.2	215.775
	6	27.9	19.5824		18	13.5	22.4293
	7	27.2	24.9332		19	19.4	23.9804
	8	34.2	26.6604		1	34.5	34.4617
	9	53.4	48.2575		2	31	25.4141
10.b	10	37	27.6302		3	71.3	63.6713
	11	20.9	13.9347		4	32.3	21.1009
	12	36.4	28.1287		5	51.2	43.3015
	13	44.5	34.8074	10	6	69.8	59.1945
	14	50.1	42.2861	12	7	37.1	28.112
	15	23.2	15.2875		8	27.1	24.7964
	16	30.8	20.4573		9	50.8	44.0133
	17	82.5	72.3553		10	33.5	29.2866
	18	11.2	3.2488		11	21.4	13.5715
	19	12.40	6.5175		12	36.40	30.2467

 Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	13	42.2	31.5639		8	35.6	29.1184
	14	53.9	45.3982		9	54.3	40.3868
	15	24.1	18.2202		10	35	27.9294
12	16	20.5	12.5208		11	20.5	14.4573
	17	40.8	33.4101		12	31.5	22.1944
	18	13.5	10.2051		13	47.8	41.1734
	19	16.9	5.0594		14	51.4	38.142
	1	36.9	38.7118	14	15	21.8	16.1652
	2	33.9	27.5831		16	35.8	26.0982
	3	211.3	187.893		17	221.2	197.094
	4	41.9	26.5094		18	12.2	9.3221
	5	57.2	49.1728		19	13.8	8.6218
	6	209.6	185.179		20	166.3	154.036
	7	45.8	35.2049		21	42	24.3177
	8	37.3	27.0762		22	166.8	141.299
	9	51.4	44.3265		1	33.8	25.9111
13	10	38.2	33.7951		2	24.8	14.9963
	11	24	13.9492		3	129.8	108.575
	12	37.9	29.9944		4	130.5	117.248
	13	41.4	31.8243		5	44.6	33.934
	14	53.6	45.9925		6	28.2	18.7731
	15	26.9	17.9121		7	31.5	22.0435
	16	21.2	12.437		8	35.6	28.9902
	17	40.9	33.2212	15 2	9	54.2	40.6581
	18	20.9	10.1195	15.a	10	35	27.9752
	19	16.8	4.8756		11	20.4	14.0753
	1	36.6	26.3551		12	31.4	22.3557
	2	27.2	20.7624		13	47.8	41.1398
	3	74.7	64.6527		14	51.4	38.2015
14	4	30.8	26.6696		15	21.8	16.0863
	5	44.6	32.1736		16	35.8	25.939
	6	29.7	21.0968		17	221.2	197.493
	7	28.2	21.7782		18	13.8	9.3155

 Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
15.a	19	12.2	9.2111		14	50.6	38.2577
	1	35.8	34.6018		15	21.5	16.2612
	2	129.8	126.608		16	34.9	26.1642
	3	130.5	136.212		17	220.8	197.439
	4	31.4	25.3697		18	11.6	9.3322
	5	44.6	31.7495		19	13.4	8.7403
	6	24.8	22.109	16	20	168	147.967
	7	28.2	21.7778		21	131.8	116.605
	8	35	29.1023		22	125.4	116.782
	9	54.2	39.9971		23	130.8	112.878
15.b	10	33.8	27.764		24	122.3	116.892
	11	20.4	14.175		25	125.3	112.525
	12	31.5	22.4017		26	133.5	114.603
	13	47.8	41.1578	-	1	35.69	28.5995
	14	51.4	38.3035		2	33.91	24.2596
	15	21.8	16.0821		3	199.34	175.094
	16	35.6	25.9573		4	123.93	111.651
	17	221.2	197.511		5	171.07	151.863
	18	13.8	9.3395		6	32.71	24.7782
	19	12.2	9.0285		7	31.48	23.4716
	1	35.5	27.1825		8	35.39	26.9646
	2	25.7	20.0394		9	53.7	45.9645
	3	76	62.9981	17	10	38.59	30.9002
	4	30.4	25.8599	17	11	20.51	13.164
	5	41.2	32.1075		12	36.5	28.3854
	6	30	21.2439		13	42.44	35.5018
16	7	28.2	21.9822		14	50.24	42.4593
	8	34.8	29.1473		15	23.45	14.9557
	9	51.2	40.7084		16	27.46	20.2156
	10	34.5	28.165		17	82.43	74.7957
	11	20.1	14.5109		18	12	2.7999
	12	31.3	22.3483		19	17.38	8.8873
	13	47.4	41.3658		20	170.87	149.55

 Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
17	21	21.12	9.4828		12	30.9	24.7076
	1	29.53	34.5729		13	47.55	41.4058
	2	26.06	18.4446		14	50.87	44.3662
	3	71.65	63.9699	40	15	21.56	15.2447
	4	46.48	32.936	19	16	35.56	27.3198
	5	86.71	108.66		17	219.1	200.931
	6	59.14	60.0016		18	13.65	5.554
	7	41.3	28.4808		19	17.57	10.2262
	8	36.2	21.2578		1	33.87	26.1173
	9	46.63	38.636		2	33.87	24.3585
	10	42.03	33.0444		3	199.47	175.264
18	11	20.13	12.5212		4	123.8	111.297
	12	32.44	24.2604		5	163.44	145.16
	13	47.8	39.9073		6	128.18	116.062
	14	54.64	38.0415		7	139.96	124.813
	15	36.41	26.7533		8	37.36	29.8139
	16	47.31	45.285		9	48.04	42.3472
	17	205.75	195.95		10	36.51	28.1503
	18	16.36	5.1112	20	11	20.17	12.5162
	19	20.04	10.4246		12	36.06	27.7435
	20	170.35	149.966		13	43.41	36.2246
	21	21.3	10.0875		14	50.62	40.4263
	1	35.45	28.8041		15	23.07	14.9125
	2	33.88	25.6099		16	27.44	18.601
	3	201.1	180.841		17	82.07	68.8871
	4	125.88	115.186		18	11.92	3.4714
	5	160.14	144.165		19	16.29	7.9606
19	6	198.98	185.106		20	171.06	150.404
	7	45.36	37.3321		21	21.09	10.3079
	8	33.67	26.8026				
	9	51.45	43.56				
-	10	39.67	34.0638				
	11	20.19	13.9434				

Tabla A-2: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-31G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	1	38.7	40.563		15	31.43	31.04
	2	38.1	41.5516		16	38.82	37.04
	3	211	216.641	2	17	221.80	218.36
	4	44.6	49.8151		18	13.94	17.91
	5	46.7	42.0201		19	12.31	16.85
	6	29	30.7904		1	37.21	39.60
	7	32.1	36.3057		2	31.48	35.72
	8	35.7	38.3799		3	71.36	74.84
	9	54.1	60.6245		4	42.14	42.84
1	10	35.7	37.353		5	141.17	149.35
	11	21.5	23.5737		6	120.72	126.86
	12	38.8	41.3437		7	30.29	33.78
	13	40.8	42.998	3	8	31.01	33.98
	14	54.3	56.9525		9	50.23	53.89
	15	25.5	26.5865		10	36.63	39.90
	16	20.5	21.7961		11	20.35	22.79
	17	40.3	44.5499		12	30.77	34.21
	18	17.4	15.2814		13	47.52	49.12
	19	11.4	10.3564		14	51.75	54.64
	1	24.76	36.9729		15	27.85	23.57
	2	35.96	36.2049		16	35.82	36.72
	3	70.1	73.9175		17	221.23	220.71
	4	36.74	39.1304		18	19.41	12.86
	5	41.95	42.1399		19	13.52	19.49
	6	37.55	38.4488		1	38.63	45.70
2	7	73.91	78.2351		2	38.13	75.28
2	8	51.02	45.2408		3	211.72	212.40
	9	52.41	50.0263		4	44.70	47.93
	10	34.95	38.0495	4	5	46.81	41.94
	11	20.55	24.2531		6	28.85	29.72
	12	31.19	32.3228		7	31.30	35.47
	13	48.11	51.4669		8	35.54	37.51
	14	42.44	49.4292		9	54.05	60.30

 Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y

 calculados con B3LYP/6-311G(d,p)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	10	35.8	38.6042		5	171.35	175.322
	11	21.08	23.3181		6	32.8	36.0256
	12	36.73	38.8316		7	31.55	34.6136
	13	43.04	45.3813		8	35.73	38.198
Λ	14	50.92	54.0785		9	53.93	58.0706
4	15	23.42	24.7377		10	38.67	41.2329
	16	30.57	30.7068		11	20.65	22.896
	17	81.84	86.0299	6	12	36.44	38.7439
	18	11.15	10.5094		13	42.82	45.4712
	19	11.5	11.5218		14	50.49	53.5637
	1	36.96	37.1283		15	23.34	24.6835
	2	31.35	36.1977		16	30.41	30.5683
	3	70.91	73.8287		17	81.56	86.0836
	4	38.01	39.1577		18	11.06	10.6452
	5	44.84	43.4808		19	17.42	17.1121
	6	28.38	31.9938		1	38.5	39.9671
	7	30.88	32.4914		2	38.1	39.4855
	8	35.03	40.0711		3	212.3	214.578
	9	54.43	52.81		4	44.7	48.3422
5	10	35.62	37.9887		5	46.5	51.0592
	11	20.47	24.2564		6	29.1	31.873
	12	31.54	32.3898		7	30.8	36.9898
	13	47.76	51.3882		8	35.5	37.9466
	14	51.41	49.9561	7	9	54.1	63.5504
	15	21.75	25.3761	'	10	36.1	39.5625
	16	35.81	36.9602		11	20.8	22.8281
	17	221.34	219.63		12	42	44.4063
	18	13.78	16.5264		13	33.6	34.525
	19	12.29	17.8081		14	51	51.6619
	1	35.67	38.9346		15	27.2	26.9038
6	2	33.94	35.437		16	24.1	29.6764
0	3	199.6	195.064		17	21.5	23.4651
	4	123.85	128.878		18	42.3	47.2188

 Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
7	19	17	15.7878		13	44.9	45.3051
/	20	11.5	10.5941		14	54.3	53.773
	1	38.1	41.802		15	23.5	24.8412
	2	18.4	22.3747	8.b	16	29.4	30.7416
	3	34.7	44.3919		17	83.5	86.3429
	4	71.2	69.4507		18	12.3	10.3654
	5	46	56.1329		19	14.2	16.8973
	6	22.7	22.1073		1	162.9	157.823
	7	31.5	35.9222		2	123.3	133.62
	8	35.6	37.8547		3	184.2	182.477
	9	51.4	61.1208		4	120.4	129.469
8.a	10	32	39.3216		5	171.1	171.879
	11	20.8	23.2183	9	6	36.3	35.6539
	12	37	39.0156		7	29.4	36.4691
	13	44.9	45.3843		8	39.7	37.9809
	14	54.3	54.154		9	49.5	56.4889
	15	23.5	24.7605		10	49.3	45.6988
	16	29.4	30.7179		11	21.1	24.7591
	17	83.5	86.293		12	42.4	38.4553
	18	12.3	10.6231		13	44.8	45.8293
	19	14.2	13.4169		14	53.6	53.3349
	1	38.1	42.532		15	23.2	24.9767
	2	18.4	18.263		16	27.3	30.4561
	3	34.7	36.8776		17	81.9	85.9668
	4	71.2	76.0266		18	12.1	10.6042
	5	46	-2.4167		19	20.6	19.2061
8 h	6	22.7	30.0839		1	42.4	45.6995
0.0	7	31.5	36.7028		2	74.1	75.2776
	8	35.6	38.9079		3	204	212.403
	9	51.4	62.6612	10.a	4	43.2	47.9278
	10	32	39.0295		5	47.5	41.9428
	11	20.8	23.5931		6	27.9	29.722
	12	37	38.9782		7	27.2	35.4683

Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	8	34.2	37.5065	10 h	20	171.1	167.417
	9	53.4	60.299	10.0	21	20.5	18.2057
	10	37	38.6042		1	32.7	47.9127
	11	20.9	23.3181		2	29.8	35.9487
	12	36.4	38.8316		3	75.9	78.2496
	13	44.5	45.3813		4	31.5	32.0763
10 0	14	50.1	54.0785		5	50.3	34.6095
10.a	15	23.2	24.7377		6	66.6	66.9429
	16	30.8	30.7068		7	35.9	39.7401
	17	82.5	86.0299		8	30.8	33.0294
	18	11.2	10.5094		9	40.4	54.5565
	19	12.4	11.5218	11	10	38.9	38.3114
	20	171.1	170.758		11	21.9	22.6641
	21	20.5	19.497		12	31.5	34.0407
	1	42.4	44.5057		13	47.6	49.1401
	2	74.1	76.1805		14	51.8	55.2511
	3	204	221.13		15	23.5	23.459
	4	43.2	45.7536		16	36.9	36.7812
	5	47.5	41.7927		17	221.2	220.523
	6	27.9	30.1415		18	13.5	13.0265
	7	27.2	35.5969		19	19.4	13.925
	8	34.2	37.5439		1	34.5	45.5841
	9	53.4	60.5111		2	31	36.7917
10.b	10	37	37.9357		3	71.3	78.1272
	11	20.9	23.5639		4	32.3	30.8897
	12	36.4	39.0128		5	51.2	55.3607
	13	44.5	45.1282	12	6	69.8	72.4476
	14	50.1	53.7079	12	7	37.1	38.9361
	15	23.2	24.7038		8	27.1	35.5152
	16	30.8	30.6091		9	50.8	56.0656
	17	82.5	86.2281		10	33.5	39.619
	18	11.2	10.4395		11	21.4	23.2585
	19	12.40	14.3833		12	36.40	41.5598

 Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
	13	42.2	42.1493		8	35.6	39.9459
	14	53.9	57.173		9	54.3	52.2191
	15	24.1	27.9166		10	35	37.6215
12	16	20.5	21.4153		11	20.5	24.2369
	17	40.8	44.2571	-	12	31.5	32.1323
	18	13.5	18.3275		13	47.8	51.3075
	19	16.9	12.7164		14	51.4	49.834
	1	36.9	49.9666	14	15	21.8	25.5146
	2	33.9	39.8555		16	35.8	36.9681
	3	211.3	208.769		17	221.2	219.165
	4	41.9	37.4555		18	12.2	17.8849
	5	57.2	61.4071		19	13.8	16.544
	6	209.6	206.743		20	166.3	174.347
	7	45.8	46.8238		21	42	33.8949
	8	37.3	38.0142		22	166.8	161.539
	9	51.4	56.4492	-	1	33.8	36.292
13	10	38.2	44.5128		2	24.8	25.0965
	11	24	23.7		3	129.8	127.682
	12	37.9	41.1973		4	130.5	136.835
	13	41.4	42.5014		5	44.6	45.1259
	14	53.6	57.741		6	28.2	29.0984
	15	26.9	27.6657		7	31.5	32.5927
	16	21.2	21.3777		8	35.6	40.0067
	17	40.9	44.023	15 2	9	54.2	52.774
	18	20.9	18.2412	15.a	10	35	37.5478
	19	16.8	12.4625		11	20.4	23.6843
	1	36.6	36.8194		12	31.4	32.3263
	2	27.2	30.9852		13	47.8	51.3858
	3	74.7	77.384		14	51.4	49.9687
14	4	30.8	37.3126		15	21.8	25.3647
	5	44.6	43.7328		16	35.8	36.9227
	6	29.7	31.4808		17	221.2	219.617
	7	28.2	32.1945		18	13.8	17.8249

 Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y

 calculados con B3LYP/6-311G(d,p) (continuación)

Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)	Compuesto n°	Átomo de Carbono	Señal Experimental δ(ppm)	Señales calculadas δ(ppm)
15.a	19	12.2	16.6386		14	50.6	49.9918
	1	35.8	45.7434		15	21.5	25.4717
	2	129.8	147.285		16	34.9	37.0737
	3	130.5	157.638		17	220.8	219.601
	4	31.4	36.1178		18	11.6	17.8097
	5	44.6	42.7513		19	13.4	16.6186
	6	24.8	32.7193	16	20	168	168.218
	7	28.2	32.2878		21	131.8	134.416
	8	35	40.0601		22	125.4	135.239
	9	54.2	52.0612		23	130.8	131.516
15.b	10	33.8	37.6517		24	122.3	136.4
	11	20.4	23.8236	_	25	125.3	131
	12	31.5	32.3591		26	133.5	133.234
	13	47.8	51.4008		1	35.69	38.9551
	14	51.4	50.044		2	33.91	35.4989
	15	21.8	25.3659		3	199.34	195.071
	16	35.6	36.9514		4	123.93	129.041
	17	221.2	219.628		5	171.07	174.658
	18	13.8	17.8673		6	32.71	35.7152
	19	12.2	16.4873		7	31.48	34.2975
	1	35.5	37.8971		8	35.39	38.0662
	2	25.7	30.6237		9	53.7	58.0801
	3	76	76.0322	17	10	38.59	41.2948
	4	30.4	36.0199	17	11	20.51	22.8592
	5	41.2	43.384		12	36.5	39.3739
	6	30	31.7489		13	42.44	46.2745
16	7	28.2	32.3897		14	50.24	53.764
	8	34.8	39.7424		15	23.45	24.3757
	9	51.2	52.7843		16	27.46	30.1482
	10	34.5	37.9404		17	82.43	87.6738
	11	20.1	24.2817		18	12	10.2446
	12	31.3	32.25		19	17.38	16.9525
	13	47.4	51.5102		20	170.87	166.209

 Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y

 calculados con B3LYP/6-311G(d,p) (continuación)

Compuesto	Átomo	Señal Experimental	Señales	Compuesto	Átomo	Señal Experimental	Señales calculadas
n°	Carbono	δ(ppm)	δ(ppm)	n°	Carbono	δ(ppm)	δ(ppm)
17	21	21.12	17.9604		12	30.9	34.9243
	1	29.53	45.8004		13	47.55	51.6436
	2	26.06	29.2788		14	50.87	56.0252
	3	71.65	76.9169	10	15	21.56	24.667
	4	46.48	43.4718	19	16	35.56	38.1882
	5	86.71	125.108		17	219.1	223.251
	6	59.14	71.7673		18	13.65	13.6464
	7	41.3	38.6049		19	17.57	18.2595
	8	36.2	31.1143		1	33.87	36.2925
	9	46.63	49.6035		2	33.87	35.3804
	10	42.03	43.3918	1	3	199.47	195.379
18	11	20.13	22.1551		4	123.8	128.578
	12	32.44	34.5751		5	163.44	166.551
	13	47.8	50.5161		6	128.18	134.651
	14	54.64	48.6194		7	139.96	144.499
	15	36.41	37.4351		8	37.36	40.796
	16	47.31	56.4571		9	48.04	54.021
	17	205.75	218.134		10	36.51	38.4463
	18	16.36	13.4331	20	11	20.17	22.2694
	19	20.04	19.0333		12	36.06	38.8383
	20	170.35	171.164		13	43.41	46.8446
	21	21.3	20.0977		14	50.62	51.6026
	1	35.45	39.2136		15	23.07	24.4198
	2	33.88	36.7349		16	27.44	28.5951
	3	201.1	200.81		17	82.07	81.3785
	4	125.88	132.422		18	11.92	11.022
	5	160.14	164.5		19	16.29	15.7006
19	6	198.98	205.565		20	171.06	171.311
	7	45.36	48.9912		21	21.09	20.0496
	8	33.67	37.7684				
	9	51.45	55.6522				
	10	39.67	44.396				
	11	20.19	23.8877				

Tabla A-3: Valores de los desplazamientos químicos de RMN¹³C, experimentales y calculados con B3LYP/6-311G(d,p) (continuación)

	EMC							
Compuesto	MPW1PW91/ 6-31G(d,p)	MPW1PW91/ 6-311G(d,p)	B3LYP/ 6-31G(d,p)	B3LYP/ 6-311G(d,p)				
1	187.0001	18.4613	84.1120	11.5164				
2	230.8285	31.0611	120.4027	19.1791				
3	219.2950	21.4606	113.7843	16.4519				
4	192.2699	72.0283	85.8499	83.0536				
5	215.5698	21.1591	105.7723	8.9601				
6	219.6437	16.0164	116.6511	9.1322				
7	182.0559	13.6003	81.0134	14.1320				
8.a	168.3239	19.6668	70.2854	22.4727				
8.b	348.6460	162.1717	229.3449	141.8681				
9	273.0250	35.8617	162.5177	20.9037				
10.a	185.3987	20.4094	83.1322	16.4926				
10.b	179.4394	27.1350	77.5950	27.7634				
11	244.7512	53.9938	105.4917	41.7821				
12	151.3414	14.8313	59.3710	25.1386				
13	235.6311	30.2206	134.8967	20.5635				
14	205.2300	20.4398	100.2393	10.6438				
15.a	233.8860	21.4782	127.0655	8.4244				
15.b	172.1146	51.5055	85.3228	72.1268				
16	184.5307	13.4480	86.7125	12.2231				
17	213.0292	14.8114	112.4298	10.5674				
18	200.2114	93.6661	116.6128	120.4989				
19	194.4183	6.6842	105.5337	16.0535				
20	232.0191	17.3737	131.8430	10.5725				

 Tabla A-4: Valores obtenidos en el cálculo del Error medio cuadrático (EMC) de los desplazamientos químicos calculados para cada androstano. Valores en ppm

Gráfico B-1: Correlación de datos, MPW1PW91/6-311G(d,p), compuesto 3 y derivados

Gráfico B-2: Correlación de datos, MPW1PW91/6-311G(d,p), compuesto 4 y derivados

Gráfico B-3: Correlación de datos, MPW1PW91/6-311G(d,p), compuesto 5 y derivados

Gráfico B-4: Correlación de datos, MPW1PW91/6-311G(d,p), compuesto 6 y derivados

Gráfico B-5: Correlación de datos, B3LYP/6-31G(d,p), compuesto 3 y derivados

Gráfico B-6: Correlación de datos, B3LYP/6-31G(d,p), compuesto 4 y derivados

Gráfico B-7: Correlación de datos, B3LYP/6-31G(d,p), compuesto 5 y derivados

Gráfico B-8: Correlación de datos, B3LYP/6-31G(d,p), compuesto 6 y derivados

Gráfico B-9: Correlación de datos, B3LYP/6-311G(d,p), compuesto 3 y derivados

Gráfico B-10: Correlación de datos, B3LYP/6-311G(d,p), compuesto 4 y derivados

Gráfico B-11: Correlación de datos, B3LYP/6-311G(d,p), compuesto 5 y derivados

Gráfico B-12: Correlación de datos, B3LYP/6-311G(d,p), compuesto 6 y derivados

Gráfico B-13: Residuales del compuesto n°1

Gráfico B-14: Residuales del compuesto n°2

Gráfico B-15: Residuales del compuesto n°3

Gráfico B-16: Residuales del compuesto n°6

Gráfico B-17: Residuales del compuesto n°7

Gráfico B-18: Residuales del compuesto n°9

Gráfico B-19: Residuales del compuesto nº11

-15

Gráfico B-20: Residuales del compuesto n°12

Átomo de Carbón

Gráfico B-21: Residuales del compuesto n°13

Gráfico B-22: Residuales del compuesto n°14

Gráfico B-23: Residuales del compuesto n°16

Gráfico B-24: Residuales del compuesto n°17

Gráfico B-25: Residuales del compuesto n°19

Gráfico B-26: Residuales del compuesto n°20

BIBLIOGRAFÍA

- Cimino, P., Gomez-Paloma, L., Duca, D., Riccio, R. y Bifulco, G. (2004). *Comparison of different theory models and basis sets in the calculation of* ¹³C *NMR chemical shifts of natural products.* Magn. Reson. Chem., (42): S26–S33.
- Nieto, L. I. (2008). Determinación de las propiedades espectroscópicas y estudio de reacciones en fase heterogénea de nuevos compuestos orgánicos oxigenados presentes en la troposfera. Tesis doctoral, Universidad Nacional de La Plata, La Plata, Argentina.
- Lednicer, D. (2011). Steroid Chemistry at a Glance. Reino Unido: John Wiley & Sons Ltd.
- 4. Foresmas, J. B.; Frisch, A. (1996). *Exploring chemistry with electronic structure methods*. Pittsburgh, Pennsylvania: Gaussian,Inc.
- Berroterán, N. (2008). Estudio teórico de la participación del doble enlace olefínico como grupo vecino en la eliminación unimolecular y homogénea de algunos cloruros de alquenilo en fase gas. Trabajo especial de grado, Facultad de Ciencias, UCV.
- 6. Levine, I. N. (1996). Fisicoquímica. Madrid, España: McGraw-Hill.
- 7. Levine, I. N. (2001). Química Cuántica. Madrid, España: McGraw-Hill.
- 8. Atkins, P., & Friedman, R. (2005). *Molecular Quantum Mechanics*. New York, United States: Oxford University Press Inc.
- 9. Atkins, P. (1999). Química Física. Barcelona, España: Ediciones Omega, S. A.
- 10.Zullo, F. (2008). Estudio de las propiedades fisicoquímicas mediante modelaje molecular de 4-Aminoquinolinas sustituidas en la posición 8. Trabajo especial de grado, Facultad de Ciencias, UCV.
- Engel, T. & Reid, P. (2006). *Química Física*. Madrid, España: Pearson Educación S.A.

- 12.Leach, A. (1996). *Molecular Modeling: Principles and Applications*. Londres, Reino Unido: Pearson Education Limited.
- Bacharach, Steve. (2007). Computational Organic Chemistry. New Jersey: John Wiley & sons Inc.
- 14. Ramírez, B. (2014). Estudio computacional de la cinética de reacciones unimoleculares de eliminación en ciclohexenos y ciclohexadienos en fase gas. Tesis doctoral, Facultad de Ciencias, UCV.
- 15. Jensen, Frank. (1999). Introduction to computational chemistry. New York: Wiley.
- Reed, A., Curtiss, E., Larry, A. y Weinhold, F. (1988). Intermolacular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews, 88(6), 899-926.
- 17. Miller, J. y Miller, J. (2002). Estadística y quimiometría para química analítica.Madrid, España: Pearson Educación, S.A.
- 18. Cortés, F., Cuevas, G., Tenorio, J., y Rochín, A. (2000). Asignación inequívoca de las señales del espectro de resonancia magnética nuclear de ¹H y ¹³C de monoterpenos empleando métodos computacionales. Rev. Soc. Quím. Méx. 44(1), 7-10.
- Barone, G., Gomez-Paloma, L., Duca, D., Silvestri, A., Riccio, R., y Bifulco, G. (2002). Structure Validation of Natural Products by Quantum-Mechanical GIAO Calculations of 13C NMR Chemical Shifts. Chem. Eur. J. 8(14), 3233-3239.
- 20. Neacato, P. (2007). Síntesis de Derivados de Androstanos como posibles agentes antivirales. Trabajo especial de grado, Facultad de Ciencias, UCV.
- Neacato, P. (2015). Hemisíntesis de androstanos. Estudio de modelaje computacional. Trabajo de ascenso, Facultad de Ciencias, UCV. (Trabajo no publicado).
- 22.Paz, D. (2012). Estudio de catalizadores en reacciones de esterificación de androstanos como intermediarios clave en la incorporación de cadenas laterales. Trabajo especial de grado, Facultad de Ciencias, UCV.

- 23. Alvarado, R. (2013). Estudio de reacciones de hidroboración sobre sistemas Δ^4 - Δ^5 en androstanos. Trabajo especial de grado, Facultad de Ciencias, UCV.
- 24. Antunez, D. (2014). Aproximación a la síntesis de la androst-5-en-3,17-diona, síntesis de la androst-4-en-3,6,17-triona y su posterior reducción. Trabajo especial de grado, Facultad de Ciencias, UCV.
- 25. Montilla, E. (2015). Oxidación del anillo B de 17β -hidroxi- Δ^4 -androsten-3-ona (*Testosterona*). Trabajo especial de grado, Facultad de Ciencias, UCV.
- 26. Marcano, D., Rojas, A., Mendez, B., y Mendez, J. (1981). Carbon-13 Nuclear Magnetic Resonance Spectra of D-Homoandrostane Derivatives. Organic Magnetic Resonance Journal. 16(3), 205.
- 27. Ricco, C., Revial, G., Ferroud, C., Hennebert, R. y Morfin, R. (2010). *Synthesis of 7β-hydroxy-epiandrosterone*. Elsevier Journal. 76, 28-30.
- 28. Yamaji, T., Saito, T., Hayamizu, K., Yanagisawa, M. y Yamamoto, O. (2016). AIST: Spectral Database for Organic Compounds, SDBS. [en línea] Disponible en: http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi [Fecha de consulta: 24 de noviembre de 2015].
- 29. Breitmaier, E. y Voelter, W. (1987). *Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry.* Weinheim, Alemania: VCH.
- 30. Martínez, E. (2005). Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario Jurídico y Económico Escurialense, XXXVIII. Real Centro Universitario «Escorial-María Cristina», San Lorenzo del Escoria.
- 31. Jensen, Frank. (2007). Introduction to computational chemistry. New York: Wiley.
- 32. Mason, J. (1987). *Multinuclear NMR*. Plenum Press: Nueva York.
- 33.Kidd, R. (1980). Nuclear Shielding of the Transition Metals. Ann. Rep. NMR Spectrosc. (10A), 2.
- 34. Kaupp, M., Malkina, O., Malkin, V. y Pyykkö, P. (1998). How Do Spin Orbit -Induced Heavy - Atom Effects on NMR Chemical Shifts Function? Validation of a

Simple Analogy to Spin - Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds. Chem. Eur. J. (4), 118-119.

35. Marcano, D. y Cortés, L. (2010). *Química Orgánica. Tomo II.* Caracas, Venezuela: Ediciones de la Biblioteca – EBUC.